Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunologic and endocrine functions of adipose tissue: implications for kidney disease

Key Points

  • Adipocytes are metabolically active cells; they produce signalling lipids and metabolites and secrete protein factors (adipokines)

  • The relative levels of these lipids, proteins and metabolites change under different nutritional and pathological states, with adipocytes integrating information regarding the metabolic status quo at any given time and adjusting their cellular physiological state to maintain systemic homeostasis

  • Adipocyte-derived factors establish complex paracrine and endocrine signalling axes between local cell types in adipose tissue and other organs, including the kidney

  • A number of adipokines, including leptin and adiponectin, have well-established effects on kidney function; adiponectin might also be produced locally within the kidney and exert important metabolic functions in an autocrine fashion

  • As a source of pro-inflammatory cytokines, adipose tissue might exert important effects on the inflammatory state of the kidney

  • The renin–angiotensin system is present in adipose tissue and mediates inflammation in response to nutritional interventions; activation of this axis triggers profound signalling events in the kidney

Abstract

Excess adiposity can induce adverse sequelae in multiple cell types and organ systems. The transition from the lean to the obese state is characterized by fundamental cellular changes at the level of the adipocyte. These changes affect the local microenvironment within the respective adipose tissue but can also affect nonadipose systems. Adipocytes within fat pads respond to chronic nutrient excess through hyperplasia or hypertrophy, which can differentially affect interorgan crosstalk between various adipose depots and other organs. This crosstalk is dependent on the unique ability of the adipocyte to coordinate metabolic adjustments throughout the body and to integrate responses to maintain metabolic homeostasis. These actions occur through the release of free fatty acids and metabolites during times of energy need — a process that is altered in the obese state. In addition, adipocytes release a wide array of signalling molecules, such as sphingolipids, as well as inflammatory and hormonal factors (adipokines) that are critical for interorgan crosstalk. The interactions of adipose tissue with the kidney — referred to as the adipo–renal axis — are important for normal kidney function as well as the response of the kidney to injury. Here, we discuss the mechanistic basis of this interorgan crosstalk, which clearly has great therapeutic potential given the increasing rates of chronic kidney disease secondary to obesity and type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct features of adipocytes.
Figure 2: Mechanisms of crosstalk between adipocytes and the kidney.
Figure 3: Angiotensin signalling in adiporenal crosstalk.
Figure 4: Mechanisms of leptin function on kidney injury.
Figure 5: Mechanisms of adiponectin actions in the kidney.

Similar content being viewed by others

References

  1. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    PubMed  Google Scholar 

  2. Hall, M. E. et al. Obesity, hypertension, and chronic kidney disease. Int. J. Nephrol. Renovasc. Dis. 7, 75–88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maric-Bilkan, C. Obesity and diabetic kidney disease. Med. Clin. North Am. 97, 59–74 (2013).

    Article  PubMed  Google Scholar 

  4. Wickman, C. & Kramer, H. Obesity and kidney disease: potential mechanisms. Semin. Nephrol. 33, 14–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Satirapoj, B. et al. Obesity and its relation to chronic kidney disease: a population-based, cross-sectional study of a Thai army population and relatives. Nephrology (Carlton) 18, 229–234 (2013).

    Article  CAS  Google Scholar 

  6. Wang, Y., Chen, X., Song, Y., Caballero, B. & Cheskin, L. J. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int. 73, 19–33 (2008). The findings of this meta-analysis suggest overweight and obesity are associated with a high risk of kidney disease.

    Article  CAS  PubMed  Google Scholar 

  7. World Health Organization. Obesity and overweight — fact sheet. WHO http://www.who.int/mediacentre/factsheets/fs311/en (2017).

  8. D'Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Tran, M.-H., Foster, C. E., Kalantar-Zadeh, K. & Ichii, H. Kidney transplantation in obese patients. World J. Transplant. 6, 135–143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chagnac, A. et al. The effects of weight loss on renal function in patients with severe obesity. J. Am. Soc. Nephrol. 14, 1480–1486 (2003).

    Article  PubMed  Google Scholar 

  11. Tirosh, A. et al. Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial. Diabetes Care 36, 2225–2232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morales, E. & Praga, M. The effect of weight loss in obesity and chronic kidney disease. Curr. Hypertens. Rep. 14, 170–176 (2012).

    Article  PubMed  Google Scholar 

  13. Teta, D. Weight loss in obese patients with chronic kidney disease: who and how? J. Ren. Care 36 (Suppl. 1), 163–171 (2010).

    Article  PubMed  Google Scholar 

  14. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen, P. & Spiegelman, B. M. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64, 2346–2351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giordano, A., Smorlesi, A., Frontini, A., Barbatelli, G. & Cinti, S. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur. J. Endocrinol. 170, R159–R171 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Hausman, D. B., DiGirolamo, M., Bartness, T. J., Hausman, G. J. & Martin, R. J. The biology of white adipocyte proliferation. Obes. Rev. 2, 239–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Cinti, S. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids 73, 9–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ussar, S. et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci. Transl Med. 6, 247ra103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Jong, J. M. A., Larsson, O., Cannon, B. & Nedergaard, J. A stringent validation of mouse adipose tissue identity markers. Am. J. Physiol. Endocrinol. Metab. 308, E1085–E1105 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dadson, P. et al. Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care 39, 292–299 (2016).

    CAS  PubMed  Google Scholar 

  23. O'Rourke, R. W. et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-γ in inflammation in human adipose tissue. Int. J. Obes. (Lond.). 33, 978–990 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  24. Wijayatunga, N. N. et al. Adipose depot-specific differences in transcriptome and microRNA expression in high fat diet induced obese mice. FASEB J. 30, 622–626 (2016).

    Google Scholar 

  25. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeffery, E. et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab. 24, 142–150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferrante, A. W. Jr. The immune cells in adipose tissue. Diabetes. Obes. Metab. 15 (Suppl. 3), 34–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huh, J. Y., Park, Y. J., Ham, M. & Kim, J. B. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells 37, 365–371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cipolletta, D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology 142, 517–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Becker, M., Levings, M. K. & Daniel, C. Adipose-tissue regulatory T cells: critical players in adipose-immune crosstalk. Eur. J. Immunol. http:dx.doi.org/10.1002/eji.201646739 (2017).

  31. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Murano, I. et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 49, 1562–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Amano, S. U. et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 19, 162–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Oh, D. Y., Morinaga, H., Talukdar, S., Bae, E. J. & Olefsky, J. M. Increased macrophage migration into adipose tissue in obese mice. Diabetes 61, 346–354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng, C. et al. Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis. 7, e2167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zamarron, B. F. et al. Macrophage proliferation sustains adipose tissue inflammation in formerly obese mice. Diabetes 66, 392–406 (2017).

    CAS  PubMed  Google Scholar 

  37. Magkos, F. et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 23, 591–601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bradley, D. et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function. J. Clin. Invest. 122, 4667–4674 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haase, J. et al. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 57, 562–571 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Tardelli, M. et al. Osteopontin is a key player for local adipose tissue macrophage proliferation in obesity. Mol. Metab. 5, 1131–1137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissuemacrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lesna, I. K. et al. Human adipose tissue accumulation is associated with pro-inflammatory changes in subcutaneous rather than visceral adipose tissue. Nutr. Diabetes 7, e264 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kralova Lesna, I. et al. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J. Transl Med. 14, 208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shankar, A., Syamala, S., Xiao, J. & Muntner, P. Relationship between plasma leptin level and chronic kidney disease. Int. J. Nephrol. 2012, 269532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bluher, M. Adipokines — removing road blocks to obesity and diabetes therapy. Mol. Metab. 3, 230–240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fasshauer, M. & Bluher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 36, 461–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, G.-X., Zhao, X.-Y. & Lin, J. D. The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol. Metab. 26, 231–237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Villarroya, F., Cereijo, R., Villarroya, J. & Giralt, M. Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 13, 26–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Pajvani, U. B. et al. Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat. Med. 11, 797–803 (2005). This study uses inducible fatless mice to study the roles of adipocytes in the regulation of multiple pathophysiological functions.

    Article  CAS  PubMed  Google Scholar 

  50. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014). This paper establishes the important beneficial roles of inflammation on adipose tissues.

    Article  CAS  PubMed  Google Scholar 

  51. Virtue, S. et al. Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans. Int. J. Obes. (Lond.) 39, 1151–1160 (2015).

    Article  CAS  Google Scholar 

  52. Ricciotti, E. & FitzGerald, G. A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 986–1000 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nasrallah, R., Hassouneh, R. & Hebert, R. L. Chronic kidney disease: targeting prostaglandin E2 receptors. Am. J. Physiol. Renal Physiol. 307, F243–F250 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Mothe-Satney, I. et al. Adipocytes secrete leukotrienes: contribution to obesity-associated inflammation and insulin resistance in mice. Diabetes 61, 2311–2319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma, J. N. & Mohammed, L. A. The role of leukotrienes in the pathophysiology of inflammatory disorders: is there a case for revisiting leukotrienes as therapeutic targets? Inflammopharmacology 14, 10–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Ying, W. et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J. Clin. Invest. 127, 1019–1030 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mehmood, Z. H. & Papandreou, D. An updated mini review of vitamin D and obesity: adipogenesis and inflammation state. Open Access Maced. J. Med. Sci. 4, 526–532 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Abbas, M. A. Physiological functions of Vitamin D in adipose tissue. J. Steroid Biochem. Mol. Biol. 165, 369–381 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Mittendorfer, B. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr. Opin. Clin. Nutr. Metab. Care 14, 535–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016). This is a timely overview of the importance of adipocyte-derived factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Erion, D. M. & Shulman, G. I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bikman, B. T. & Summers, S. A. Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Invest. 121, 4222–4230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mitsnefes, M. et al. Ceramides and cardiac function in children with chronic kidney disease. Pediatr. Nephrol. 29, 415–422 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Afshinnia, F. et al. Lipidomic signature of progression of chronic kidney disease in the chronic renal insufficiency cohort. Kidney Int. Rep. 1, 256–268 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Deng, Y. et al. An adipo-biliary-uridine axis that regulates energy homeostasis. Science 355, eaaf5375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kimura, T. et al. Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling. Sci. Rep. 6, 26138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013). This is an important overview summarizing the pathophysiological consequences of adipose tissue fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spencer, M. et al. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J. Clin. Endocrinol. Metab. 96, E1990–E1998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chun, T.-H. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, J.-T. et al. Macrophage metalloelastase (MMP12) regulates adipose tissue expansion, insulin sensitivity, and expression of inducible nitric oxide synthase. Endocrinology 155, 3409–3420 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Niu, H. et al. Matrix metalloproteinase 12 modulates high-fat-diet induced glomerular fibrogenesis and inflammation in a mouse model of obesity. Sci. Rep. 6, 20171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Borgeson, E. et al. Lipoxin A4 attenuates adipose inflammation. FASEB J. 26, 4287–4294 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Borgeson, E. et al. Lipoxin A4 attenuates obesity-induced adipose inflammation and associated liver and kidney disease. Cell Metab. 22, 125–137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ambarkar, M. et al. Adipokines and their relation to endothelial dysfunction in patients with chronic kidney disease. J. Clin. Diagn. Res. 10, BC04-8 (2016).

    PubMed  Google Scholar 

  76. Zhao, H.-L. et al. Fat redistribution and adipocyte transformation in uninephrectomized rats. Kidney Int. 74, 467–477 (2008). This study demonstrates fat redistribution and beiging phenotypes in the progression of renal injury, indicating the adiporenal crosstalk and therapeutic interventions that prevent fat redistribution might ameliorate chronic renal dysfunction.

    Article  CAS  PubMed  Google Scholar 

  77. Kir, S. et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 23, 315–323 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Xiang, D. M. et al. Chronic kidney disease promotes chronic inflammation in visceral white adipose tissue. Am. J. Physiol. Renal Physiol. 312, F689–F701 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. D'Apolito, M. et al. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J. Clin. Invest. 120, 203–213 (2010).

    Article  PubMed  Google Scholar 

  80. Engeli, S., Negrel, R. & Sharma, A. M. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35, 1270–1277 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Yvan-Charvet, L. & Quignard-Boulange, A. Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int. 79, 162–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Yiannikouris, F. et al. Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R244–R251 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Massiera, F. et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 15, 2727–2729 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Kihara, M. et al. Genetic deficiency of angiotensinogen produces an impaired urine concentrating ability in mice. Kidney Int. 53, 548–555 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Cole, B. K. et al. Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension 55, 715–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Guo, H. et al. Protective effects of glucagon-like peptide-1 analog on renal tubular injury in mice on high-fat diet. Cell. Physiol. Biochem. 41, 1113–1124 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Ma, L.-J. et al. Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity. Am. J. Physiol. Renal Physiol. 300, F1203–F1213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Azushima, K. et al. Adipocyte-specific enhancement of angiotensin II type 1 receptor-associated protein ameliorates diet-induced visceral obesity and insulin resistance. J. Am. Heart Assoc. 6, e004488 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Maeda, A. et al. Angiotensin receptor-binding protein ATRAP/Agtrap inhibits metabolic dysfunction with visceral obesity. J. Am. Heart Assoc. 2, e000312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Uneda, K. et al. Angiotensin II type 1 receptor-associated protein regulates kidney aging and lifespan independent of angiotensin. J. Am. Heart Assoc. 6, e006120 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kobayashi, R. et al. An angiotensin II type 1 receptor binding molecule has a critical role in hypertension in a chronic kidney disease model. Kidney Int. 91, 1115–1125 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. AbdAlla, S., Lother, H., Abdel-tawab, A. M. & Quitterer, U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem. 276, 39721–39726 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Benndorf, R. A. et al. Angiotensin II type 2 receptor deficiency aggravates renal injury and reduces survival in chronic kidney disease in mice. Kidney Int. 75, 1039–1049 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Ali, Q., Dhande, I., Samuel, P. & Hussain, T. Angiotensin type 2 receptor null mice express reduced levels of renal angiotensin II type 2 receptor/angiotensin (1–7)/mas receptor and exhibit greater high-fat diet-induced kidney injury. J. Renin Angiotensin Aldosterone Syst. http:dx.doi.org/10.1177/1470320316661871 (2016).

  95. Yvan-Charvet, L. et al. Deficiency of angiotensin type 2 receptor rescues obesity but not hypertension induced by overexpression of angiotensinogen in adipose tissue. Endocrinology 150, 1421–1428 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Li, H. et al. Telmisartan ameliorates nephropathy in metabolic syndrome by reducing leptin release from perirenal adipose tissue. Hypertension 68, 478–490 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Patel, S. N., Ali, Q. & Hussain, T. Angiotensin II type 2-receptor agonist C21 reduces proteinuria and oxidative stress in kidney of high-salt-fed obese zucker rats. Hypertension 67, 906–915 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Pandey, A. et al. H2AK119 monoubiquitination regulates angiotensin II receptor mediated macrophage infiltration and renal fibrosis in type 2 diabetic rats. Biochimie 131, 68–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Reddy, M. A. et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 85, 362–373 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Wolf, G., Chen, S., Han, D. C. & Ziyadeh, F. N. Leptin and renal disease. Am. J. Kidney Dis. 39, 1–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Serradeil-Le Gal, C. et al. Characterization and localization of leptin receptors in the rat kidney. FEBS Lett. 404, 185–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Hudkins, K. L. et al. BTBR ob/ob mutant mice model progressive diabetic nephropathy. J. Am. Soc. Nephrol. 21, 1533–1542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chua, S. J. et al. A susceptibility gene for kidney disease in an obese mouse model of type II diabetes maps to chromosome 8. Kidney Int. 78, 453–462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lim, C. C. et al. Elevated serum leptin, adiponectin and leptin to adiponectin ratio is associated with chronic kidney disease in Asian adults. PLoS ONE 10, e0122009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Menon, V. et al. Factors associated with serum leptin in patients with chronic kidney disease. Clin. Nephrol. 61, 163–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Cumin, F., Baum, H. P. & Levens, N. Leptin is cleared from the circulation primarily by the kidney. Int. J. Obes. Relat. Metab. Disord. 20, 1120–1126 (1996).

    CAS  PubMed  Google Scholar 

  107. Sharma, K. et al. Plasma leptin is partly cleared by the kidney and is elevated in hemodialysis patients. Kidney Int. 51, 1980–1985 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Pedone, C. et al. Longitudinal association between serum leptin concentration and glomerular filtration rate in humans. PLoS ONE 10, e0117828 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cui, H., Lopez, M. & Rahmouni, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 13, 338–351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alhasson, F. et al. 90 — High circulatory leptin mediated NOX-2 promotes kidney inflammation in nonalcoholic fatty liver disease via MiR21-dependent mesangial cell activation. Free Radical Biol. Med. 100, S51 (2016).

    Article  Google Scholar 

  111. Wolf, G. et al. Leptin stimulates proliferation and TGF-β expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int. 56, 860–872 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Ding, N. et al. Leptin promotes endothelial dysfunction in chronic kidney disease through AKT/GSK3β and β-catenin signals. Biochem. Biophys. Res. Commun. 480, 544–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Kriz, W., Kaissling, B. & Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 121, 468–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Guerrot, D. et al. Progression of renal fibrosis: the underestimated role of endothelial alterations. Fibrogenesis Tissue Repair 5, S15 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mou, X. et al. Serum TGF-β1 as a biomarker for type 2 diabetic nephropathy: a meta-analysis of randomized controlled trials. PLoS ONE 11, e0149513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lan, H. Y. & Chung, A. C.-K. TGF-β/Smad signaling in kidney disease. Semin. Nephrol. 32, 236–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Cui, W., Maimaitiyiming, H., Qi, X., Norman, H. & Wang, S. Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity. Am. J. Physiol. Renal Physiol. 305, F871–F880 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kumpers, P. et al. Leptin is a coactivator of TGF-β in unilateral ureteral obstructive kidney disease. Am. J. Physiol. Renal Physiol. 293, F1355–F1362 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Briffa, J. F. et al. Acute leptin exposure reduces megalin expression and upregulates TGFβ1 in cultured renal proximal tubule cells. Mol. Cell. Endocrinol. 401, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, K.-H. et al. The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts. PLoS ONE 9, e106554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lim, A. K. H. et al. Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice. Diabetologia 52, 347–358 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Blanca, A. J. et al. Leptin induces oxidative stress through activation of NADPH oxidase in renal tubular cells: antioxidant effect of L-carnitine. J. Cell. Biochem. 117, 2281–2288 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Paz-Filho, G., Mastronardi, C. A. & Licinio, J. Leptin treatment: facts and expectations. Metabolism 64, 146–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee, J. et al. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat. Med. 22, 1023–1032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Crunkhorn, S. Metabolic disease: leptin sensitizer reverses obesity. Nat. Rev. Drug Discov. 15, 601 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Greenhill, C. Obesity: new leptin sensitizer identified. Nat. Rev. Endocrinol. 12, 558 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Cheung, W. W. et al. A pegylated leptin antagonist ameliorates CKD-associated cachexia in mice. J. Am. Soc. Nephrol. 25, 119–128 (2014). This study reveals that blocking leptin signalling by leptin antagonists would benefit CKD.

    Article  CAS  PubMed  Google Scholar 

  129. Lourenco, E. V., Liu, A., Matarese, G. & La Cava, A. Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation. Proc. Natl Acad. Sci. USA 113, 10637–10642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Simonds, S. E. et al. Leptin mediates the increase in blood pressure associated with obesity. Cell 159, 1404–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scholze, A., Rattensperger, D., Zidek, W. & Tepel, M. Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. Obesity (Silver Spring) 15, 1617–1622 (2007).

    Article  CAS  Google Scholar 

  132. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Bouskila, M., Pajvani, U. B. & Scherer, P. E. Adiponectin: a relevant player in PPARγ-agonist-mediated improvements in hepatic insulin sensitivity? Int. J. Obes. (Lond.) 29, S17–S23 (2005).

    Article  CAS  Google Scholar 

  134. Hyun, Y. Y. et al. Serum adiponectin and protein-energy wasting in predialysis chronic kidney disease. Nutrition 33, 254–260 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Rovin, B. H. et al. Plasma, urine, and renal expression of adiponectin in human systemic lupus erythematosus. Kidney Int. 68, 1825–1833 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Zoccali, C. et al. Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors. Kidney Int. Suppl. 63, S98–S102 (2003).

    Article  Google Scholar 

  137. Zoccali, C. et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J. Am. Soc. Nephrol. 13, 134–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Georgoulidou, A. et al. Adiponectin plasma levels and albuminuria in patients with type 2 diabetes and different stages of diabetic kidney disease. J. Nephrol. Ther. 7, 2–7 (2017).

    Article  Google Scholar 

  139. Kim, H. Y. et al. Association of serum adiponectin level with albuminuria in chronic kidney disease patients. Clin. Exp. Nephrol. 20, 443–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Menon, V. et al. Adiponectin and mortality in patients with chronic kidney disease. J. Am. Soc. Nephrol. 17, 2599–2606 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Sharma, K. et al. Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645–1656 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Halberg, N. et al. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes 58, 1961–1970 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  143. von Eynatten, M. et al. Urinary adiponectin excretion: a novel marker for vascular damage in type 2 diabetes. Diabetes 58, 2093–2099 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Panduru, N. M. et al. Urinary adiponectin is an independent predictor of progression to end-stage renal disease in patients with type 1 diabetes and diabetic nephropathy. Diabetes Care 38, 883–890 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Perri, A. et al. Adiponectin is expressed and secreted by renal tubular epithelial cells. J. Nephrol. 26, 1049–1054 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Perri, A. et al. Adiponectin secreted by tubular renal cells during LPS exposure worsens the cellular inflammatory damage. J. Nephrol. 29, 185–194 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Rutkowski, J. M. et al. Adiponectin alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney Int. 91, 324–337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cammisotto, P. G., Londono, I., Gingras, D. & Bendayan, M. Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am. J. Physiol. Renal Physiol. 294, F881–F889 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Park, H. S. et al. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J. Transl Med. 14, 176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sopic´, M. et al. Downregulation of AdipoR1 is associated with increased circulating adiponectin levels in serbian chronic kidney disease patients. J. Med. Biochem. 35, 436–442 (2016).

  151. Shen, Y. Y., Charlesworth, J. A., Kelly, J. J., Loi, K. W. & Peake, P. W. Up-regulation of adiponectin, its isoforms and receptors in end-stage kidney disease. Nephrol. Dial. Transplant. 22, 171–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Martinez Cantarin, M. P., Keith, S. W., Waldman, S. A. & Falkner, B. Adiponectin receptor and adiponectin signaling in human tissue among patients with end-stage renal disease. Nephrol. Dial. Transplant. 29, 2268–2277 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yamada-Obara, N. et al. Maternal exposure to high-fat and high-fructose diet evokes hypoadiponectinemia and kidney injury in rat offspring. Clin. Exp. Nephrol. 20, 853–861 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Ohashi, K. et al. Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler. Thromb. Vasc. Biol. 27, 1910–1917 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. J. Am. Soc. Nephrol. 24, 268–282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nakamaki, S. et al. Adiponectin reduces proteinuria in streptozotocin-induced diabetic Wistar rats. Exp. Biol. Med. (Maywood) 236, 614–620 (2011).

    Article  CAS  Google Scholar 

  157. Guo, X. et al. Adiponectin retards the progression of diabetic nephropathy in db/db mice by counteracting angiotensin II. Physiol. Rep. 2, e00230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bijland, S., Mancini, S. J. & Salt, I. P. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin. Sci. (Lond.) 124, 491–507 (2013).

    Article  CAS  Google Scholar 

  159. Smith, B. K. & Steinberg, G. R. AMP-activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr. Opin. Clin. Nutr. Metab. Care 20, 248–253 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Zhu, Q. et al. Adipocyte-deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J. Clin. Invest. 126, 4273–4288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Gauthier, M.-S. et al. Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem. Biophys. Res. Commun. 404, 382–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Decleves, A.-E., Mathew, A. V., Cunard, R. & Sharma, K. AMPK mediates the initiation of kidney disease induced by a high-fat diet. J. Am. Soc. Nephrol. 22, 1846–1855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Decleves, A.-E. et al. Regulation of lipid accumulation by AMP-activated kinase in high fat diet-induced kidney injury. Kidney Int. 85, 611–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, U. et al. Protective effects of berberine on high fat-induced kidney damage by increasing serum adiponectin and promoting insulin sensitivity. Int. J. Clin. Exp. Pathol. 8, 14486–14492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cameron, K. O. et al. Discovery and preclinical characterization of 6-chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577), a direct activator of adenosine monophosphate-activated protein kinase (AMPK), for the potential treatment of diabetic nephropathy. J. Med. Chem. 59, 8068–8081 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Salatto, C. T. et al. Selective activation of AMPK β1-containing isoforms improves kidney function in a rat model of diabetic nephropathy. J. Pharmacol. Exp. Ther. 361, 303–311 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Sas, K. M. et al. Targeted lipidomic and transcriptomic analysis identifies dysregulated renal ceramide metabolism in a mouse model of diabetic kidney disease. J. Proteomics Bioinform. http:dx.doi.org/10.4172/jpb.S14-002 (2015).

  169. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Holland, W. L. et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol. Metab. 6, 267–275 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Vasiliauskaite-Brooks, I. et al. Structural insights into adiponectin receptors suggest ceramidase activity. Nature 544, 120–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Holland, W. L. & Scherer, P. E. Structural biology: receptors grease the metabolic wheels. Nature 544, 42–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Park, J. et al. Obesity paradox in end-stage kidney disease patients. Prog. Cardiovasc. Dis. 56, 415–425 (2014).

    Article  PubMed  Google Scholar 

  174. Kalantar-Zadeh, K. et al. The obesity paradox in kidney disease: how to reconcile it with obesity management. Kidney Int. Rep. 2, 271–281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kim, J.-Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cooper, R. et al. ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J. Hum. Hypertens. 11, 107–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  177. Ernst, M. C. & Sinal, C. J. Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 21, 660–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Zylla, S. et al. Serum chemerin levels are inversely associated with renal function in a general population. Clin. Endocrinol. (Oxf.) http://dx.doi.org/10.1111/cen.13449 (2017).

  179. Ebert, T. et al. Circulating adipocyte fatty acid binding protein is increased in chronic and acute renal dysfunction. Nutr. Metab. Cardiovasc. Dis. 24, 1027–1034 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Furuhashi, M. et al. Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS ONE 6, e27356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Furuhashi, M., Saitoh, S., Shimamoto, K. & Miura, T. Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 8, 23–33 (2014).

    PubMed  Google Scholar 

  182. Hashizume, M. & Mihara, M. Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors. Cytokine 58, 424–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Su, H., Lei, C.-T. & Zhang, C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front. Immunol. 8, 405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lee, B. T. et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol. 16, 77 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lin, Z. et al. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS ONE 6, e18398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Crasto, C., Semba, R. D., Sun, K. & Ferrucci, L. Serum fibroblast growth factor 21 is associated with renal function and chronic kidney disease in community-dwelling adults. J. Am. Geriatr. Soc. 60, 792–793 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Boucher, J. et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146, 1764–1771 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Bertrand, C., Valet, P. & Castan-Laurell, I. Apelin and energy metabolism. Front. Physiol. 6, 115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Chandrasekaran, B., Dar, O. & McDonagh, T. The role of apelin in cardiovascular function and heart failure. Eur. J. Heart Fail. 10, 725–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Lacquaniti, A. et al. Apelin and copeptin as biomarkers of kidney disease. Springer Nature https://link.springer.com/content/pdf/10.1007%2F978-94-007-7699-9_43.pdf (2015).

  191. Szczepanska, M. et al. Evaluation of adipocytokines in children with chronic kidney disease. Endokrynol. Pol. 66, 100–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Axelsson, J. et al. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int. 69, 596–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Azuma, K. et al. Correlation between serum resistin level and adiposity in obese individuals. Obes. Res. 11, 997–1001 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Feng, R. et al. Higher vaspin levels in subjects with obesity and type 2 diabetes mellitus: a meta-analysis. Diabetes Res. Clin. Pract. 106, 88–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Sengul, E., Duygulu, G., Dindar, S. & Bunul, F. Serum omentin-1, inflammation and carotid atherosclerosis in patients with non-diabetic chronic kidney disease. Ren. Fail. 35, 1089–1093 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Qasem, A., Farage, S., Elmesallamy, F. A. & Elsaid, H. H. Association of plasma omentin-1 level with insulin resistance in chronic kidney disease patients. Egypt. J. Obes. Diabetes Endocrinol. 1, 72–76 (2015).

    Article  Google Scholar 

  197. Alcelik, A. et al. Serum levels of omentin in end-stage renal disease patients. Kidney Blood Press. Res. 35, 511–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Catoi, A. F. et al. Increased chemerin and decreased omentin-1 levels in morbidly obese patients are correlated with insulin resistance, oxidative stress and chronic inflammation. Clujul Med. 87, 19–26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Watanabe, T., Watanabe-Kominato, K., Takahashi, Y., Kojima, M. & Watanabe, R. Adipose tissue-derived omentin-1 function and regulation. Compr. Physiol. 7, 765–781 (2017).

    Article  PubMed  Google Scholar 

  200. Frey, S. K. et al. Isoforms of retinol binding protein 4 (RBP4) are increased in chronic diseases of the kidney but not of the liver. Lipids Health Dis. 7, 29 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Graham, T. E. et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 354, 2552–2563 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Chang, Y.-H., Chang, D.-M., Lin, K.-C., Shin, S.-J. & Lee, Y.-J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab. Res. Rev. 27, 515–527 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Mahmood, N., Junejo, A. M., Jamal, Q. & Awan, R. Association of visfatin with chronic kidney disease in a cohort of patients with and without diabetes. J. Pak. Med. Assoc. 60, 922–926 (2010).

    PubMed  Google Scholar 

  204. Adeghate, E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr. Med. Chem. 15, 1851–1862 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Yan, Q.-W. et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56, 2533–2540 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 337–344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hasegawa, M. et al. Plasma neutrophil gelatinase-associated lipocalin as a predictor of cardiovascular events in patients with chronic kidney disease. Biomed. Res. Int. 2016, 8761475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Saldanha, J. F. et al. The newly identified anorexigenic adipokine nesfatin-1 in hemodialysis patients: are there associations with food intake, body composition and inflammation? Regul. Pept. 173, 82–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Richter, J. et al. Serum levels of the adipokine progranulin depend on renal function. Diabetes Care 36, 410–414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Korolczuk, A. & Beltowski, J. Progranulin, a new adipokine at the crossroads of metabolic syndrome, diabetes, dyslipidemia and hypertension. Curr. Pharm. Des. 23, 1533–1539 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Gomez-Ambrosi, J. et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J. Clin. Endocrinol. Metab. 92, 3719–3727 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Kahles, F., Findeisen, H. M. & Bruemmer, D. Osteopontin: a novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab. 3, 384–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Barreto, D. V. et al. Prognostic implication of plasma osteopontin levels in patients with chronic kidney disease. Nephron Clin. Pract. 117, c363–c372 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Lorenzen, J. et al. Circulating levels of osteopontin are closely related to glomerular filtration rate and cardiovascular risk markers in patients with chronic kidney disease. Eur. J. Clin. Invest. 40, 294–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Nomura, I., Kato, J., Tokashiki, M. & Kitamura, K. Increased plasma levels of the mature and intermediate forms of adrenomedullin in obesity. Regul. Pept. 158, 127–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  216. Dieplinger, B. et al. Pro-A-type natriuretic peptide and pro-adrenomedullin predict progression of chronic kidney disease: the MMKD Study. Kidney Int. 75, 408–414 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by US National Institutes of Health (NIH) Grants R01-DK086629, R01-DK55758, P01-DK088761 and P01-AG051459 as well as by an unrestricted grant from the NovoNordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, discussed its content and contributed to the writing and editing of the manuscript before submission.

Corresponding author

Correspondence to Philipp E. Scherer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Beiging

A biological process that often occurs under cold stress or β-adrenergic stimulation to increase heat production, during which white adipose tissue switches from a unilocular to a multilocular phenotype (with more beige adipocytes).

M2-like macrophages

So-called alternatively activated macrophages that secrete cytokines that decrease inflammation.

M1-like macrophages

M1-polarized macrophages that release cytokines that encourage inflammation.

Unilocular

White adipocytes that display unilocular features, with a single large lipid droplet in the cytoplasm.

Multilocular

Brown and beige adipocytes that display a multilocular phenotype, with many small lipid droplets in the cytoplasm.

Dominant isoform

The major isoform with the most abundant expression within a protein family.

Acetylation

A type of post-translational histone modification that facilitates or inhibits the binding of a protein complex to its histone-binding site via remodelling of the chromatin structure, resulting in altered gene expression.

Monoubiquitylation

A type of post-translational histone modification; some histones, such as histone 2A, can be monoubiquitylated by adding a ubiquitin unit, thus regulating gene transcription by acting on the chromatin structure.

Leptin resistance

A condition that is often found in obesity and diabetes, in which leptin loses its anorectic functions in the brain despite high circulating levels of the hormone.

Uraemic toxin

Uraemic toxins are a group of uraemic retention solutes found in uraemic syndrome that are otherwise excreted by healthy kidneys.

Berberine

A compound found in herbs that increases adiponectin levels and activates 5′-AMP-activated protein kinase catalytic subunit α-1 (PRKAA1; also known as AMPK) and has anti-inflammatory and antidiabetic properties.

Sphingolipids

A class of lipids that can be part of cellular membranes. Moreover, sphingolipids and their metabolites, such as ceramides, sphingosine and sphingosine-1-phosphate, are signalling molecules and are involved in multiple diseases, including obesity, diabetes, cardiovascular disease, cancer and kidney disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Scherer, P. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol 14, 105–120 (2018). https://doi.org/10.1038/nrneph.2017.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing