Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease

Key Points

  • The proportion of women with predialysis chronic kidney disease (CKD) is higher than that of men; this difference is likely due to the longer life expectancy of women and possibly to CKD overdiagnosis with use of estimated glomerular filtration rate equations

  • Kidney function declines faster in men than women, possibly owing to unhealthier lifestyles in men and the protective effects of oestrogens or the damaging effects of testosterone

  • More men than women start renal replacement therapy (RRT) not only owing to faster CKD progression in men but also because elderly women are more likely to choose conservative care

  • Mortality is higher among men at all levels of predialysis CKD, whereas mortality among individuals on RRT is similar for men and women

  • Women have reduced access to deceased donor transplantation compared with men, likely owing to higher levels of preformed antibodies, whereas access to living donor kidney transplantation in some countries seems equal

  • The perceived health-related quality of life of women on RRT is poorer than that of men, and women report a higher symptom burden and greater symptom severity than men

Abstract

Improved understanding of sex and gender-specific differences in the aetiology, mechanisms and epidemiology of chronic kidney disease (CKD) could help nephrologists better address the needs of their patients. Population-based studies indicate that CKD epidemiology differs by sex, affecting more women than men, especially with regard to stage G3 CKD. The effects of longer life expectancy on the natural decline of glomerular filtration rate (GFR) with age, as well as potential overdiagnosis of CKD through the inappropriate use of GFR equations, might be in part responsible for the greater prevalence of CKD in women. Somewhat paradoxically, there seems to be a preponderance of men among patients starting renal replacement therapy (RRT); the protective effects of oestrogens in women and/or the damaging effects of testosterone, together with unhealthier lifestyles, might cause kidney function to decline faster in men than in women. Additionally, elderly women seem to be more inclined to choose conservative care instead of RRT. Dissimilarities between the sexes are also apparent in the outcomes of CKD. In patients with predialysis CKD, mortality is higher in men than women; however, this difference disappears for patients on RRT. Although access to living donor kidneys among men and women seems equal, women have reduced access to deceased donor transplantation. Lastly, health-related quality of life while on RRT is poorer in women than men, and women report a higher burden of symptoms. These findings provide insights into differences in the underlying pathophysiology of disease as well as societal factors that can be addressed to reduce disparities in access to care and outcomes for patients with CKD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sex differences in the prevalence of CKD.
Figure 2: Hazard ratios of all-cause mortality according to estimated glomerular filtration rate by sex.
Figure 3: Sex and gender disparities in the epidemiology and outcomes of CKD.
Figure 4: Differences in quality of life domains between men and women on dialysis.
Figure 5: Causes of death among men and women on dialysis.

Similar content being viewed by others

References

  1. Mosca, L., Barrett-Connor, E. & Wenger, N. K. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 124, 2145–2154 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carrero, J. J. Gender differences in chronic kidney disease: underpinnings and therapeutic implications. Kidney Blood Pressure Res. 33, 383–392 (2010).

    Article  CAS  Google Scholar 

  3. Cobo, G. et al. Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clin. Sci. (Lond.) 130, 1147–1163 (2016).

    Article  Google Scholar 

  4. National Kidney, F. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39, S1–S266 (2002).

    Google Scholar 

  5. Nagata, M. et al. Trends in the prevalence of chronic kidney disease and its risk factors in a general Japanese population: the Hisayama Study. Nephrol. Dial. Transplant. 25, 2557–2564 (2010).

    Article  PubMed  Google Scholar 

  6. Lu, C. et al. Prevalence and risk factors associated with chronic kidney disease in a Uygur adult population from Urumqi. J. Huazhong Univ. Sci. Technolog Med. Sci. 30, 604–610 (2010).

    Article  PubMed  Google Scholar 

  7. Bongard, V. et al. [Assessment and characteristics of chronic renal insufficiency in France]. Ann. Cardiol. Angeiol. (Paris) 61, 239–244 (2012).

    Article  CAS  Google Scholar 

  8. Roth, M., Roderick, P. & Mindell, J. (Kidney disease and renal function. (Health survey for England. Volume 1. Health and lifestyles) (The NHS Information Centre, 2010).

    Google Scholar 

  9. Murphy, D. et al. Trends in prevalence of chronic kidney disease in the United States. Ann. Intern. Med. 165, 473–481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Otero, A. Gayoso, P., G. F. & de Francisco, A. EPIRCE Study Group. prevalence of chronic renal disease in Spain: results of the EPIRCE study. Nefrologia 30, 78–86 (2010).

    PubMed  Google Scholar 

  11. Cirillo, M. et al. Low glomerular filtration in the population: prevalence, associated disorders, and awareness. Kidney Int. 70, 800–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Zdrojewski, L. et al. Prevalence of chronic kidney disease in a representative sample of the Polish population: results of the NATPOL 2011 survey. Nephrol. Dial. Transplant. 31, 433–439 (2016).

    Article  PubMed  Google Scholar 

  13. Ong-Ajyooth, L., Vareesangthip, K., Khonputsa, P. & Aekplakorn, W. Prevalence of chronic kidney disease in Thai adults: a national health survey. BMC Nephrol. 10, 35 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gasparini, A. et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol. Dial. Transplant. 31, 2086–2094 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sahin, I. et al. Prevalence of chronic kidney disease in the Black Sea Region, Turkey, and investigation of the related factors with chronic kidney disease. Ren. Fail. 31, 920–927 (2009).

    Article  PubMed  Google Scholar 

  16. Tanamas, S. K. et al. AusDiab 2012: the Australian diabetes, obesity and lifestyle study (Baker IDI Heart and Diabetes Institute, 2013).

    Google Scholar 

  17. Vinhas, J. et al. Prevalence of chronic kidney disease and associated risk factors, and risk of end-stage renal disease: data from the PREVADIAB study. Nephron Clin. Pract. 119, c35–c40 (2011).

    Article  PubMed  Google Scholar 

  18. Anand, S. et al. Prevalence of chronic kidney disease in two major Indian cities and projections for associated cardiovascular disease. Kidney Int. 88, 178–185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arora, P. et al. Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. CMAJ 185, E417–E423 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Epidemiology & Disease Control Division, Ministry of Health, Singapore. National Health Survey 2010 (MOH Singapore, 2011).

  21. Suleymanlar, G. et al. A population-based survey of Chronic REnal Disease In Turkey—the CREDIT study. Nephrol. Dial. Transplant. 26, 1862–1871 (2011).

    Article  PubMed  Google Scholar 

  22. Shin, H. Y. & Kang, H. T. Recent trends in the prevalence of chronic kidney disease in Korean adults: Korean National Health and Nutrition Examination Survey from 1998 to 2013. J. Nephrol. 29, 799–807 (2016).

    Article  PubMed  Google Scholar 

  23. Chen, W. et al. Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrol. Dial. Transplant. 24, 1205–1212 (2009).

    Article  PubMed  Google Scholar 

  24. Juutilainen, A. et al. Trends in estimated kidney function: the FINRISK surveys. Eur. J. Epidemiol. 27, 305–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, W. et al. Prevalence and risk factors of chronic kidney disease: a population study in the Tibetan population. Nephrol. Dial. Transplant. 26, 1592–1599 (2011).

    Article  PubMed  Google Scholar 

  26. Zhang, L. et al. Prevalence and factors associated with CKD: a population study from Beijing. Am. J. Kidney Dis. 51, 373–384 (2008).

    Article  PubMed  Google Scholar 

  27. Zhang, L. et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379, 815–822 (2012).

    Article  PubMed  Google Scholar 

  28. Glassock, R. J., Warnock, D. G. & Delanaye, P. The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat. Rev. Nephrol. 13, 104–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Glassock, R., Delanaye, P. & El Nahas, M. An age-calibrated classification of chronic kidney disease. JAMA 314, 559–560 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. O'Hare, A. M. et al. Age affects outcomes in chronic kidney disease. J. Am. Soc. Nephrol. 18, 2758–2765 (2007).

    Article  PubMed  Google Scholar 

  31. Inker, L. A. et al. Effects of race and sex on measured GFR: the multi-ethnic study of atherosclerosis. Am. J. Kidney Dis. 68, 743–751 (2016).

    Article  PubMed  Google Scholar 

  32. Neugarten, J., Kasiske, B., Silbiger, S. R. & Nyengaard, J. R. Effects of sex on renal structure. Nephron 90, 139–144 (2002).

    Article  PubMed  Google Scholar 

  33. Inker, L. A. et al. Performance of glomerular filtration rate estimating equations in a community-based sample of Blacks and Whites: the multiethnic study of atherosclerosis. Nephrol. Dial. Transplant. https://doi.org/10.1093/ndt/gfx042 (2017).

  34. Wetzels, J. F., Willems, H. L. & den Heijer, M. Age- and gender-specific reference values of estimated glomerular filtration rate in a Caucasian population: results of the Nijmegen Biomedical Study. Kidney Int. 73, 657–658 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Elseviers, M. M., Verpooten, G. A., De Broe, M. E. & De Backer, G. G. Interpretation of creatinine clearance. Lancet 1, 457 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Neugarten, J., Acharya, A. & Silbiger, S. R. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J. Am. Soc. Nephrol. 11, 319–329 (2000).

    CAS  PubMed  Google Scholar 

  37. Jafar, T. H. et al. The rate of progression of renal disease may not be slower in women compared with men: a patient-level meta-analysis. Nephrol. Dial. Transplant. 18, 2047–2053 (2003).

    Article  PubMed  Google Scholar 

  38. Eriksen, B. O. & Ingebretsen, O. C. The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int. 69, 375–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Evans, M. et al. The natural history of chronic renal failure: results from an unselected, population-based, inception cohort in Sweden. Am. J. Kidney Dis. 46, 863–870 (2005).

    Article  PubMed  Google Scholar 

  40. Halbesma, N. et al. Gender differences in predictors of the decline of renal function in the general population. Kidney Int. 74, 505–512 (2008).

    Article  PubMed  Google Scholar 

  41. Grams, M. E., Chow, E. K., Segev, D. L. & Coresh, J. Lifetime incidence of CKD stages 3–5 in the United States. Am. J. Kidney Dis. 62, 245–252 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Turin, T. C. et al. Lifetime risk of ESRD. J. Am. Soc. Nephrol. 23, 1569–1578 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. van den Brand, J. et al. Lifetime risk of renal replacement therapy in Europe: a population-based study using data from the ERA-EDTA Registry. Nephrol. Dial. Transplant. 32, 348–355 (2017).

    Article  PubMed  Google Scholar 

  44. ERA-EDTA Registry. ERA-EDTA Registry annual report 2015 (ERA-EDTA Registry, 2017).

  45. United States Renal Data System. USRDS annual data report: epidemiology of kidney disease in the United States (USRDS, 2016).

  46. De Nicola, L. et al. Prevalence and cardiovascular risk profile of chronic kidney disease in Italy: results of the 2008–2012 National Health Examination Survey. Nephrol. Dial. Transplant. 30, 806–814 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Sparke, C. et al. Estimating the total incidence of kidney failure in Australia including individuals who are not treated by dialysis or transplantation. Am. J. Kidney Dis. 61, 413–419 (2013).

    Article  PubMed  Google Scholar 

  48. Nitsch, D. et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 346, f324 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hemmelgarn, B. R. et al. Rates of treated and untreated kidney failure in older versus younger adults. JAMA 307, 2507–2515 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Faruque, L. I. et al. Factors associated with initiation of chronic renal replacement therapy for patients with kidney failure. Clin. J. Am. Soc. Nephrol. 8, 1327–1335 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Morton, R. L., Turner, R. M., Howard, K., Snelling, P. & Webster, A. C. Patients who plan for conservative care rather than dialysis: a national observational study in Australia. Am. J. Kidney Dis. 59, 419–427 (2012).

    Article  PubMed  Google Scholar 

  52. Chandna, S. M. et al. Rate of decline of kidney function, modality choice, and survival in elderly patients with advanced kidney disease. Nephron 134, 64–72 (2016).

    Article  PubMed  Google Scholar 

  53. Coresh, J. et al. Chronic kidney disease awareness, prevalence, and trends among U. S. adults, 1999 to 2000. J. Am. Soc. Nephrol. 16, 180–188 (2005).

    Article  PubMed  Google Scholar 

  54. Kausz, A. T. et al. Late initiation of dialysis among women and ethnic minorities in the United States. J. Am. Soc. Nephrol. 11, 2351–2357 (2000).

    CAS  PubMed  Google Scholar 

  55. Xue, J. L., Eggers, P. W., Agodoa, L. Y., Foley, R. N. & Collins, A. J. Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J. Am. Soc. Nephrol. 18, 1299–1306 (2007).

    Article  PubMed  Google Scholar 

  56. Obrador, G. T. et al. Level of renal function at the initiation of dialysis in the U. S. end-stage renal disease population. Kidney Int. 56, 2227–2235 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Stel, V. S. et al. Level of renal function in patients starting dialysis: an ERA-EDTA Registry study. Nephrol. Dial. Transplant. 25, 3315–3325 (2010).

    Article  PubMed  Google Scholar 

  58. Hecking, M. et al. Sex-specific differences in hemodialysis prevalence and practices and the male-to-female mortality rate: the Dialysis Outcomes and Practice Patterns Study (DOPPS). PLoS Med. 11, e1001750 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Stel, V. S. et al. Prevalence of co-morbidity in different European RRT populations and its effect on access to renal transplantation. Nephrol. Dial. Transplant. 20, 2803–2811 (2005).

    Article  PubMed  Google Scholar 

  60. Carrero, J. J. et al. Sex differences in the impact of diabetes on mortality in chronic dialysis patients. Nephrol. Dialysis. Transplant. 26, 270–276 (2011).

    Article  Google Scholar 

  61. Palmer, B. F. & Clegg, D. J. Gonadal dysfunction in chronic kidney disease. Rev. Endocr. Metabol. Disord. 18, 117–130 (2017).

    Article  CAS  Google Scholar 

  62. Yu, J. et al. Association between testosterone and mortality risk among U.S. males receiving dialysis. Am. J. Nephrol. 46, 195–203 (2017).

    Article  PubMed  Google Scholar 

  63. Carrero, J. J. & Stenvinkel, P. The vulnerable man: impact of testosterone deficiency on the uraemic phenotype. Nephrol. Dial. Transplant. 27, 4030–4041 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Carrero, J. J. et al. Low serum testosterone increases mortality risk among male dialysis patients. J. Am. Soc. Nephrol. 20, 613–620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carrero, J. J. et al. Testosterone deficiency is a cause of anaemia and reduced responsiveness to erythropoiesis-stimulating agents in men with chronic kidney disease. Nephrol. Dial. Transplant. 27, 709–715 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Bello, A. K. et al. Serum testosterone levels and clinical outcomes in male hemodialysis patients. Am. J. Kidney Dis. 63, 268–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Weisinger, J. R. & Bellorin-Font, E. Outcomes associated with hypogonadism in women with chronic kidney disease. Adv. Chronic Kidney Dis. 11, 361–370 (2004).

    Article  PubMed  Google Scholar 

  68. Couchoud, C. et al. From registry data collection to international comparisons: examples of haemodialysis duration and frequency. Nephrol. Dial. Transplant. 24, 217–224 (2009).

    Article  PubMed  Google Scholar 

  69. Daugirdas, J. T. et al. Surface-area-normalized Kt/V: a method of rescaling dialysis dose to body surface area-implications for different-size patients by gender. Semin. Dial. 21, 415–421 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Spalding, E. M., Chandna, S. M., Davenport, A. & Farrington, K. Kt/V underestimates the hemodialysis dose in women and small men. Kidney Int. 74, 348–355 (2008).

    Article  PubMed  Google Scholar 

  71. Eknoyan, G. et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N. Engl. J. Med. 347, 2010–2019 (2002).

    Article  PubMed  Google Scholar 

  72. Depner, T. et al. Dialysis dose and the effect of gender and body size on outcome in the HEMO Study. Kidney Int. 65, 1386–1394 (2004).

    Article  PubMed  Google Scholar 

  73. Port, F. K. et al. High dialysis dose is associated with lower mortality among women but not among men. Am. J. Kidney Dis. 43, 1014–1023 (2004).

    Article  PubMed  Google Scholar 

  74. Daugirdas, J. T., Greene, T., Chertow, G. M. & Depner, T. A. Can rescaling dose of dialysis to body surface area in the HEMO study explain the different responses to dose in women versus men? Clin. J. Am. Soc. Nephrol. 5, 1628–1636 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Noordzij, M. et al. Use of vascular access for haemodialysis in Europe: a report from the ERA-EDTA Registry. Nephrol. Dial. Transplant. 29, 1956–1964 (2014).

    Article  PubMed  Google Scholar 

  76. Caplin, N., Sedlacek, M., Teodorescu, V., Falk, A. & Uribarri, J. Venous access: women are equal. Am. J. Kidney Dis. 41, 429–432 (2003).

    Article  PubMed  Google Scholar 

  77. Vogelzang, J. L. et al. Mortality from infections and malignancies in patients treated with renal replacement therapy: data from the ERA-EDTA registry. Nephrol. Dial. Transplant. 30, 1028–1037 (2015).

    Article  PubMed  Google Scholar 

  78. Ifudu, O. Patient characteristics determining rHuEPO dose requirements. Nephrol. Dial. Transplant. 17 (Suppl. 5), 38–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Hsu, C. Y., Bates, D. W., Kuperman, G. J. & Curhan, G. C. Relationship between hematocrit and renal function in men and women. Kidney Int. 59, 725–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Hsu, C. Y., McCulloch, C. E. & Curhan, G. C. Epidemiology of anemia associated with chronic renal insufficiency among adults in the United States: results from the Third National Health and Nutrition Examination Survey. J. Am. Soc. Nephrol. 13, 504–510 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Ferrucci, L. et al. Low testosterone levels and the risk of anemia in older men and women. Arch. Intern. Med. 166, 1380–1388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Group, K. D. I. G. O. K. A. W. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int. Suppl. 2, 279–335 (2012).

    Article  Google Scholar 

  83. Locatelli, F. et al. Clinical practice guidelines for anemia in chronic kidney disease: problems and solutions. A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 74, 1237–1240 (2008).

    Article  PubMed  Google Scholar 

  84. Frankenfield, D. L. et al. Racial/ethnic analysis of selected intermediate outcomes for hemodialysis patients: results from the 1997 ESRD Core Indicators Project. Am. J. Kidney Dis. 34, 721–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Madore, F. et al. Anemia in hemodialysis patients: variables affecting this outcome predictor. J. Am. Soc. Nephrol. 8, 1921–1929 (1997).

    CAS  PubMed  Google Scholar 

  86. Ifudu, O. et al. Gender modulates responsiveness to recombinant erythropoietin. Am. J. Kidney Dis. 38, 518–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Kjellstrand, C. M. Age, sex, and race inequality in renal transplantation. Arch. Intern. Med. 148, 1305–1309 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Held, P. J., Pauly, M. V., Bovbjerg, R. R., Newmann, J. & Salvatierra, O. Jr. Access to kidney transplantation. Has the United States eliminated income and racial differences? Arch. Intern. Med. 148, 2594–2600 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Eggers, P. W. Effect of transplantation on the Medicare end-stage renal disease program. N. Engl. J. Med. 318, 223–229 (1988).

    Article  CAS  PubMed  Google Scholar 

  90. Alexander, G. C. & Sehgal, A. R. Barriers to cadaveric renal transplantation among blacks, women, and the poor. JAMA 280, 1148–1152 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Gaylin, D. S. et al. The impact of comorbid and sociodemographic factors on access to renal transplantation. JAMA 269, 603–608 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Soucie, J. M., Neylan, J. F. & McClellan, W. Race and sex differences in the identification of candidates for renal transplantation. Am. J. Kidney Dis. 19, 414–419 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Bloembergen, W. E., Mauger, E. A., Wolfe, R. A. & Port, F. K. Association of gender and access to cadaveric renal transplantation. Am. J. Kidney Dis. 30, 733–738 (1997).

    CAS  Google Scholar 

  94. Schaubel, D. E. et al. Sex inequality in kidney transplantation rates. Arch. Intern. Med. 160, 2349–2354 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Segev, D. L. et al. Age and comorbidities are effect modifiers of gender disparities in renal transplantation. J. Am. Soc. Nephrol. 20, 621–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wolfe, R. A. et al. Differences in access to cadaveric renal transplantation in the United States. Am. J. Kidney Dis. 36, 1025–1033 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Kayler, L. K. et al. Gender imbalance in living donor renal transplantation. Transplantation 73, 248–252 (2002).

    Article  PubMed  Google Scholar 

  98. Kayler, L. K. et al. Gender imbalance and outcomes in living donor renal transplantation in the United States. Am. J. Transplant. 3, 452–458 (2003).

    Article  PubMed  Google Scholar 

  99. Ojo, A. & Port, F. K. Influence of race and gender on related donor renal transplantation rates. Am. J. Kidney Dis. 22, 835–841 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Bloembergen, W. E., Port, F. K., Mauger, E. A., Briggs, J. P. & Leichtman, A. B. Gender discrepancies in living related renal transplant donors and recipients. J. Am. Soc. Nephrol. 7, 1139–1144 (1996).

    CAS  PubMed  Google Scholar 

  101. Roodnat, J. I. et al. Accumulation of unfavorable clinical and socioeconomic factors precludes living donor kidney transplantation. Transplantation 93, 518–523 (2012).

    Article  PubMed  Google Scholar 

  102. Zimmerman, D., Donnelly, S., Miller, J., Stewart, D. & Albert, S. E. Gender disparity in living renal transplant donation. Am. J. Kidney Dis. 36, 534–540 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Organ Procurement and Transplantation Network and Scientific Registry of Transplant Recipients. OPTN/SRTR 2012 annual data report (OPTN/SRTR, 2014).

  104. Rodrigue, J. R. et al. Living donor kidney transplantation: overcoming disparities in live kidney donation in the US — recommendations from a consensus conference. Clin. J. Am. Soc. Nephrol. 10, 1687–1695 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Simmons, R. & Klein, S. The Social and Psychological Impact of Organ Transplantation (Wiley, 1977).

    Google Scholar 

  106. Khalifeh, N. & Horl, W. H. Gender and living donor kidney transplantation. Wien. Med. Wochenschr. 161, 124–127 (2011).

    Article  PubMed  Google Scholar 

  107. Carrero, J. J., Hecking, M., Ulasi, I., Sola, L. & Thomas, B. Chronic kidney disease, gender, and access to care: a global perspective. Semin. Nephrol. 37, 296–308 (2017).

    Article  PubMed  Google Scholar 

  108. Jindal, R. M., Ryan, J. J., Sajjad, I., Murthy, M. H. & Baines, L. S. Kidney transplantation and gender disparity. Am. J. Nephrol. 25, 474–483 (2005).

    Article  PubMed  Google Scholar 

  109. Liu, G. et al. Gender disparity of living donor renal transplantation in East China. Clin. Transplant 27, 98–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Soliman, Y., Shawky, S., Khedr, A.-E., Hassan, A. M. & Behairy, M. Incidence of acute renal allograft rejection in egyptian renal transplant recipients: a single center experience. Life Sci. J. 12, 9–15 (2015).

    Google Scholar 

  111. Bal, M. M. & Saikia, B. Gender bias in renal transplantation: are women alone donating kidneys in India? Transplant. Proc. 39, 2961–2963 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Ramachandran, R. & Jha, V. Kidney transplantation is associated with catastrophic out of pocket expenditure in India. PLoS ONE 8, e67812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ghods, A. J. & Nasrollahzadeh, D. Gender disparity in a live donor renal transplantation program: assessing from cultural perspectives. Transplant. Proc. 35, 2559–2560 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Khajehdehi, P. Living non-related versus related renal transplantation—its relationship to the social status, age and gender of recipients and donors. Nephrol. Dial. Transplant. 14, 2621–2624 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Malakoutian, T. et al. Socioeconomic status of Iranian living unrelated kidney donors: a multicenter study. Transplant. Proc. 39, 824–825 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Naghibi, O., Naghibi, M. & Nazemian, F. Gender disparity in kidney transplantation. Saudi J. Kidney Dis. Transpl. 19, 545–550 (2008).

    PubMed  Google Scholar 

  117. Kwon, O. J. & Kwak, J. Y. The impact of sex and age matching for long-term graft survival in living donor renal transplantation. Transplant. Proc. 36, 2040–2042 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Chalise, P. R. et al. Renal transplantation in Nepal: the first year's experience. Saudi J. Kidney Dis. Transpl. 21, 559–564 (2010).

    PubMed  Google Scholar 

  119. Arogundade, F. A. Kidney transplantation in a low-resource setting: Nigeria experience. Kidney Int. Suppl. (2011) 3, 241–245 (2013).

    Article  Google Scholar 

  120. Shaheen, F. A. et al. Experience of renal transplantation at the king fahd hospital, jeddah, saudi arabia. Saudi J. Kidney Dis. Transpl. 16, 562–572 (2005).

    PubMed  Google Scholar 

  121. Bardi, R. et al. Kidney transplantation: Charles Nicolle Hospital experience. Transplant. Proc. 41, 651–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Peracha, J., Hayer, M. K. & Sharif, A. Gender disparity in living-donor kidney transplant among minority ethnic groups. Exp. Clin. Transplant. 14, 139–145 (2016).

    PubMed  Google Scholar 

  123. Biller-Andorno, N. Gender imbalance in living organ donation. Med. Health Care Philos. 5, 199–204 (2002).

    Article  PubMed  Google Scholar 

  124. Goryainov, V. A. et al. [The effect of gender on the results of related kidney transplantation]. Khirurgiia (Mosk) https://doi.org/10.17116/hirurgia2016662-67 (in Russian) (2016).

  125. Thiel, G. T., Nolte, C. & Tsinalis, D. Gender imbalance in living kidney donation in Switzerland. Transplant. Proc. 37, 592–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Noppakun, K. et al. A 25-year experience of kidney transplantation in Thailand: report from the Thai transplant registry. Nephrol. (Carlton) 20, 177–183 (2015).

    Article  Google Scholar 

  127. Barsky, A. J., Peekna, H. M. & Borus, J. F. Somatic symptom reporting in women and men. J. Gen. Intern. Med. 16, 266–275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. H.Åvard Loge, J. & Kaasa, S. Short Form 36 (SF-36) health survey: normative data from the general Norwegian population. Scand. J. Social Med. 26, 250–258 (2016).

    Article  Google Scholar 

  129. Ong, L. et al. Gender differences and quality of life in atrial fibrillation: the mediating role of depression. J. Psychosom. Res. 61, 769–774 (2006).

    Article  PubMed  Google Scholar 

  130. Vigneshwaran, E., Padmanabhareddy, Y., Devanna, N. & Alvarez-Uria, G. Gender differences in health related quality of life of people living with HIV/AIDS in the era of highly active antiretroviral therapy. N. Am. J. Med. Sci. 5, 102–107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Liu, W. J., Chew, T. F., Chiu, A. S. & Zaki, M. Quality of life of dialysis patients in Malaysia. Med. J. Malaysia 61, 540–546 (2006).

    CAS  PubMed  Google Scholar 

  132. Germin-Petrovic, D. et al. Health-related quality of life in the patients on maintenance hemodialysis: the analysis of demographic and clinical factors. Coll. Antropol. 35, 687–693 (2011).

    PubMed  Google Scholar 

  133. Kutner, N. G., Zhang, R. & Brogan, D. Race, gender, and incident dialysis patients' reported health status and quality of life. J. Am. Soc. Nephrol. 16, 1440–1448 (2005).

    Article  PubMed  Google Scholar 

  134. Vazquez, I. et al. [Differences in health-related quality of life between male and female hemodialysis patients]. Nefrologia 24, 167–178 (2004).

    CAS  PubMed  Google Scholar 

  135. Lopes, A. A. et al. Factors associated with health-related quality of life among hemodialysis patients in the DOPPS. Qual. Life Res. 16, 545–557 (2007).

    Article  PubMed  Google Scholar 

  136. Poulsen, C. G., Kjaergaard, K. D., Peters, C. D., Jespersen, B. & Jensen, J. D. Quality of life development during initial hemodialysis therapy and association with loss of residual renal function. Hemodial. Int. 21, 409–421 (2017).

    Article  PubMed  Google Scholar 

  137. Wight, J. P. et al. The SF36 as an outcome measure of services for end stage renal failure. Qual. Health Care 7, 209–221 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Molarius, A. & Janson, S. Self-rated health, chronic diseases, and symptoms among middle-aged and elderly men and women. J. Clin. Epidemiol. 55, 364–370 (2002).

    Article  PubMed  Google Scholar 

  139. Almutary, H., Bonner, A. & Douglas, C. Which patients with chronic kidney disease have the greatest symptom burden? A comparative study of advanced cKD stage and dialysis modality. 42, 73–82 (2016).

  140. Weisbord, S. D. et al. Prevalence, severity, and importance of physical and emotional symptoms in chronic hemodialysis patients. J. Am. Soc. Nephrol. 16, 2487–2494 (2005).

    Article  PubMed  Google Scholar 

  141. Caplin, B., Kumar, S. & Davenport, A. Patients' perspective of haemodialysis-associated symptoms. Nephrol. Dial. Transplant. 26, 2656–2663 (2011).

    Article  PubMed  Google Scholar 

  142. Lopes, G. B. et al. Depression as a potential explanation for gender differences in health-related quality of life among patients on maintenance hemodialysis. Nephron Clin. Pract. 115, c35–c40 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Overbeck, I. et al. Changes in quality of life after renal transplantation. Transplant. Proc. 37, 1618–1621 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Fiebiger, W., Mitterbauer, C. & Oberbauer, R. Health-related quality of life outcomes after kidney transplantation. Health Qual. Life Outcomes 2, 2 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  145. von der Lippe, N., Waldum, B., Osthus, T. B., Reisaeter, A. V. & Os, I. Health related quality of life in patients in dialysis after renal graft loss and effect of gender. BMC Womens Health 14, 34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Weissman, M. M. et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 276, 293–299 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Abdel-Kader, K., Unruh, M. L. & Weisbord, S. D. Symptom burden, depression, and quality of life in chronic and end-stage kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1057–1064 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Norris, C. M., Hegadoren, K. & Pilote, L. Depression symptoms have a greater impact on the 1-year health-related quality of life outcomes of women post-myocardial infarction compared to men. Eur. J. Cardiovasc. Nurs. 6, 92–98 (2007).

    Article  PubMed  Google Scholar 

  149. Lernmark, B., Persson, B., Fisher, L. & Rydelius, P. A. Symptoms of depression are important to psychological adaptation and metabolic control in children with diabetes mellitus. Diabet. Med. 16, 14–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. La Greca, A. M., Swales, T., Klemp, S., Madigan, S. & Skyler, J. Adolescents with diabetes: gender differences in psychosocial functioning and glycemic control. Children's Health Care 24, 61–78 (1995).

    Article  Google Scholar 

  151. Yeh, S. C. & Chou, H. C. Coping strategies and stressors in patients with hemodialysis. Psychosom. Med. 69, 182–190 (2007).

    Article  PubMed  Google Scholar 

  152. Yeh, S. C. J., Huang, C. H., Chou, H. C. & Wan, T. T. H. Gender differences in stress and coping among elderly patients on hemodialysis. Sex Roles 60, 44–56 (2009).

    Article  Google Scholar 

  153. Tu, H. Y., Shao, J. H., Wu, F. J., Chen, S. H. & Chuang, Y. H. Stressors and coping strategies of 20–45-year-old hemodialysis patients. Collegian 21, 185–192 (2014).

    Article  PubMed  Google Scholar 

  154. Lindqvist, R., Carlsson, M. & Sjoden, P. O. Coping strategies and quality of life among patients on hemodialysis and continuous ambulatory peritoneal dialysis. Scand. J. Caring Sci. 12, 223–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Mendes de Leon, C. F. et al. Psychosocial characteristics after acute myocardial infarction: the ENRICHD pilot study. Enhancing Recovery in Coronary Heart Disease. J. Cardiopulm. Rehabil. 21, 353–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Norris, C. M. et al. Women with coronary artery disease report worse health-related quality of life outcomes compared to men. Health Qual. Life Outcomes 2, 21 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Yan, G. et al. Race/ethnicity, age, and risk of hospital admission and length of stay during the first year of maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 9, 1402–1409 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Adams, S. V. et al. Sex differences in hospitalizations with maintenance hemodialysis. J. Am. Soc. Nephrol. 28, 2721–2728 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Dalrymple, L. S. et al. Infection-related hospitalizations in older patients with ESRD. Am. J. Kidney Dis. 56, 522–530 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Dalrymple, L. S. et al. Outcomes of infection-related hospitalization in Medicare beneficiaries receiving in-center hemodialysis. Am. J. Kidney Dis. 65, 754–762 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Newman, K. L. et al. Hospitalization among individuals waitlisted for kidney transplant. Transplantation. 101, 2913–2923 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Manteuffel, M. et al. Influence of patient sex and gender on medication use, adherence, and prescribing alignment with guidelines. J. Womens Health (Larchmt) 23, 112–119 (2014).

    Article  Google Scholar 

  163. Carrero, J. J. et al. Cardiovascular and noncardiovascular mortality among men and women starting dialysis. Clin. J. Am. Soc. Nephrol. 6, 1722–1730 (2011).

    Article  PubMed  Google Scholar 

  164. Ros, S. et al. Increased risk of fatal infections in women starting peritoneal dialysis. Perit. Dial. Int. 33, 487–494 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Koo, J. H. & Leong, R. W. Sex differences in epidemiological, clinical and pathological characteristics of colorectal cancer. J. Gastroenterol. Hepatol. 25, 33–42 (2010).

    Article  PubMed  Google Scholar 

  166. Molife, R., Lorigan, P. & MacNeil, S. Gender and survival in malignant tumours. Cancer Treat. Rev. 27, 201–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Ellwood, A. D. et al. Early dialysis initiation and rates and timing of withdrawal from dialysis in Canada. Clin. J. Am. Soc. Nephrol. 8, 265–270 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Chan, H. W., Clayton, P. A., McDonald, S. P., Agar, J. W. & Jose, M. D. Risk factors for dialysis withdrawal: an analysis of the Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry, 1999–2008. Clin. J. Am. Soc. Nephrol. 7, 775–781 (2012).

    Article  PubMed  Google Scholar 

  169. Terasaki, P. I., Cecka, J. M., Gjertson, D. W. & Takemoto, S. High survival rates of kidney transplants from spousal and living unrelated donors. N. Engl. J. Med. 333, 333–336 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Sanfilippo, F., Vaughn, W. K., Bollinger, R. R. & Spees, E. K. Comparative effects of pregnancy, transfusion, and prior graft rejection on sensitization and renal transplant results. Transplantation 34, 360–366 (1982).

    Article  CAS  PubMed  Google Scholar 

  171. Iwaki, Y. & Terasaki, P. I. Sensitization effect. Clin. Transpl. 257–265 (1986).

  172. Bohmig, G. A. et al. Role of humoral immune reactions as target for antirejection therapy in recipients of a spousal-donor kidney graft. Am. J. Kidney Dis. 35, 667–673 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Halloran, P. F., Schlaut, J., Solez, K. & Srinivasa, N. S. The significance of the anti-class I response. II. Clinical and pathologic features of renal transplants with anti-class I-like antibody. Transplantation 53, 550–555 (1992).

    Article  CAS  PubMed  Google Scholar 

  174. Terasaki, P. I. Humoral theory of transplantation. Am. J. Transplant. 3, 665–673 (2003).

    Article  PubMed  Google Scholar 

  175. Geneugelijk, K. et al. Predicted indirectly recognizable HLA epitopes presented by HLA-DRB1 are related to HLA antibody formation during pregnancy. Am. J. Transplant. 15, 3112–3122 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Honger, G. et al. Frequency and determinants of pregnancy-induced child-specific sensitization. Am. J. Transplant. 13, 746–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Bromberger, B. et al. Pregnancy-induced sensitization promotes sex disparity in living donor kidney transplantation. J. Am.Soc.Nephrol. 28, 3025–3033 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Burlingham, W. J. et al. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. N. Engl. J. Med. 339, 1657–1664 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Claas, F. H., Gijbels, Y., van der Velden-de Munck, J. & van Rood, J. J. Induction of B cell unresponsiveness to noninherited maternal HLA antigens during fetal life. Science 241, 1815–1817 (1988).

    Article  CAS  PubMed  Google Scholar 

  180. Owen, R. D., Wood, H. R., Foord, A. G., Sturgeon, P. & Baldwin, L. G. Evidence for actively acquired tolerance to Rh antigens. Proc. Natl Acad. Sci. USA 40, 420–424 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lim, W. H. et al. Maternal compared with paternal donor kidneys are associated with poorer graft outcomes after kidney transplantation. Kidney Int. 89, 659–665 (2016).

    Article  PubMed  Google Scholar 

  182. Lepeytre, F. et al. Association of sex with risk of kidney graft failure differs by age. J. Am. Soc. Nephrol. 28, 3014–3023 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pfeffer, P. F. & Thorsby, E. HLA-restricted cytotoxicity against male-specific (H-Y) antigen after acute rejection of an HLA-identical sibling kidney: clonal distribution of the cytotoxic cells. Transplantation 33, 52–56 (1982).

    Article  CAS  PubMed  Google Scholar 

  184. Tan, J. C. et al. H-Y antibody development associates with acute rejection in female patients with male kidney transplants. Transplantation 86, 75–81 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Popli, R., Sahaf, B., Nakasone, H., Lee, J. Y. & Miklos, D. B. Clinical impact of H-Y alloimmunity. Immunol. Res. 58, 249–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Giefing-Kroll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Bouman, A., Heineman, M. J. & Faas, M. M. Sex hormones and the immune response in humans. Hum. Reprod. Update 11, 411–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Feldman, H. I. et al. Recipient body size and cadaveric renal allograft survival. J. Am. Soc. Nephrol. 7, 151–157 (1996).

    CAS  PubMed  Google Scholar 

  190. Oh, C. K. et al. Metabolic demand and renal mass supply affecting the early graft function after living donor kidney transplantation. Kidney Int. 67, 744–749 (2005).

    Article  PubMed  Google Scholar 

  191. Denhaerynck, K. et al. Prevalence and risk factors of non-adherence with immunosuppressive medication in kidney transplant patients. Am. J. Transplant. 7, 108–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Frazier, P. A., Davis-Ali, S. H. & Dahl, K. E. Correlates of noncompliance among renal transplant recipients. Clin. Transplant. 8, 550–557 (1994).

    CAS  PubMed  Google Scholar 

  193. Kiley, D. J., Lam, C. S. & Pollak, R. A study of treatment compliance following kidney transplantation. Transplantation 55, 51–56 (1993).

    Article  CAS  PubMed  Google Scholar 

  194. Stringer, K. D. et al. Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int. 68, 1729–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Elliot, S. J. et al. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis. Kidney Int. 72, 464–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Maric, C., Sandberg, K. & Hinojosa-Laborde, C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-estradiol in the aging Dahl salt sensitive rat. J. Am. Soc. Nephrol. 15, 1546–1556 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Catanuto, P. et al. 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes. Kidney Int. 75, 1194–1201 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Hutchens, M. P., Fujiyoshi, T., Komers, R., Herson, P. S. & Anderson, S. Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo. Am. J. Physiol. Renal Physiol. 303, F377–F385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Metcalfe, P. D. et al. Testosterone exacerbates obstructive renal injury by stimulating TNF-alpha production and increasing proapoptotic and profibrotic signaling. Am. J. Physiol. Endocrinol. Metab. 294, E435–E443 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Reckelhoff, J. F., Zhang, H. & Srivastava, K. Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension 35, 480–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Filler, G. et al. Is Testosterone Detrimental to Renal Function?. Kidney Int. Rep. 1, 306–310 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Baylis, C. & Corman, B. The aging kidney: insights from experimental studies. J. Am. Soc. Nephrol. 9, 699–709 (1998).

    CAS  PubMed  Google Scholar 

  203. Monster, T. B., Janssen, W. M., de Jong, P. E., de Jong-van den Berg, L. T. & Prevention of Renal and Vascular End Stage Disease Study Group. Oral contraceptive use and hormone replacement therapy are associated with microalbuminuria. Arch. Intern. Med. 161, 2000–2005 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Ahmed, S. B. et al. Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int. 74, 370–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Yilmaz, M.I. et al. Endogenous testosterone, endothelial dysfunction, and cardiovascular events in men with nondialysis cronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 1617–1625 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Haring, R. et al. Low serum testosterone is associated with increased mortality in men with stage 3 or greater nephropathy. Am. J. Nephrol. 33, 209–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  207. Khurana, K. K. et al. Serum testosterone levels and mortality in men with CKD stages 3–4. Am. J. Kidney Dis. 64, 367–374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lapi, F. et al. Androgen deprivation therapy and risk of acute kidney injury in patients with prostate cancer. Jama 310, 289–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Neugarten, J., Gallo, G., Silbiger, S. & Kasiske, B. Glomerulosclerosis in aging humans is not influenced by gender. Am. J. Kidney Dis. 34, 884–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Baylis, C. Sexual dimorphism in the aging kidney: differences in the nitric oxide system. Nat. Rev. Nephrol. 5, 384–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Baylis, C. Sexual dimorphism: the aging kidney, involvement of nitric oxide deficiency, and angiotensin II overactivity. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1365–1372 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Matsuda, T., Yamamoto, T., Muraguchi, A. & Saatcioglu, F. Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J. Biol. Chem. 276, 42908–42914 (2001).

    Article  CAS  PubMed  Google Scholar 

  213. Moxley, G. et al. Premenopausal sexual dimorphism in lipopolysaccharide-stimulated production and secretion of tumor necrosis factor. J. Rheumatol. 31, 686–694 (2004).

    CAS  PubMed  Google Scholar 

  214. Ji, H. et al. Female protection in progressive renal disease is associated with estradiol attenuation of superoxide production. Gend. Med. 4, 56–71 (2007).

    Article  PubMed  Google Scholar 

  215. Agondi, R. e. F., Gallani, M. C., Rodrigues, R. C. & Cornélio, M. E. Relationship between beliefs regarding a low salt diet in chronic renal failure patients on dialysis. J. Ren. Nutr. 21, 160–168 (2011).

    Article  Google Scholar 

  216. Crews, D. C. et al. Dietary habits, poverty, and chronic kidney disease in an urban population. J. Ren. Nutr. 25, 103–110 (2015).

    Article  PubMed  Google Scholar 

  217. Ellam, T., Fotheringham, J. & Kawar, B. Differential scaling of glomerular filtration rate and ingested metabolic burden: implications for gender differences in chronic kidney disease outcomes. Nephrol. Dial Transplant 29, 1186–1194 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Nitsch, D. Is there a difference in metabolic burden between men and women? Nephrol. Dial. Transplant. 29, 1110–1112 (2014).

    Article  PubMed  Google Scholar 

  219. Verhave, J. C. et al. Cardiovascular risk factors are differently associated with urinary albumin excretion in men and women. J. Am. Soc. Nephrol. 14, 1330–1335 (2003).

    Article  CAS  PubMed  Google Scholar 

  220. Coggins, C. H. et al. Differences between women and men with chronic renal disease. Nephrol. Dial. Transplant. 13, 1430–1437 (1998).

    Article  CAS  PubMed  Google Scholar 

  221. Williams, D. & Davison, J. Chronic kidney disease in pregnancy. BMJ 336, 211–215 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Dehmer, E. W. et al. Association between gestational diabetes and incident maternal CKD: the Coronary Artery Risk Development in Young Adults (CARDIA) study. https://doi.org/10.1053/j.ajkd.2017.08.015 (2017).

Download references

Acknowledgements

The authors thank P. Trocchi (Universitätsklinikum Essen, Germany) for providing sex-specific statistics from Germany and F. K. Port (Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA), as well as T. Stamm, G. Böhmig and G. Bond (all from Medical University of Vienna, Austria) for their helpful comments and revisions to this work. J.J.C. acknowledges grant support from the Swedish Heart and Lung Foundation and the Westman and Rind foundations. N.C.C. and K.J.J. acknowledge grant support from the European Renal Association–European Dialysis and Transplant Association (ERA-EDTA).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching the data for the article, discussing its content and writing and editing the manuscript before submission.

Corresponding authors

Correspondence to Juan Jesus Carrero or Kitty J. Jager.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Kt/V

The preferred method for measuring the dialysis dose; defined as the dialyser clearance of urea (K) multiplied by the duration of the dialysis treatment (t, in minutes) divided by the volume of distribution of urea in the body (V, in ml), which is approximately equal to total body water, corrected for volume lost during ultrafiltration.

Prevalent dialysis patients

All patients treated by dialysis at a particular moment in time.

Incident dialysis patients

Patients starting dialysis for the first time.

HLA sensitization

Formation of alloantibodies against HLA antigens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrero, J., Hecking, M., Chesnaye, N. et al. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol 14, 151–164 (2018). https://doi.org/10.1038/nrneph.2017.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing