Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting neural reflex circuits in immunity to treat kidney disease

Key Points

  • Neural circuits that control immunity and inflammation provide novel targets for the treatment of kidney disease and hypertension

  • Activation of the cholinergic anti-inflammatory pathway (CAP) blocks splenic-dependent systemic inflammation and acute kidney injury (AKI); non-invasive, nonpharmacological approaches to activate the CAP include ultrasound application and vagus nerve stimulation

  • Neural circuits that directly regulate kidney function or carry sensory feedback from the kidney to the central nervous system could provide additional mechanisms for bidirectional neuroimmunomodulation of kidney disease

  • Interactions between neural circuits and the immune system have important roles in the pathogenesis of hypertension and renal fibrosis

  • Further defining neuroimmunomodulatory pathways in hypertension could enable the development of selective neuronal stimulatory or inhibitory strategies for lowering blood pressure that could potentially be more effective than renal denervation

  • Optogenetic tools provide unprecedented opportunities to dissect the neural pathways that control immunity and inflammation and enable the identification of novel approaches to therapy for kidney diseases

Abstract

Neural pathways regulate immunity and inflammation via the inflammatory reflex and specific molecular targets can be modulated by stimulating neurons. Neuroimmunomodulation by nonpharmacological methods is emerging as a novel therapeutic strategy for inflammatory diseases, including kidney diseases and hypertension. Electrical stimulation of vagus neurons or treatment with pulsed ultrasound activates the cholinergic anti-inflammatory pathway (CAP) and protects mice from acute kidney injury (AKI). Direct innervation of the kidney, by afferent and efferent neurons, might have a role in modulating and responding to inflammation in various diseases, either locally or by providing feedback to regions of the central nervous system that are important in the inflammatory reflex pathway. Increased sympathetic drive to the kidney has a role in the pathogenesis of hypertension, and selective modulation of neuroimmune interactions in the kidney could potentially be more effective for lowering blood pressure and treating inflammatory kidney diseases than renal denervation. Use of optogenetic tools for selective stimulation of specific neurons has enabled the identification of neural circuits in the brain that modulate kidney function via activation of the CAP. In this Review we discuss evidence for a role of neural circuits in the control of renal inflammation as well as the therapeutic potential of targeting these circuits in the settings of AKI, kidney fibrosis and hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The inflammatory reflex.
Figure 2: Neural circuitry of efferent and afferent innervation in the kidney.

Similar content being viewed by others

References

  1. Okusa, M. D., Chertow, G. M. & Portilla, D. The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009. Clin. J. Am. Soc. Nephrol. 4, 520–522 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ojo, A. Addressing the global burden of chronic kidney disease through clinical and translational research. Trans. Am. Clin. Climatol Assoc. 125, 229–243; discussion 243–246 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Hsu, R. K., McCulloch, C. E., Dudley, R. A., Lo, L. J. & Hsu, C. Y. Temporal changes in incidence of dialysis-requiring AKI. J. Am. Soc. Nephrol. 24, 37–42 (2013).

    Article  PubMed  Google Scholar 

  4. Molitoris, B. A., Okusa, M. D., Palevsky, P. M., Kimmel, P. L. & Star, R. A. Designing clinical trials in acute kidney injury. Clin. J. Am. Soc. Nephrol. 7, 842–843 (2012).

    Article  PubMed  Google Scholar 

  5. Okusa, M. D. et al. Design of clinical trials in acute kidney injury: a report from an NIDDK workshop — prevention trials. Clin. J. Am. Soc. Nephrol. 7, 851–855 (2012).

    Article  PubMed  Google Scholar 

  6. Bonventre, J. V. et al. AKI: a path forward. Clin. J. Am. Soc. Nephrol. 8, 1606–1608 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jo, S. K., Rosner, M. H. & Okusa, M. D. Pharmacologic treatment of acute kidney injury: why drugs haven't worked and what is on the horizon. Clin. J. Am. Soc. Nephrol. 2, 256–365 (2007).

    Article  Google Scholar 

  8. Perrin, S. Preclinical research: make mouse studies work. Nature 507, 423–425 (2014).

    Article  PubMed  Google Scholar 

  9. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000). Study demonstrating an important and previously unrecognized anti-inflammatory role of the parasympathetic nervous system.

    Article  CAS  PubMed  Google Scholar 

  10. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Chiu, I. M., von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ueno, M., Ueno-Nakamura, Y., Niehaus, J., Popovich, P. G. & Yoshida, Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat. Neurosci. 19, 784–787 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inoue, T. et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J. Clin. Invest. 126, 1939–1952 (2016). Study demonstrating that VNS activates the CAP, resulting in activation of anti-inflammatory effects via α 7 nicotinic acetylcholine receptor–expressing splenic macrophages.

    Article  PubMed  PubMed Central  Google Scholar 

  14. National Institutes of Health. Stimulating peripheral activity to relieve conditions. National Institutes of Health https://commonfund.nih.gov/SPARC (2017).

  15. Ogbonnaya, S. & Kaliaperumal, C. Vagal nerve stimulator: evolving trends. J. Nat. Sci. Biol. Med. 4, 8–13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Undem, B. J. & Kollarik, M. The role of vagal afferent nerves in chronic obstructive pulmonary disease. Proc. Am. Thorac Soc. 2, 355–360; discussion 371–372 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chunchai, T. et al. Vagus nerve stimulation exerts the neuroprotective effects in obese-insulin resistant rats, leading to the improvement of cognitive function. Sci. Rep. 6, 26866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Ferrari, G. M. et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32, 847–855 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Koopman, F. A. et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 113, 8284–8289 (2016). Pilot study demonstrating that VNS inhibited TNF production and improved disease severity in patients with rheumatoid arthritis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonaz, B. et al. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study. Neurogastroenterol Motil. 28, 948–953 (2016). Pilot study demonstratating the potential efficacy and safety of chronic VNS in patients with Crohn disease.

    Article  CAS  PubMed  Google Scholar 

  21. Andersson, U. & Tracey, K. J. Neural reflexes in inflammation and immunity. J. Exp. Med. 209, 1057–1068 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, K. A. Louis Pasteur, the father of immunology? Front. Immunol. 3, 68 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Blevins, S. M. & Bronze, M. S. Robert Koch and the 'golden age' of bacteriology. Int. J. Infect. Dis. 14, e744–e751 (2010).

    Article  PubMed  Google Scholar 

  24. Bernard, C. Leçons sur les phénomènes de la vie, communs aux animaux et aux végétaux [French]. Paris 307, (1878).

  25. Thomas, L. Germs. N. Engl. J. Med. 287, 553–555 (1972).

    Article  CAS  PubMed  Google Scholar 

  26. Hotchkiss, R., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13, 862–874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bellavance, M. A. & Rivest, S. The HPA — immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 5, 136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watkins, L. R. et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 183, 27–31 (1995). Seminal discovery that an intact vagus nerve is required for the development of fever in rodents following intra-abdominal administration of IL-1β. This finding demonstrates an essential early role for the sensory nervous system in a fundamental mechanism of host defence.

    Article  CAS  PubMed  Google Scholar 

  29. Niijima, A. The afferent discharges from sensors for interleukin 1β in the hepatoportal system in the anesthetized rat. J. Auton. Nerv. Syst. 61, 287–291 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Goehler, L. E. et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 85, 49–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Ordovas-Montanes, J. et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol. 36, 578–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pavlov, V. A. & Tracey, K. J. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat. Neurosci. 20, 156–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Ek, M., Kurosawa, M., Lundeberg, T. & Ericsson, A. Activation of vagal afferents after intravenous injection of interleukin-1β: role of endogenous prostaglandins. J. Neurosci. 18, 9471–9479 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hermann, G. E. & Rogers, R. C. TNFα: a trigger of autonomic dysfunction. Neuroscientist 14, 53–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. van der Kleij, H. et al. Evidence for neuronal expression of functional Fc (ε and γ) receptors. J. Allergy Clin. Immunol. 125, 757–760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Page, A. J., O'Donnell, T. A. & Blackshaw, L. A. P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation. J. Physiol. 523, 403–411; part 2 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brouns, I., Adriaensen, D., Burnstock, G. & Timmermans, J. P. Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am. J. Respir. Cell Mol. Biol. 23, 52–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Mascarucci, P., Perego, C., Terrazzino, S. & De Simoni, M. G. Glutamate release in the nucleus tractus solitarius induced by peripheral lipopolysaccharide and interleukin-1β. Neuroscience 86, 1285–1290 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Ericsson, A., Kovacs, K. J. & Sawchenko, P. E. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J. Neurosci. 14, 897–913 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalia, M. & Sullivan, J. M. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211, 248–265 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. Bernik, T. R. et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 195, 781–788 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Westerloo, D. J. et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130, 1822–1830 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ghia, J. E., Blennerhassett, P. & Collins, S. M. Vagus nerve integrity and experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G560–G567 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ghia, J. E., Blennerhassett, P., Kumar-Ondiveeran, H., Verdu, E. F. & Collins, S. M. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131, 1122–1130 (2006).

    Article  PubMed  Google Scholar 

  45. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Andersson, U. & Tracey, K. J. Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 30, 313–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tracey, K. J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117, 289–296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Huston, J. M. et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med. 203, 1623–1628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Reilly, F. D., McCuskey, P. A., Miller, M. L., McCuskey, R. S. & Meineke, H. A. Innervation of the periarteriolar lymphatic sheath of the spleen. Tissue Cell 11, 121–126 (1979).

    Article  CAS  PubMed  Google Scholar 

  52. Bellinger, D. L., Lorton, D., Hamill, R. W., Felten, S. Y. & Felten, D. L. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav. Immun. 7, 191–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011). Landmark study demonstrating that an acetylcholine-producing, memory T cell population is integral to the inflammatory reflex following VNS in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Franco, R., Pacheco, R., Lluis, C., Ahern, G. P. & O'Connell, P. J. The emergence of neurotransmitters as immune modulators. Trends Immunol. 28, 400–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Vida, G. et al. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 25, 4476–4485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Pena, G. et al. Unphosphorylated STAT3 modulates alpha7 nicotinic receptor signaling and cytokine production in sepsis. Eur. J. Immunol. 40, 2580–2589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Metz, C. N. & Tracey, K. J. It takes nerve to dampen inflammation. Nat. Immunol. 6, 756–757 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Yeboah, M. M. et al. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney Int. 74, 62–69 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chatterjee, P. K. et al. Nicotinic acetylcholine receptor agonists attenuate septic acute kidney injury in mice by suppressing inflammation and proteasome activity. PLoS ONE 7, e35361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoeger, S. et al. Modulation of brain dead induced inflammation by vagus nerve stimulation. Am. J. Transplant. 10, 477–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Hoeger, S. et al. Vagal stimulation in brain dead donor rats decreases chronic allograft nephropathy in recipients. Nephrol. Dial. Transplant. 29, 544–549 (2014).

    Article  PubMed  Google Scholar 

  63. Howland, R. H. Vagus nerve stimulation. Curr. Behav. Neurosci. Rep. 1, 64–73 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ben-Menachem, E., Revesz, D., Simon, B. J. & Silberstein, S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur. J. Neurol. 22, 1260–1268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ay, I., Nasser, R., Simon, B. & Ay, H. Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul. 9, 166–173 (2016).

    Article  PubMed  Google Scholar 

  66. Lerman, I. et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation 19, 283–290 (2016).

    Article  PubMed  Google Scholar 

  67. Gigliotti, J. C. & Okusa, M. D. The spleen: the forgotten organ in acute kidney injury of critical illness. Nephron Clin. Pract. 127, 153–157 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Gigliotti, J. C. et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J. Am. Soc. Nephrol. 24, 1451–1460 (2013). First study demonstrating that ultrasound treatment of mice prior to ischaemia–reperfusion injury protects kidney structure and function consistent with activation of the CAP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gigliotti, J. C. et al. Ultrasound modulates the splenic neuroimmune axis in attenuating AKI. J. Am. Soc. Nephrol. 26, 2407–2481 (2015).

    Article  CAS  Google Scholar 

  70. Brimijoin, S. & Molinoff, P. B. Effects of 6-hydroxydopamine on the activity of tyrosine hydroxylase and dopamine-β-hydroxylase in sympathetic ganglia of the rat. J. Pharmacol. Exp. Ther. 178, 417–424 (1971).

    CAS  PubMed  Google Scholar 

  71. Borovikova, L. V. et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton. Neurosci. 85, 141–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Pavlov, V. A. et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl Acad. Sci. USA 103, 5219–5223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, H. Y., Ericsson, A. & Sawchenko, P. E. Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms. Proc. Natl Acad. Sci. USA 93, 2359–2364 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jansen, A. S., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644–646 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Guyenet, P. G. et al. C1 neurons: the body's EMTs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R187–R204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abe, C. et al. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat. Neurosci. 20, 700–707 (2017). First demonstration that optogenetic stimulation of C1 neurons located in the medulla oblongata protects kidneys from ischaemia–reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nishi, E. E., Bergamaschi, C. T. & Campos, R. R. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp. Physiol. 100, 479–484 (2015).

    Article  PubMed  Google Scholar 

  78. Abdulla, M. H. & Johns, E. J. The innervation of the kidney in renal injury and inflammation: a cause and consequence of deranged cardiovascular control. Acta Physiol. (Oxf.) 220, 404–416 (2017).

    Article  CAS  Google Scholar 

  79. Barajas, L., Liu, L. & Powers, K. Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can. J. Physiol. Pharmacol. 70, 735–749 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Burnstock, G. & Loesch, A. Sympathetic innervation of the kidney in health and disease: emphasis on the role of purinergic cotransmission. Auton. Neurosci. 204, 4–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997). Comprehensive review of the role of the neural system in controlling renal function.

    Article  CAS  PubMed  Google Scholar 

  82. Ferguson, M., Ryan, G. B. & Bell, C. Localization of sympathetic and sensory neurons innervating the rat kidney. J. Auton. Nerv. Syst. 16, 279–288 (1986).

    Article  CAS  PubMed  Google Scholar 

  83. Ferguson, M. & Bell, C. Substance P-immunoreactive nerves in the rat kidney. Neurosci. Lett. 60, 183–188 (1985).

    Article  CAS  PubMed  Google Scholar 

  84. Kopp, U. C., Cicha, M. Z., Smith, L. A. & Hokfelt, T. Nitric oxide modulates renal sensory nerve fibers by mechanisms related to substance P receptor activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R279–R290 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Kopp, U. C., Olson, L. A. & DiBona, G. F. Renorenal reflex responses to mechano- and chemoreceptor stimulation in the dog and rat. Am. J. Physiol. 246, F67–F77 (1984).

    CAS  PubMed  Google Scholar 

  86. Kopp, U. C., Smith, L. A. & DiBona, G. F. Renorenal reflexes: neural components of ipsilateral and contralateral renal responses. Am. J. Physiol. 249, F507–F517 (1985).

    CAS  PubMed  Google Scholar 

  87. Johns, E. J. & Kopp, U. C. in Seldin and Giebisch: The Kidney: Physiology and Pathophysiology (eds Alpern, R. J., Moe, O. W. & Caplan, M.) 451–486 (Academic, 2013).

    Google Scholar 

  88. Ciriello, J. & Calaresu, F. R. Central projections of afferent renal fibers in the rat: an anterograde transport study of horseradish peroxidase. J. Auton. Nerv. Syst. 8, 273–285 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. Wyss, J. M. & Donovan, M. K. A direct projection from the kidney to the brainstem. Brain Res. 298, 130–134 (1984).

    Article  CAS  PubMed  Google Scholar 

  90. Kopp, U. C. Role of renal sensory nerves in physiological and pathophysiological conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R79–R95 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Stella, A. & Zanchetti, A. Functional role of renal afferents. Physiol. Rev. 71, 659–682 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Hermes, S. M., Colbert, J. F. & Aicher, S. A. Differential content of vesicular glutamate transporters in subsets of vagal afferents projecting to the nucleus tractus solitarii in the rat. J. Comp. Neurol. 522, 642–653 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Chang, R. B., Strochlic, D. E., Williams, E. K., Umans, B. D. & Liberles, S. D. Vagal sensory neuron subtypes that differentially control breathing. Cell 161, 622–633 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ditting, T. et al. Tonic postganglionic sympathetic inhibition induced by afferent renal nerves? Hypertension 59, 467–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Norvell, J. E. & Anderson, J. M. Assessment of possible parasympathetic innervation of the kidney. J. Auton. Nerv. Syst. 8, 291–294 (1983).

    Article  CAS  PubMed  Google Scholar 

  96. Gattone, V. H. 2nd, Marfurt, C. F. & Dallie, S. Extrinsic innervation of the rat kidney: a retrograde tracing study. Am. J. Physiol. 250, F189–F196 (1986).

    PubMed  Google Scholar 

  97. Weiss, M. L. & Chowdhury, S. I. The renal afferent pathways in the rat: a pseudorabies virus study. Brain Res. 812, 227–241 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Zheng, H. & Patel, K. P. Integration of renal sensory afferents at the level of the paraventricular nucleus dictating sympathetic outflow. Auton. Neurosci. 204, 57–64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim, J. & Padanilam, B. J. Renal nerves drive interstitial fibrogenesis in obstructive nephropathy. J. Am. Soc. Nephrol. 24, 229–242 (2013). Study showing that renal denervation prevents fibrogenesis and the inflammatory cascade following ureteral obstruction.

    Article  CAS  PubMed  Google Scholar 

  100. Kim, J. & Padanilam, B. J. Renal denervation prevents long-term sequelae of ischemic renal injury. Kidney Int. 87, 350–358 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Banek, C. T. et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension 68, 1415–1423 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Foss, J. D., Wainford, R. D., Engeland, W. C., Fink, G. D. & Osborn, J. W. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R112–R122 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014). A summmary of the bidirectional relationship between AKI and CKD.

    Article  CAS  PubMed  Google Scholar 

  104. Basile, D. P. et al. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J. Am. Soc. Nephrol. 27, 687–697 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765–1776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Basile, D. P., Donohoe, D., Roethe, K. & Osborn, J. L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Renal Physiol. 281, F887–F899 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Mimura, I. & Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat. Rev. Nephrol. 6, 667–678 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Lee, S. et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22, 317–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cao, Q., Harris, D. C. & Wang, Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology 30, 183–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Jang, H. R. & Rabb, H. Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol. 11, 88–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Szeto, H. H. et al. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1β and IL-18 and arrests CKD. J. Am. Soc. Nephrol. 28, 1437–1449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Perry, H. M. et al. Endothelial sphingosine 1phosphate receptor1 mediates protection and recovery from acute kidney injury. J. Am. Soc. Nephrol. 27, 3383–3393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Venner, J. M., Famulski, K. S., Reeve, J., Chang, J. & Halloran, P. F. Relationships among injury, fibrosis, and time in human kidney transplants. JCI Insight 1, e85323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Dampney, R. A. Central neural control of the cardiovascular system: current perspectives. Adv. Physiol. Educ. 40, 283–296 (2016).

    Article  PubMed  Google Scholar 

  119. Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Joyner, M. J., Charkoudian, N. & Wallin, B. G. Sympathetic nervous system and blood pressure in humans: individualized patterns of regulation and their implications. Hypertension 56, 10–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Coffman, T. M. The inextricable role of the kidney in hypertension. J. Clin. Invest. 124, 2341–2347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. DiBona, G. F. & Esler, M. Translational medicine: the antihypertensive effect of renal denervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R245–R253 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Wenzel, U. et al. Immune mechanisms in arterial hypertension. J. Am. Soc. Nephrol. 27, 677–686 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Harrison, D. G. The immune system in hypertension. Trans. Am. Clin. Climatol Assoc. 125, 130–138; discussion 138–140 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Renaudin, C., Bataillard, A. & Sassard, J. Partial transfer of genetic hypertension by lymphoid cells in Lyon rats. J. Hypertens. 13, 1589–1592 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Okuda, T. & Grollman, A. Passive transfer of autoimmune induced hypertension in the rat by lymph node cells. Tex. Rep. Biol. Med. 25, 257–264 (1967).

    CAS  PubMed  Google Scholar 

  127. White, F. N. & Grollman, A. Autoimmune factors associated with infarction of the kidney. Nephron 1, 93–102 (1964).

    Article  CAS  PubMed  Google Scholar 

  128. Dzielak, D. J. Immune mechanisms in experimental and essential hypertension. Am. J. Physiol. 260, R459–R467 (1991).

    CAS  PubMed  Google Scholar 

  129. Bendich, A., Belisle, E. H. & Strausser, H. R. Immune system modulation and its effect on the blood pressure of the spontaneously hypertensive male and female rat. Biochem. Biophys. Res. Commun. 99, 600–607 (1981).

    Article  CAS  PubMed  Google Scholar 

  130. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007). Study demonstrating a role of T cells in the genesis of hypertension. This finding supports a role of inflammation in the pathogenesis of hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tesmer, L. A., Lundy, S. K., Sarkar, S. & Fox, D. A. Th17 cells in human disease. Immunol. Rev. 223, 87–113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Schrader, L. I., Kinzenbaw, D. A., Johnson, A. W., Faraci, F. M. & Didion, S. P. IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy. Arterioscler. Thromb. Vasc. Biol. 27, 2576–2581 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Lee, D. L. et al. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am. J. Physiol. Heart Circ. Physiol. 290, H935–H940 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Brands, M. W. et al. Interleukin 6 knockout prevents angiotensin II hypertension: role of renal vasoconstriction and janus kinase 2/signal transducer and activator of transcription 3 activation. Hypertension 56, 879–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Venegas-Pont, M. et al. Tumor necrosis factor-α antagonist etanercept decreases blood pressure and protects the kidney in a mouse model of systemic lupus erythematosus. Hypertension 56, 643–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Tran, L. T., MacLeod, K. M. & McNeill, J. H. Chronic etanercept treatment prevents the development of hypertension in fructose-fed rats. Mol. Cell Biochem. 330, 219–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Bautista, L. E., Vera, L. M., Arenas, I. A. & Gamarra, G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension. J. Hum. Hypertens. 19, 149–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Herrera, J., Ferrebuz, A., MacGregor, E. G. & Rodriguez-Iturbe, B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J. Am. Soc. Nephrol. 17, S218–S225 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Touyz, R. M. The neuroimmune axis in the kidney: role in hypertension. Circ. Res. 117, 487–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Burne, M. J. et al. Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure. J. Clin. Invest. 108, 1283–1290 (2001). The seminal observation that CD4+ T cells are important mediators of ischaemic acute renal failure, which has led to therapeutic approaches to block T cells in the pathogenesis of AKI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, L. et al. NKT cell activation mediates neutrophil IFN-γ production and renal ischemia-reperfusion injury. J. Immunol. 178, 5899–5911 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Day, Y.-J. et al. Renal ischemia-reperfusion and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and inteferon-γ J. Immunol. 176, 3108–3114 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, J. & Crowley, S. D. Role of T lymphocytes in hypertension. Curr. Opin. Pharmacol. 21, 14–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Rodriguez-Iturbe, B., Pons, H. & Johnson, R. J. Role of the immune system in hypertension. Physiol. Rev. 97, 1127–1164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xiao, L. et al. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 117, 547–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Carnevale, D. et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat. Commun. 7, 13035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Case, A. J. & Zimmerman, M. C. Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension. J. Physiol. 594, 527–536 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Rumantir, M. S. et al. Neural mechanisms in human obesity-related hypertension. J. Hypertens. 17, 1125–1133 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Esler, M. et al. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol. Rev. 70, 963–985 (1990).

    Article  CAS  PubMed  Google Scholar 

  151. Esler, M. et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 11, 3–20 (1988).

    Article  CAS  PubMed  Google Scholar 

  152. Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281 (2009). This proof-of-principle trial in patients with resistant hypertension demonstrated that renal denervation decreased blood pressure without serious adverse events.

    Article  PubMed  Google Scholar 

  153. Esler, M. D. et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur. Heart J. 35, 1752–1759 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Katholi, R. E. Renal nerves and hypertension: an update. Fed. Proc. 44, 2846–2850 (1985).

    CAS  PubMed  Google Scholar 

  155. Katholi, R. E. Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am. J. Physiol. 245, F1–F14 (1983).

    Article  CAS  PubMed  Google Scholar 

  156. Campese, V. M. & Kogosov, E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 25, 878–882 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Converse, R. L. Jr. et al. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 327, 1912–1918 (1992).

    Article  PubMed  Google Scholar 

  158. Bhatt, D. L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014). The prospective, single-blind, randomized, sham-controlled SYMPLICITY HTN-3 trial showed that radiofrequency renal denervation did not significantly reduce systolic blood pressure in patients with resistant hypertension at 6 months.

    Article  CAS  PubMed  Google Scholar 

  159. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Koopman, F. A., Schuurman, P. R., Vervoordeldonk, M. J. & Tak, P. P. Vagus nerve stimulation: a new bioelectronics approach to treat rheumatoid arthritis? Best Pract. Res. Clin. Rheumatol 28, 625–635 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Matteoli, G. & Boeckxstaens, G. E. The vagal innervation of the gut and immune homeostasis. Gut 62, 1214–1222 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Clayton, S. C., Haack, K. K. & Zucker, I. H. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am. J. Physiol. Renal Physiol. 300, F31–F39 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Hering, D. et al. Renal denervation in moderate to severe CKD. J. Am. Soc. Nephrol. 23, 1250–1257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mahfoud, F. et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 60, 419–424 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research summarized in this review was supported by the NIH under awards 1R01DK105133, R01 DK062324, U18EB021787 and 1S10RR026799-01.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, made substantial contributions to discussion of the content, wrote the article and edited or reviewed the manuscript before submission.

Corresponding author

Correspondence to Mark D. Okusa.

Ethics declarations

Competing interests

M.D.O. and D.L.R. own equity in Adenosine Therapeutics, LLC. K.J.T. is a consultant for SetPoint Medical, Inc.

PowerPoint slides

Glossary

Vagus nerve

The vagus or 10th cranial nerve is a pair of nerve bundles (right and left) that contains axons of both efferent and afferent neurons. The efferent neurons provide cholinergic input to almost all organs in the periphery and some skeletal muscles. Their cell bodies are located in the medulla oblongata. The cell bodies of afferent neurons are located in the nodose ganglia. These neurons carry the majority of sensory information from visceral organs to the CNS.

Subdiaphragmatic vagotomy

Denervation by surgical transection of both trunks of the vagus nerve either below or caudal to the diaphragm.

Nucleus tractus solitarius

A group of neuronal cell bodies in the brainstem that form an integrative centre for sensory information from the vagus, glossopharyngeal and facial nerves. The nucleus tractus solitarius projects to a wide variety of brain regions, including the hypothalamus, thalamus, and medulla, and participates in circuits that regulate autonomic function.

Coeliac ganglion

A cluster of nerve cells in the abdomen that forms part of the prevertebral sympathetic chain and provides sympathetic innervation to most of the digestive tract. The coeliac ganglion is regulated by the preganglionic neurons in the intermediolateral cell column of the spinal cord.

Bilateral cervical vagotomy

Bilateral cervical vagotomy is a surgical transection of the vagus nerve at the level of the neck on both sides. This procedure prevents the flow of information through the nerve in both directions (afferent and efferent) between its origin in the CNS and its targets in the periphery.

Retrograde tract tracing

A technique for identifying neuronal pathways that exploits constitutive axonal transport to trace the movement of specialized proteins, markers or viruses (which can be visualized by various means) from their point of exogenous introduction in a target field of interest (synaptic terminals) to the cell bodies of those axons (retrograde transport). By contrast, anterograde tracing traces the transport of markers from the cell body region in the direction of the synapse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okusa, M., Rosin, D. & Tracey, K. Targeting neural reflex circuits in immunity to treat kidney disease. Nat Rev Nephrol 13, 669–680 (2017). https://doi.org/10.1038/nrneph.2017.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing