Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling diabetic nephropathy in mice

Key Points

  • Animal models that faithfully recapitulate the clinical features of diabetic nephropathy (DN) are needed to help to define the pathogenesis, identify new drug targets, and test novel therapies

  • Substantial efforts have focused on developing models of DN in mice owing to their tractability for genetic manipulation and other advantages such as fecundity and low cost

  • The extent of kidney pathology in standard mouse models of diabetes is typically quite modest, resembling only the early stage of diabetic microalbuminuria in humans

  • Superimposing genetic stressors on standard diabetes platforms has resulted in more robust mouse models of DN that manifest high-grade albuminuria, nodular glomerulosclerosis, and hypertension

  • No current models of DN develop progressive loss of renal function leading to end-stage renal disease

  • Incorporating data from genomics and metabolomics studies into modelling efforts should enable the generation of mouse models that more closely mimic human DN and thus enhance translational research in the field

Abstract

Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in the developed world. Accordingly, an urgent need exists for new, curative treatments as well as for biomarkers to stratify risk of DN among individuals with diabetes mellitus. A barrier to progress in these areas has been a lack of animal models that faithfully replicate the main features of human DN. Such models could be used to define the pathogenesis, identify drug targets and test new therapies. Owing to their tractability for genetic manipulation, mice are widely used to model human diseases, including DN. Questions have been raised, however, about the general utility of mouse models in human drug discovery. Standard mouse models of diabetes typically manifest only modest kidney abnormalities, whereas accelerated models, induced by superimposing genetic stressors, recapitulate key features of human DN. Incorporation of systems biology approaches and emerging data from genomics and metabolomics studies should enable further model refinement. Here, we discuss the current status of mouse models for DN, their limitations and opportunities for improvement. We emphasize that future efforts should focus on generating robust models that reproduce the major clinical and molecular phenotypes of human DN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequential impact of diabetes platforms, genetic backgrounds and accelerators on albuminuria and kidney pathology in mouse models of diabetic nephropathy (DN).
Figure 2: Glomerular pathology in mice and humans with diabetic nephropathy.

Similar content being viewed by others

References

  1. Valencia, W. M. & Florez, H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ 356, i6505 (2017).

    Article  PubMed  Google Scholar 

  2. Thomas, M. C., Cooper, M. E. & Zimmet, P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat. Rev. Nephrol. 12, 73–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Groop, P. H. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58, 1651–1658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orchard, T. J., Secrest, A. M., Miller, R. G. & Costacou, T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 53, 2312–2319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson, S. A. & Spurney, R. F. Twenty years after ACEIs and ARBs: emerging treatment strategies for diabetic nephropathy. Am. J. Physiol. Renal Physiol. 309, F807–F820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Quinn, M., Angelico, M. C., Warram, J. H. & Krolewski, A. S. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 39, 940–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Afkarian, M. et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA 316, 602–610 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bowden, D. W. & Freedman, B. I. The challenging search for diabetic nephropathy genes. Diabetes 61, 1923–1924 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alpers, C. E. & Hudkins, K. L. Mouse models of diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 20, 278–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brosius, F. C. 3rd. & Alpers, C. E. New targets for treatment of diabetic nephropathy: what we have learned from animal models. Curr. Opin. Nephrol. Hypertens. 22, 17–25 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Raz, I. et al. Role of insulin and the IGF system in renal hypertrophy in diabetic Psammomys obesus (sand rat). Nephrol. Dial Transplant. 18, 1293–1298 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Velasquez, M. T., Kimmel, P. L. & Michaelis, O. E. 4th. Animal models of spontaneous diabetic kidney disease. FASEB J. 4, 2850–2859 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Zatz, R. et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest. 77, 1925–1930 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Majewski, C. & Bakris, G. L. Has RAAS blockade reached its limits in the treatment of diabetic nephropathy? Curr. Diab. Rep. 16, 24 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Breyer, M. D. et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 16, 27–45 (2005).

    Article  PubMed  Google Scholar 

  20. Brosius, F. C. 3rd. et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2503–2512 (2009). Together with reference 19, this paper summarizes almost 10 years of work by the AMDCC to generate and characterize mouse models of DN.

    Article  PubMed  Google Scholar 

  21. Georgia Health Sciences University. Diabetes Complications Consortium. Diabetes Complications Consortium https://www.diacomp.org (2011).

  22. Begley, C. G. & Ellis, L. M. Drug development: raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Perrin, S. Preclinical research: make mouse studies work. Nature 507, 423–425 (2014).

    Article  PubMed  Google Scholar 

  24. Betz, B. & Conway, B. R. An update on the use of animal models in diabetic nephropathy research. Curr. Diab. Rep. 16, 18 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leiter, E. H. Multiple low-dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. Proc. Natl Acad. Sci. USA 79, 630–634 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmezer, P., Eckert, C. & Liegibel, U. M. Tissue-specific induction of mutations by streptozotocin in vivo. Mutat. Res. 307, 495–499 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Gurley, S. B. et al. Impact of genetic background on nephropathy in diabetic mice. Am. J. Physiol. Renal Physiol. 290, F214–F222 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Qi, Z. et al. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54, 2628–2637 (2005). Together with reference 27, this paper highlights the profound influence of genetic background on the development of DN in mice and identifies mouse strains with enhanced susceptibility to DN.

    Article  CAS  PubMed  Google Scholar 

  29. Leiter, E. H., Prochazka, M. & Coleman, D. L. The non-obese diabetic (NOD) mouse. Am. J. Pathol. 128, 380–383 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Atkinson, M. A. & Leiter, E. H. The NOD mouse model of type 1 diabetes: as good as it gets? Nat. Med. 5, 601–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Gurley, S. B. et al. Influence of genetic background on albuminuria and kidney injury in Ins2+/C96Y (Akita) mice. Am. J. Physiol. Renal Physiol. 298, F788–F795 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, J. et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J. Clin. Invest. 103, 27–37 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Epstein, P. N., Overbeek, P. A. & Means, A. R. Calmodulin-induced early-onset diabetes in transgenic mice. Cell 58, 1067–1073 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Epstein, P. N., Ribar, T. J., Decker, G. L., Yaney, G. & Means, A. R. Elevated beta-cell calmodulin produces a unique insulin secretory defect in transgenic mice. Endocrinology 130, 1387–1393 (1992).

    CAS  PubMed  Google Scholar 

  35. Zheng, S. et al. Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes 53, 3248–3257 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Yuzawa, Y. et al. Overexpression of calmodulin in pancreatic β cells induces diabetic nephropathy. J. Am. Soc. Nephrol. 19, 1701–1711 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, J., Huang, Y., Li, F., Zheng, S. & Epstein, P. N. FVB mouse genotype confers susceptibility to OVE26 diabetic albuminuria. Am. J. Physiol. Renal Physiol. 299, F487–F494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thibodeau, J. F. et al. A novel mouse model of advanced diabetic kidney disease. PLoS ONE. 9, e113459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. & Feinglos, M. N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 1163–1167 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Hariri, N. & Thibault, L. High-fat diet-induced obesity in animal models. Nutr. Res. Rev. 23, 270–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Chatzigeorgiou, A., Halapas, A., Kalafatakis, K. & Kamper, E. The use of animal models in the study of diabetes mellitus. In Vivo 23, 245–258 (2009).

    CAS  PubMed  Google Scholar 

  42. Cowie, C. C. et al. Diabetic renal disease: racial and ethnic differences from an epidemiologic perspective. Transplant. Proc. 25, 2426–2430 (1993).

    CAS  PubMed  Google Scholar 

  43. Krolewski, A. S., Warram, J. H., Rand, L. I. & Kahn, C. R. Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. N. Engl. J. Med. 317, 1390–1398 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Parving, H. H. et al. Prevalence of microalbuminuria, arterial hypertension, retinopathy and neuropathy in patients with insulin dependent diabetes. Br. Med. J. 296, 156–160 (1988).

    Article  CAS  Google Scholar 

  45. Andersen, A. R., Christiansen, J. S., Andersen, J. K., Kreiner, S. & Deckert, T. Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25, 496–501 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. de Boer, I. H. et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305, 2532–2539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mayer, B. Using systems biology to evaluate targets and mechanism of action of drugs for diabetes comorbidities. Diabetologia 59, 2503–2506 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Ahlqvist, E., van Zuydam, N. R., Groop, L. C. & McCarthy, M. I. The genetics of diabetic complications. Nat. Rev. Nephrol. 11, 277–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Chang, J. H. et al. Diabetic kidney disease in FVB/NJ Akita mice: temporal pattern of kidney injury and urinary nephrin excretion. PLoS ONE. 7, e33942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chua, S. Jr et al. A susceptibility gene for kidney disease in an obese mouse model of type II diabetes maps to chromosome 8. Kidney Int. 78, 453–462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, Z. et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54, 2328–2335 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Sharma, K., McCue, P. & Dunn, S. R. Diabetic kidney disease in the db/db mouse. Am. J. Physiol. Renal Physiol. 284, F1138–F1144 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Fontaine, D. A. & Davis, D. B. Attention to background strain is essential for metabolic research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 65, 25–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Hummel, K. P., Coleman, D. L. & Lane, P. W. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem. Genet. 7, 1–13 (1972).

    Article  CAS  PubMed  Google Scholar 

  55. Naggert, J. K., Mu, J. L., Frankel, W., Bailey, D. W. & Paigen, B. Genomic analysis of the C57BL/Ks mouse strain. Mamm. Genome. 6, 131–133 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, H. J. et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J. Am. Soc. Nephrol. 17, 2664–2669 (2006). One of the first descriptions of an accelerated model of DN in mice combining the db/db T2DM model with genetic deficiency of eNOS.

    Article  CAS  PubMed  Google Scholar 

  57. Mohan, S. et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Invest. 88, 515–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, M. Z. et al. Role of blood pressure and the renin-angiotensin system in development of diabetic nephropathy (DN) in eNOS−/−db/db mice. Am. J. Physiol. Renal Physiol. 302, F433–F438 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Nakagawa, T. et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18, 539–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Kanetsuna, Y. et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am. J. Pathol. 170, 1473–1484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Forbes, M. S., Thornhill, B. A., Park, M. H. & Chevalier, R. L. Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury. Am. J. Pathol. 170, 87–99 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng, H., Wang, H., Fan, X., Paueksakon, P. & Harris, R. C. Improvement of endothelial nitric oxide synthase activity retards the progression of diabetic nephropathy in db/db mice. Kidney Int. 82, 1176–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Caron, K. M. et al. A genetically clamped renin transgene for the induction of hypertension. Proc. Natl Acad. Sci. USA 99, 8248–8252 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Conway, B. R. et al. Hyperglycemia and renin-dependent hypertension synergize to model diabetic nephropathy. J. Am. Soc. Nephrol. 23, 405–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355, 253–259 (2000).

  66. Haller, H. et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N. Engl. J. Med. 364, 907–917 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Hudkins, K. L. et al. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J. Am. Soc. Nephrol. 21, 1533–1542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Korzh, V. & Grunwald, D. Nadine Dobrovolskaïa-Zavadskaïa and the dawn of developmental genetics. Bioessays 23, 365–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Clee, S. M., Nadler, S. T. & Attie, A. D. Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes. Am. J. Ther. 12, 491–498 (2005).

    Article  PubMed  Google Scholar 

  70. Pichaiwong, W. et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J. Am. Soc. Nephrol. 24, 1088–1102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Merscher-Gomez, S. et al. Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62, 3817–3827 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gembardt, F. et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Renal Physiol. 307, F317–F325 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Hodgin, J. B. et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299–308 (2013). Comparison of the transcriptomic profiles of DN in mice and humans, identifying shared networks that can be useful for prioritizing relevant models.

    Article  CAS  PubMed  Google Scholar 

  74. Gangadharan, Komala, M. et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS ONE. 9, e108994 (2014).

    Article  CAS  Google Scholar 

  75. Mann, J. F. et al. Development of renal disease in people at high cardiovascular risk: results of the HOPE randomized study. J. Am. Soc. Nephrol. 14, 641–647 (2003).

    Article  PubMed  Google Scholar 

  76. Cortinovis, M., Ruggenenti, P. & Remuzzi, G. Progression, remission and regression of chronic renal diseases. Nephron 134, 20–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Lambers, Heerspink, H. J. & Gansevoort, R. T. Albuminuria is an appropriate therapeutic target in patients with CKD: the pro view. Clin. J. Am. Soc. Nephrol. 10, 1079–1088 (2015).

    Article  CAS  Google Scholar 

  78. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Heerspink, H. J. et al. Canagliflozin slows progression of renal function decline independently of glycemic effects. J. Am. Soc. Nephrol. 28, 368–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Ly, J. P. et al. The sweet pee model for Sglt2 mutation. J. Am. Soc. Nephrol. 22, 113–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ferrannini, E. & Solini, A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat. Rev. Endocrinol. 8, 495–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Vallon, V. et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol. 306, F194–F204 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Kawanami, D. et al. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int. J. Mol. Sci. 18, E1083 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Florez, J. C. Genetics of diabetic kidney disease. Semin. Nephrol. 36, 474–480 (2016).

    Article  PubMed  Google Scholar 

  86. Filla, L. A. & Edwards, J. L. Metabolomics in diabetic complications. Mol. Biosyst. 12, 1090–1105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brosius, F. C., Tuttle, K. R. & Kretzler, M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59, 1624–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sharma, K. et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24, 1901–1912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. You, Y. H., Quach, T., Saito, R., Pham, J. & Sharma, K. Metabolomics reveals a key role for fumarate in mediating the effects of NADPH Oxidase 4 in diabetic kidney disease. J. Am. Soc. Nephrol. 27, 466–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, J. -J. et al. Profiling of plasma metabolites suggests altered mitochondrial fuel usage and remodeling of sphingolipid metabolism in individuals with type 2 diabetes and kidney disease. Kidney Int. Rep. 2, 470–480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reddy, M. A., Zhang, E. & Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58, 443–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Schones, D. E., Leung, A. & Natarajan, R. Chromatin modifications associated with diabetes and obesity. Arterioscler. Thromb. Vasc. Biol. 35, 1557–1561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Keating, S. T., Plutzky, J. & El-Osta, A. Epigenetic changes in diabetes and cardiovascular risk. Circ. Res. 118, 1706–1722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work in this area has been supported by grants from the NIH (including 5U01DK076136 and funding from the Diabetes Complications Consortium), and the Singapore National Medical Research Council (NMRC/OFLCG/001/2017).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, discussed its content, and contributed to writing and editing the manuscript before submission.

Corresponding author

Correspondence to Thomas M. Coffman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azushima, K., Gurley, S. & Coffman, T. Modelling diabetic nephropathy in mice. Nat Rev Nephrol 14, 48–56 (2018). https://doi.org/10.1038/nrneph.2017.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing