Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases

Key Points

  • Endoplasmic reticulum (ER) function and autophagy are essential for protein homeostasis (proteostasis) in podocytes

  • Protein misfolding and ER stress are evident in various renal diseases, including primary glomerulonephritides, glomerulopathies associated with genetic mutations, diabetic nephropathy, acute kidney injury, chronic kidney disease and renal fibrosis

  • The unfolded protein response might interact in a coordinated manner with autophagy to alleviate protein misfolding and its consequences in kidney diseases

  • Monitoring ER chaperone excretion in the urine can potentially serve as a biomarker of renal ER stress

  • Treatment with chemical chaperones that improve protein folding or chaperone inducers has alleviated kidney injury

  • Normalization of ER stress using pharmacological agents might be a promising therapeutic approach for preventing or arresting the progression of kidney disease

Abstract

Progress has been made in our understanding of the mechanisms of endoplasmic reticulum (ER) proteostasis, ER stress and the unfolded protein response (UPR), as well as ER stress-induced autophagy, in the kidney. Experimental models have revealed that disruption of the UPR, including a protein that senses misfolded proteins (namely, inositol-requiring enzyme 1α) in mouse podocytes causes podocyte injury and albuminuria as mice age. Protein misfolding and ER stress are evident in various renal diseases, including primary glomerulonephritides, glomerulopathies associated with genetic mutations, diabetic nephropathy, acute kidney injury, chronic kidney disease and renal fibrosis. The induction of ER stress may be cytoprotective, or it may be cytotoxic by activating apoptosis. The UPR may interact in a coordinated manner with autophagy to alleviate protein misfolding and its consequences. Monitoring the excretion of ER chaperones into the urine can potentially serve as a biomarker of renal ER stress. In specific kidney diseases, the treatment of experimental animals with chemical chaperones that improve protein folding or with chaperone inducers has alleviated kidney injury. Given the limited availability of mechanism-based therapies for kidney diseases, normalization of ER stress using pharmacological agents represents a promising therapeutic approach towards preventing or arresting the progression of kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein folding, quality control and unfolded protein response (UPR) activation in the endoplasmic reticulum (ER).
Figure 2: Control of autophagy by endoplasmic reticulum (ER) stress.
Figure 3: Abrogation of endoplasmic reticulum (ER) stress pathways leads to podocyte injury.
Figure 4: Urinary endoplasmic reticulum (ER) stress biomarkers for the diagnosis of glomerular disease.

Similar content being viewed by others

References

  1. Araki, K. & Nagata, K. Protein folding and quality control in the ER. Cold Spring Harb. Perspect Biol. 3, a007526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brodsky, J. L. & Skach, W. R. Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr. Opin. Cell Biol. 23, 464–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caramelo, J. J. & Parodi, A. J. Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem. 283, 10221–10225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guerriero, C. J. & Brodsky, J. L. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol. Rev. 92, 537–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Bernasconi, R. & Molinari, M. ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr. Opin. Cell Biol. 23, 176–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Inagi, R., Ishimoto, Y. & Nangaku, M. Proteostasis in endoplasmic reticulum — new mechanisms in kidney disease. Nat. Rev. Nephrol. 10, 369–378 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Zhuang, A. & Forbes, J. M. Stress in the kidney is the road to pERdition: is endoplasmic reticulum stress a pathogenic mediator of diabetic nephropathy? J. Endocrinol. 222, R97–R111 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Taniguchi, M. & Yoshida, H. Endoplasmic reticulum stress in kidney function and disease. Curr. Opin. Nephrol. Hypertens. 24, 345–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Cunard, R. Endoplasmic reticulum stress in the diabetic kidney, the good, the bad and the ugly. J. Clin. Med. 4, 715–740 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohammed-Ali, Z., Cruz, G. L. & Dickhout, J. G. Crosstalk between the unfolded protein response and NF-κB-mediated inflammation in the progression of chronic kidney disease. J. Immunol. Res. 2015, 428508 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huber, T. B. et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8, 1009–1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kume, S., Yamahara, K., Yasuda, M., Maegawa, H. & Koya, D. Autophagy: emerging therapeutic target for diabetic nephropathy. Semin. Nephrol. 34, 9–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Livingston, M. J. & Dong, Z. Autophagy in acute kidney injury. Semin. Nephrol. 34, 17–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Takabatake, Y., Kimura, T., Takahashi, A. & Isaka, Y. Autophagy and the kidney: health and disease. Nephrol. Dial. Transplant. 29, 1639–1647 (2014).

    Article  PubMed  Google Scholar 

  15. Ding, Y. & Choi, M. E. Autophagy in diabetic nephropathy. J. Endocrinol. 224, R15–R30 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Lenoir, O., Tharaux, P. L. & Huber, T. B. Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int. 90, 950–964 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Kaushal, G. P. & Shah, S. V. Autophagy in acute kidney injury. Kidney Int. 89, 779–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rutkowski, D. T. & Hegde, R. S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol. 189, 783–794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Rashid, H. O., Yadav, R. K., Kim, H. R. & Chae, H. J. ER stress: autophagy induction, inhibition and selection. Autophagy 11, 1956–1977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maurel, M. & Chevet, E. Endoplasmic reticulum stress signaling: the microRNA connection. Am. J. Physiol. Cell Physiol. 304, C1117–C1126 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Heath-Engel, H. M., Chang, N. C. & Shore, G. C. The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene 27, 6419–6433 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Shore, G. C., Papa, F. R. & Oakes, S. A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 23, 143–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Wei, Y., Sinha, S. & Levine, B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4, 949–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Lajoie, P., Fazio, E. N. & Snapp, E. L. Approaches to imaging unfolded secretory protein stress in living cells. Endoplasmic Reticulum Stress Dis. 1, 27–39 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Iwawaki, T., Akai, R., Kohno, K. & Miura, M. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10, 98–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Mao, C., Tai, W. C., Bai, Y., Poizat, C. & Lee, A. S. In vivo regulation of Grp78/BiP transcription in the embryonic heart: role of the endoplasmic reticulum stress response element and GATA-4. J. Biol. Chem. 281, 8877–8887 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Inagi, R. Endoplasmic reticulum: the master regulator of stress responses in glomerular diseases. An Update on Glomerulopathies — Etiology and Pathogenesis Ch. 13 (ed. Prabhakar, S.) (InTechOpen, 2011).

    Google Scholar 

  30. Kitamura, M. Biphasic, bidirectional regulation of NF-κB by endoplasmic reticulum stress. Antioxid. Redox Signal 11, 2353–2364 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Turano, C., Coppari, S., Altieri, F. & Ferraro, A. Proteins of the PDI family: unpredicted non-ER locations and functions. J. Cell. Physiol. 193, 154–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Al-Hashimi, A. A. et al. Binding of anti-GRP78 autoantibodies to cell surface GRP78 increases tissue factor procoagulant activity via the release of calcium from endoplasmic reticulum stores. J. Biol. Chem. 285, 28912–28923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ni, M., Zhang, Y. & Lee, A. S. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem. J. 434, 181–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Hoyer-Hansen, M. & Jaattela, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 14, 1576–1582 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cybulsky, A. V. The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 84, 25–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Hetz, C., Chevet, E. & Harding, H. P. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703–719 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Halliday, M. et al. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain 140, 1768–1783 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mercado, G. & Hetz, C. Drug repurposing to target proteostasis and prevent neurodegeneration: accelerating translational efforts. Brain 140, 1544–1547 (2017).

    Article  PubMed  Google Scholar 

  41. Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, C. M., Zheng, G. H., Ming, Q. L., Sun, J. M. & Cheng, C. Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway. Free Radic. Res. 47, 192–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Tsaytler, P., Harding, H. P., Ron, D. & Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl Med. 5, 206ra138 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Mu, T. W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mimori, S. et al. Neuroprotective effects of 4-phenylbutyric acid and its derivatives: possible therapeutics for neurodegenerative diseases. J. Health Sci. 5, 9–17 (2017).

    Google Scholar 

  47. Patterson, S. T. & Reithmeier, R. A. Cell surface rescue of kidney anion exchanger 1 mutants by disruption of chaperone interactions. J. Biol. Chem. 285, 33423–33434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Collins, G. A. & Goldberg, A. L. The logic of the 26S proteasome. Cell 169, 792–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sareen-Khanna, K., Papillon, J., Wing, S. S. & Cybulsky, A. V. Role of the deubiquitinating enzyme ubiquitin-specific protease-14 in proteostasis in renal cells. Am. J. Physiol. Renal Physiol. 311, F1035–F1046 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Cybulsky, A. V. Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int. 77, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Kimura, K., Jin, H., Ogawa, M. & Aoe, T. Dysfunction of the ER chaperone BiP accelerates the renal tubular injury. Biochem. Biophys. Res. Commun. 366, 1048–1053 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Mao, C. et al. Targeted mutation of the mouse Grp94 gene disrupts development and perturbs endoplasmic reticulum stress signaling. PLoS ONE 5, e10852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, P. et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Iwawaki, T., Akai, R., Yamanaka, S. & Kohno, K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl Acad. Sci. USA 106, 16657–16662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaufman, D. R., Papillon, J., Larose, L., Iwawaki, T. & Cybulsky, A. V. Deletion of inositol-requiring enzyme-1α in podocytes disrupts glomerular capillary integrity and autophagy. Mol. Biol. Cell 28, 1636–1651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hur, K. Y. et al. IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. J. Exp. Med. 209, 307–318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hassan, H. et al. Essential role of X-box binding protein-1 during endoplasmic reticulum stress in podocytes. J. Am. Soc. Nephrol. 27, 1055–1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kawakami, T. et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J. Am. Soc. Nephrol. 26, 1040–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cybulsky, A. V. et al. Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J. Biol. Chem. 277, 41342–41351 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Cybulsky, A. V., Takano, T., Papillon, J. & Bijian, K. Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J. Biol. Chem. 280, 24396–24403 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Inagi, R. et al. Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 19, 915–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakajo, A. et al. Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance. J. Am. Soc. Nephrol. 18, 2554–2564 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Meyer-Schwesinger, C. et al. A new role for the neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) in podocyte process formation and podocyte injury in human glomerulopathies. J. Pathol. 217, 452–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Meyer-Schwesinger, C. et al. Ubiquitin C-terminal hydrolase-l1 activity induces polyubiquitin accumulation in podocytes and increases proteinuria in rat membranous nephropathy. Am. J. Pathol. 178, 2044–2057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kitzler, T. M., Papillon, J., Guillemette, J., Wing, S. S. & Cybulsky, A. V. Complement modulates the function of the ubiquitin-proteasome system and endoplasmic reticulum-associated degradation in glomerular epithelial cells. Biochim. Biophys. Acta 1823, 1007–1016 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, L. et al. Autophagy can repair endoplasmic reticulum stress damage of the passive Heymann nephritis model as revealed by proteomics analysis. J. Proteomics 75, 3866–3876 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Feng, Z. et al. Na+/H+ exchanger-1 reduces podocyte injury caused by endoplasmic reticulum stress via autophagy activation. Lab. Invest. 94, 439–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Nezvitsky, L., Tremblay, M. L., Takano, T., Papillon, J. & Cybulsky, A. V. Complement-mediated glomerular injury is reduced by inhibition of protein-tyrosine phosphatase 1B. Am. J. Physiol. Renal Physiol. 307, F634–F647 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Elimam, H. et al. Genetic ablation of calcium-independent phospholipase A2γ induces glomerular injury in mice. J. Biol. Chem. 291, 14468–14482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Patrakka, J. & Tryggvason, K. Nephrin — a unique structural and signaling protein of the kidney filter. Trends Mol. Med. 13, 396–403 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Khoshnoodi, J., Hill, S., Tryggvason, K., Hudson, B. & Friedman, D. B. Identification of N-linked glycosylation sites in human nephrin using mass spectrometry. J. Mass Spectrom. 42, 370–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Kang, Y. L., Saleem, M. A., Chan, K. W., Yung, B. Y. & Law, H. K. Trehalose, an mTOR independent autophagy inducer, alleviates human podocyte injury after puromycin aminonucleoside treatment. PLoS ONE 9, e113520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cheng, Y. C., Chang, J. M., Chen, C. A. & Chen, H. C. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role. Exp. Biol. Med. (Maywood) 240, 467–476 (2015).

    Article  CAS  Google Scholar 

  80. Yuan, Y. et al. The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury. Lab Invest. 95, 1374–1386 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Bek, M. F. et al. Expression and function of C/EBP homology protein (GADD153) in podocytes. Am. J. Pathol. 168, 20–32 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Markan, S. et al. Up regulation of the GRP-78 and GADD-153 and down regulation of Bcl-2 proteins in primary glomerular diseases: a possible involvement of the ER stress pathway in glomerulonephritis. Mol. Cell. Biochem. 324, 131–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Lindenmeyer, M. T. et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J. Am. Soc. Nephrol. 19, 2225–2236 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sato, S., Adachi, A., Sasaki, Y. & Dai, W. Autophagy by podocytes in renal biopsy specimens. J. Nippon Med. Sch. 73, 52–53 (2006).

    Article  PubMed  Google Scholar 

  85. Sato, S., Kitamura, H., Adachi, A., Sasaki, Y. & Ghazizadeh, M. Two types of autophagy in the podocytes in renal biopsy specimens: ultrastructural study. J. Submicrosc. Cytol. Pathol. 38, 167–174 (2006).

    CAS  PubMed  Google Scholar 

  86. Sato, S. et al. Correlation of autophagy type in podocytes with histopathological diagnosis of IgA nephropathy. Pathobiology 76, 221–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Tao, J. et al. Endoplasmic reticulum stress predicts clinical response to cyclosporine treatment in primary membranous nephropathy. Am. J. Nephrol. 43, 348–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Chiang, C. K. & Inagi, R. Glomerular diseases: genetic causes and future therapeutics. Nat. Rev. Nephrol. 6, 539–554 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. D'Agati, V. D., Kaskel, F. J. & Falk, R. J. Focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 2398–2411 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Yao, J. et al. α-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol. 2, e167 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Michaud, J. L., Chaisson, K. M., Parks, R. J. & Kennedy, C. R. FSGS-associated α-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes. Kidney Int. 70, 1054–1061 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Cybulsky, A. V. et al. Glomerular epithelial cell injury associated with mutant α-actinin-4. Am. J. Physiol. Renal Physiol. 297, F987–F995 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Liu, L. et al. Defective nephrin trafficking caused by missense mutations in the NPHS1 gene: insight into the mechanisms of congenital nephrotic syndrome. Hum. Mol. Genet. 10, 2637–2644 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Liu, X. L. et al. Defective trafficking of nephrin missense mutants rescued by a chemical chaperone. J. Am. Soc. Nephrol. 15, 1731–1738 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Drozdova, T., Papillon, J. & Cybulsky, A. V. Nephrin missense mutations: induction of endoplasmic reticulum stress and cell surface rescue by reduction in chaperone interactions. Physiol. Rep. 1, e00086 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Suh, J. H. & Miner, J. H. The glomerular basement membrane as a barrier to albumin. Nat. Rev. Nephrol. 9, 470–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, Y. M. et al. Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. J. Am. Soc. Nephrol. 24, 1223–1233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pieri, M. et al. Evidence for activation of the unfolded protein response in collagen IV nephropathies. J. Am. Soc. Nephrol. 25, 260–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Jones, F. E. et al. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice. Dis. Model. Mech. 9, 165–176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Iwawaki, T., Akai, R. & Kohno, K. IRE1α disruption causes histological abnormality of exocrine tissues, increase of blood glucose level, and decrease of serum immunoglobulin level. PLoS ONE 5, e13052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, G. et al. Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochem. Biophys. Res. Commun. 370, 651–656 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Chen, J. et al. ER stress triggers MCP-1 expression through SET7/9-induced histone methylation in the kidneys of db/db mice. Am. J. Physiol. Renal Physiol. 306, F916–F925 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Wu, J. et al. Induction of diabetes in aged C57B6 mice results in severe nephropathy: an association with oxidative stress, endoplasmic reticulum stress, and inflammation. Am. J. Pathol. 176, 2163–2176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Borsting, E. et al. Tribbles homolog 3 attenuates mammalian target of rapamycin complex-2 signaling and inflammation in the diabetic kidney. J. Am. Soc. Nephrol. 25, 2067–2078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Madhusudhan, T. et al. Defective podocyte insulin signalling through p85-XBP1 promotes ATF6-dependent maladaptive ER-stress response in diabetic nephropathy. Nat. Commun. 6, 6496 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Fang, L. et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE 8, e60546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Qi, W. et al. Attenuation of diabetic nephropathy in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response. Metabolism 60, 594–603 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Cao, A. L. et al. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab Invest. 96, 610–622 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, J., Fan, Y., Zeng, C., He, L. & Wang, N. Tauroursodeoxycholic acid attenuates renal tubular injury in a mouse model of type 2 diabetes. Nutrients 8, E589 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, Z. et al. Synergistic interaction of hypertension and diabetes in promoting kidney injury and the role of endoplasmic reticulum stress. Hypertension 69, 879–891 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Sun, X. Y. et al. Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stress induced apoptosis. Mol. Med. Rep. 13, 661–668 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, M. Z., Wang, Y., Paueksakon, P. & Harris, R. C. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes 63, 2063–2072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kato, M. & Natarajan, R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann. NY Acad. Sci. 1353, 72–88 (2015).

    Article  PubMed  Google Scholar 

  116. Kato, M. et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat. Commun. 7, 12864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zuk, A. & Bonventre, J. V. Acute kidney injury. Annu. Rev. Med. 67, 293–307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu, Y. et al. Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury. Ren. Fail. 38, 831–837 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Foufelle, F. & Fromenty, B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol. Res. Perspect. 4, e00211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao, X. et al. The nephroprotective effect of tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute kidney injury by inhibiting endoplasmic reticulum stress. Basic Clin. Pharmacol. Toxicol. 111, 14–23 (2012).

    CAS  PubMed  Google Scholar 

  122. Prachasilchai, W. et al. A protective role of unfolded protein response in mouse ischemic acute kidney injury. Eur. J. Pharmacol. 592, 138–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Park, K. M., Chen, A. & Bonventre, J. V. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J. Biol. Chem. 276, 11870–11876 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Hung, C. C., Ichimura, T., Stevens, J. L. & Bonventre, J. V. Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J. Biol. Chem. 278, 29317–29326 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Mahfoudh-Boussaid, A. et al. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1α in ischemic kidney: the role of nitric oxide. J. Biomed. Sci. 19, 7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mahfoudh-Boussaid, A. et al. Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment. J. Biomed. Sci. 19, 71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Prachasilchai, W. et al. The protective effect of a newly developed molecular chaperone-inducer against mouse ischemic acute kidney injury. J. Pharmacol. Sci. 109, 311–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Jaikumkao, K. et al. Amelioration of renal inflammation, endoplasmic reticulum stress and apoptosis underlies the protective effect of low dosage of atorvastatin in gentamicin-induced nephrotoxicity. PLoS ONE 11, e0164528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dupre, T. V. et al. Suramin protects from cisplatin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 310, F248–F258 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Carlisle, R. E. et al. 4-Phenylbutyrate inhibits tunicamycin-induced acute kidney injury via CHOP/GADD153 repression. PLoS ONE 9, e84663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bouvier, N., Fougeray, S., Beaune, P., Thervet, E. & Pallet, N. The unfolded protein response regulates an angiogenic response by the kidney epithelium during ischemic stress. J. Biol. Chem. 287, 14557–14568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mami, I. et al. Angiogenin mediates cell-autonomous translational control under endoplasmic reticulum stress and attenuates kidney injury. J. Am. Soc. Nephrol. 27, 863–876 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Mami, I. et al. A novel extrinsic pathway for the unfolded protein response in the kidney. J. Am. Soc. Nephrol. 27, 2670–2683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hadj Ayed Tka, K. et al. Melatonin modulates endoplasmic reticulum stress and Akt/GSK3-beta signaling pathway in a rat model of renal warm ischemia reperfusion. Anal. Cell Pathol. (Amst.) 2015, 635172 (2015).

    Google Scholar 

  135. Chiang, C. K., Nangaku, M., Tanaka, T., Iwawaki, T. & Inagi, R. Endoplasmic reticulum stress signal impairs erythropoietin production: a role for ATF4. Am. J. Physiol. Cell Physiol. 304, C342–C353 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Decuypere, J. P. et al. Autophagy and the kidney: implications for ischemia-reperfusion injury and therapy. Am. J. Kidney Dis. 66, 699–709 (2015).

    Article  PubMed  Google Scholar 

  137. Kawakami, T. et al. Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrol. Dial. Transplant. 24, 2665–2672 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Pallet, N. et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 4, 783–791 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Chandrika, B. B. et al. Endoplasmic reticulum stress-induced autophagy provides cytoprotection from chemical hypoxia and oxidant injury and ameliorates renal ischemia-reperfusion injury. PLoS ONE 10, e0140025 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gozuacik, D. et al. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ. 15, 1875–1886 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Liu, S. H. et al. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget 7, 22116–22127 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Chiang, C. K. et al. Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol. Med. 17, 1295–1305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang, C. et al. Effect of stachydrine on endoplasmic reticulum stress-induced apoptosis in rat kidney after unilateral ureteral obstruction. J. Asian Nat. Prod. Res. 15, 373–381 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, Q. F. et al. Ameliorating effect of Klotho on endoplasmic reticulum stress and renal fibrosis induced by unilateral ureteral obstruction. Iran. J. Kidney Dis. 9, 291–297 (2015).

    PubMed  Google Scholar 

  145. Li, S. S. et al. Ginsenoside-Rg1 inhibits endoplasmic reticulum stress-induced apoptosis after unilateral ureteral obstruction in rats. Ren. Fail. 37, 890–895 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Fan, Y. et al. RTN1 mediates progression of kidney disease by inducing ER stress. Nat. Commun. 6, 7841 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Xiao, W. et al. Knockdown of RTN1A attenuates ER stress and kidney injury in albumin overload-induced nephropathy. Am. J. Physiol. Renal Physiol. 310, F409–F415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fan, Y. et al. Inhibition of reticulon-1A-mediated endoplasmic reticulum stress in early AKI attenuates renal fibrosis development. J. Am. Soc. Nephrol. 28, 2007–2021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, X. et al. Macrophage cyclooxygenase-2 protects against development of diabetic nephropathy. Diabetes 66, 494–504 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, T. N. et al. SREBP-1 mediates angiotensin II-induced TGF-β1 upregulation and glomerular fibrosis. J. Am. Soc. Nephrol. 26, 1839–1854 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Yum, V. et al. Endoplasmic reticulum stress inhibition limits the progression of chronic kidney disease in the Dahl salt-sensitive rat. Am. J. Physiol. Renal Physiol. 312, F230–F244 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Hye Khan, M. A. et al. Orally active epoxyeicosatrienoic acid analog attenuates kidney injury in hypertensive Dahl salt-sensitive rat. Hypertension 62, 905–913 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Schaeffer, C., Merella, S., Pasqualetto, E., Lazarevic, D. & Rampoldi, L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS ONE 12, e0175970 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kemter, E., Frohlich, T., Arnold, G. J., Wolf, E. & Wanke, R. Mitochondrial dysregulation secondary to endoplasmic reticulum stress in autosomal dominant tubulointerstitial kidney disease — UMOD (ADTKD-UMOD). Sci. Rep. 7, 42970 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kemter, E. et al. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease. J. Biol. Chem. 289, 10715–10726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. El Karoui, K. et al. Endoplasmic reticulum stress drives proteinuria-induced kidney lesions via lipocalin 2. Nat. Commun. 7, 10330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02343094?term=NCT02343094&rank=1 (2016).

  158. Mizobuchi, N. et al. ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct. Funct. 32, 41–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Apostolou, A., Shen, Y., Liang, Y., Luo, J. & Fang, S. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp. Cell Res. 314, 2454–2467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Oh-Hashi, K., Tanaka, K., Koga, H., Hirata, Y. & Kiuchi, K. Intracellular trafficking and secretion of mouse mesencephalic astrocyte-derived neurotrophic factor. Mol. Cell Biochem. 363, 35–41 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Kim, Y. et al. Mesencephalic astrocyte-derived neurotrophic factor as a urine biomarker for endoplasmic reticulum stress-related kidney diseases. J. Am. Soc. Nephrol. 27, 2974–2982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Genereux, J. C. et al. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J. 34, 4–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Dihazi, H. et al. Secretion of ERP57 is important for extracellular matrix accumulation and progression of renal fibrosis, and is an early sign of disease onset. J. Cell Sci. 126, 3649–3663 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Pereira, E. R., Liao, N., Neale, G. A. & Hendershot, L. M. Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS ONE 5, e12521 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nakamura, M. et al. Hypoxic conditions stimulate the production of angiogenin and vascular endothelial growth factor by human renal proximal tubular epithelial cells in culture. Nephrol. Dial. Transplant. 21, 1489–1495 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by research grants from the Canadian Institutes of Health Research (MOP-125988 and MOP-133492) and the Catherine McLaughlin Hakim Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Cybulsky.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cybulsky, A. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 13, 681–696 (2017). https://doi.org/10.1038/nrneph.2017.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing