Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Kidney disease and obesity: epidemiology, mechanisms and treatment

Abstract

The theme of World Kidney Day 2017 is 'kidney disease and obesity: healthy lifestyle for healthy kidneys'. To mark this event, Nature Reviews Nephrology invited five leading researchers to describe changes in the epidemiology of obesity-related kidney disease, advances in current understanding of the mechanisms and current approaches to the management of affected patients. The researchers also highlight new advances that could lead to the development of novel treatments and identify areas in which further basic and clinical studies are needed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mechanisms of kidney injury in the setting of obesity.
Figure 2: The influence of lifestyle factors on progression of renal disease.
Figure 3: The fat–intestine–kidney axis.
Figure 4: Interactions between adipose, the microbiome and kidney.
Figure 5: Interactions between the gut and kidney control sodium balance.
Figure 6: Effects of adiponectin on podocyte function.

References

  1. 1

    Nelson, M. E. et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116, 1094–1105 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Shaw, K., Gennat, H., O'Rourke, P. & Del Mar, C. Exercise for overweight or obesity. Cochrane Database Syst. Rev. 4, CD003817 (2006).

    Google Scholar 

  3. 3

    Knudsen, S. H. et al. Changes in insulin sensitivity precede changes in body composition during 14 days of step reduction combined with overfeeding in healthy young men. J. Appl. Physiol. (1985) 113, 7–15 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Allet, L., Knols, R. H., Shirato, K. & de Bruin, E. D. Wearable systems for monitoring mobility-related activities in chronic disease: a systematic review. Sensors (Basel) 10, 9026–9052 (2010).

    Article  Google Scholar 

  5. 5

    Wakasugi, M. et al. Association between overall lifestyle changes and the incidence of proteinuria: a population-based, cohort study. Intern. Med. 2017 (in press).

  6. 6

    Kuro-o, M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat. Rev. Nephrol. 9, 650–660 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Hallan, S. I. et al. Long-term trends with prevalence of chronic kidney disease and the influence of cardiovascular risk factors in Norway. Kidney Int. 90, 665–673 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Fouque, D. et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 73, 391–398 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Yamagata, K. et al. Effect of behaviour modification on outcome in early- to moderate-stage chronic kidney disease: a cluster-randomized trial. PLoS ONE 11, e0151422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Dialysis outcomes and practice patterns study annual report 2012. DOPPS http://www.dopps.org/annualreport/html/qdialduration_US2011.htm (accessved 9 Dec 2015).

  11. 11

    Kaufman, J. S., Durazo-Arvizu, R. A., Rotimi, C. N., McGee, D. L. & Cooper, R. S. Obesity and hypertension prevalence in populations of African origin. The Investigators of the International Collaborative Study on Hypertension in blacks. Epidemiology 7, 398–405 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Wolf-Maier, K. et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 289, 2363–2369 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Stamler, J. The INTERSALT study: background, methods, findings, and implications. Am. J. Clin. Nutr. 65 (Suppl. 2), 626S–642S (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Tayo, B. O. et al. Patterns of sodium and potassium excretion and blood pressure in the African diaspora. J. Hum. Hypertens. 26, 315–324 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Kitiyakara, C. et al. Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J. Am. Soc. Nephrol. 14, 2775–2782 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Weir, M. R. & Fink, J. C. Salt intake and progression of chronic kidney disease: an overlooked modifiable exposure? A commentary. Am. J. Kidney Dis. 45, 176–188 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    D'Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Tahergorabi, Z. et al. From obesity to cancer: a review on proposed mechanisms. Cell Biochem. Funct. 34, 533–545 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Thomas, M. C., Cooper, M. E. & Zimmet, P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat. Rev. Nephrol. 12, 73–81 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Zhang, L. et al. Trends in chronic kidney disease in China. N. Engl. J. Med. 375, 905–906 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Kambham, N. et al. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Hsu, C. Y., McCulloch, C. E., Iribarren, C., Darbinian, J. & Go, A. S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 144, 21–28 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Preble, W. Obesity: observations on one thousand cases. Boston Med. Surg. J. 188, 617–621 (1923).

    Article  Google Scholar 

  24. 24

    Deji, N. et al. Structural and functional changes in the kidneys of high-fat diet-induced obese mice. Am. J. Physiol. Renal Physiol. 296, F118–F126 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Decleves, A. E., Mathew, A. V., Cunard, R. & Sharma, K. AMPK mediates the initiation of kidney disease induced by a high-fat diet. J. Am. Soc. Nephrol. 22, 1846–1855 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Tsukamoto, Y. et al. Report of the Asian Forum of Chronic Kidney Disease Initiative (AFCKDI) 2007. “Current status and perspective of CKD in Asia”: diversity and specificity among Asian countries. Clin. Exp. Nephrol. 13, 249–256 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Chang, A. et al. Lifestyle-related factors, obesity, and incident microalbuminuria: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Am. J. Kidney Dis. 62, 267–275 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Ross, W. R. & McGill, J. B. Epidemiology of obesity and chronic kidney disease. Adv. Chronic Kidney Dis. 13, 325–335 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Coward, R. & Fornoni, A. Insulin signaling: implications for podocyte biology in diabetic kidney disease. Curr. Opin. Nephrol. Hypertens. 24, 104–110 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Moraes-Vieira, P. M. et al. Leptin deficiency modulates allograft survival by favoring a Th2 and a regulatory immune profile. [corrected]. Am. J. Transplant. 13, 36–44 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Anders, H. J., Andersen, K. & Stecher, B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 83, 1010–1016 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Koppe, L. et al. Insulin resistance in chronic kidney disease: new lessons from experimental models. Nephrol. Dial. Transplant. 29, 1666–1674 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Jose, P. A. et al. Gastrorenal axis. Hypertension 67, 1056–1063 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Hostetter, T. H., Rennke, H. G. & Brenner, B. M. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am. J. Med. 72, 375–380 (1982).

    CAS  Article  Google Scholar 

  35. 35

    Kasiske, B. L. & Napier, J. Glomerular sclerosis in patients with massive obesity. Am. J. Nephrol. 5, 45–50 (1985).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Griffin, K. A., Kramer, H. & Bidani, A. K. Adverse renal consequences of obesity. Am. J. Physiol. Renal Physiol. 294, F685–F696 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Jung, U. J. & Choi, M. S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15, 6184–6223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Hunley, T. E., Ma, L. J. & Kon, V. Scope and mechanisms of obesity-related renal disease. Curr. Opin. Nephrol. Hypertens. 19, 227–234 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Lu, H., Boustany-Kari, C. M., Daugherty, A. & Cassis, L. A. Angiotensin II increases adipose angiotensinogen expression. Am. J. Physiol. Endocrinol. Metab. 292, E1280–E1287 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 2237–2238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Wang, Y. et al. Applications of complex systems science in obesity and noncommunicable chronic disease research. Adv. Nutr. 5, 574–577 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Ruster, C. & Wolf, G. Adipokines promote chronic kidney disease. Nephrol. Dial. Transplant. 28 (Suppl. 4), iv8–iv14 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Sharma, K. The link between obesity and albuminuria: adiponectin and podocyte dysfunction. Kidney Int. 76, 145–148 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Sharma, K. et al. Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645–1656 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. J. Am. Soc. Nephrol. 24, 268–282 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Tsioufis, C. et al. Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension. Am. J. Cardiol. 96, 946–951 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Yano, Y. et al. Differential impacts of adiponectin on low-grade albuminuria between obese and nonobese persons without diabetes. J. Clin. Hypertens. (Greenwich) 9, 775–782 (2007).

    CAS  Article  Google Scholar 

  48. 48

    Saraheimo, M. et al. Serum adiponectin is increased in type 1 diabetic patients with nephropathy. Diabetes Care 28, 1410–1414 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Forsblom, C. et al. Serum adiponectin concentration is a positive predictor of all-cause and cardiovascular mortality in type 1 diabetes. J. Intern. Med. 270, 346–355 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40, 833–842 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Vinolo, M. A. et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am. J. Physiol. Endocrinol. Metab. 303, E272–E282 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Vaziri, N. D. et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE 9, e114881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Krishnamurthy, V. M. et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 81, 300–306 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Andrade-Oliveira, V. et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26, 1877–1888 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Johansen, K. L. Exercise in the end-stage renal disease population. J. Am. Soc. Nephrol. 18, 1845–1854 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Malin, S. K. et al. Metformin modifies the exercise training effects on risk factors for cardiovascular disease in impaired glucose tolerant adults. Obesity (Silver Spring) 21, 93–100 (2013).

    CAS  Article  Google Scholar 

  57. 57

    Malin, S. K. & Braun, B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc. Sport Sci. Rev. 44, 4–11 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Christensen, M. et al. Renoprotective effects of metformin are independent of organic cation transporters 1 & 2 and AMP-activated protein kinase in the kidney. Sci. Rep. 6, 35952 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Nehus, E. J. et al. Kidney outcomes three years after bariatric surgery in severely obese adolescents. Kidney Int. http://dx.doi.org/10.1016/j.kint.2016.09.031 (2016).

  60. 60

    Froeder, L., Arasaki, C. H., Malheiros, C. A., Baxmann, A. C. & Heilberg, I. P. Response to dietary oxalate after bariatric surgery. Clin. J. Am. Soc. Nephrol. 7, 2033–2040 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Agarwal, V. & Navaneethan, S. D. Bariatric surgery for obesity-associated decline in kidney function: filling the knowledge gap? Kidney Int. 90, 28–30 (2016).

    Article  Google Scholar 

  62. 62

    Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7 (2012).

    CAS  Article  Google Scholar 

  63. 63

    Schulman, G. et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J. Am. Soc. Nephrol. 26, 1732–1746 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02316821 (2016).

  67. 67

    Koury, M. J. & Haase, V. H. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat. Rev. Nephrol. 11, 394–410 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Arai, S. et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat. Med. 22, 183–193 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Imam, T. H. et al. Estimated GFR before and after bariatric surgery in CKD. Am. J. Kidney Dis. http://dx.doi.org/10.1053/j.ajkd.2016.09.020 (2016).

  70. 70

    Perkovic, V. et al. Management of patients with diabetes and CKD: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 90, 1175–1183 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Li, P. K. et al. Asian chronic kidney disease best practice recommendations: positional statements for early detection of chronic kidney disease from Asian Forum for Chronic Kidney Disease Initiatives (AFCKDI). Nephrology 16, 633–641 (2011).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Grimm, E. R. & Steinle, N. I. Genetics of eating behavior: established and emerging concepts. Nutr. Rev. 69, 52–60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Dunkler, D. et al. Modifiable lifestyle and social factors affect chronic kidney disease in high-risk individuals with type 2 diabetes mellitus. Kidney Int. 87, 784–791 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Polak, R., Pojednic, R. M. & Phillips, E. M. Lifestyle medicine education. Am. J. Lifestyle Med. 9, 361–367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Foster-Schubert, K. E. et al. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity (Silver Spring) 20, 1628–1638 (2012).

    CAS  Article  Google Scholar 

  76. 76

    Vanherweghem, J. L. et al. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 341, 387–391 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Navaneethan, S. D. et al. Urinary albumin excretion, HMW adiponectin, and insulin sensitivity in type 2 diabetic patients undergoing bariatric surgery. Obes. Surg. 20, 308–315 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Declèves, A.-E. et al. Regulation of lipid accumulation by AMK-activated kinase in high fat diet–induced kidney injury. Kidney Int. 85, 611–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Hainer, V. & Aldhoon-Hainerová, I. Obesity paradox does exist. Diabetes Care 36 (Suppl. 2), S276–S281 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes — a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Iseki, K. et al. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 65, 1870–1876 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82

    Nagata, M. et al. Trends in the prevalence of chronic kidney disease and its risk factors in a general Japanese population: the Hisayama Study. Nephrol. Dial. Transplant. 25, 2557–2564 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    DeFronzo, R. A. et al. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat. Rev. Nephrol. 13, 11–26 (2017).

    CAS  Article  Google Scholar 

  84. 84

    Kautzky-Willer, A., Harreiter, J. & Pacini, G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 37, 278–316 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Arora, P. Obesity genetics and epigenetics: dissecting causality. Circ. Cardiovasc. Genet. 7, 395–396 (2016).

    Article  Google Scholar 

  86. 86

    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Todd, J. N. et al. Genetic evidence for a causal role of obesity in diabetic kidney disease. Diabetes 64, 4238–4246 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Badran, M., Golbidi, S., Devlin, A., Ayas, N. & Laher, I. Chronic intermittent hypoxia causes endothelial dysfunction in a mouse model of diet-induced obesity. Sleep Med. 15, 596–602 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their colleagues in the field and the efforts of the World Kidney Day initiative, for which the focus for 2017 is “kidney disease and obesity: healthy lifestyle for healthy kidneys”.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Niels Olsen Saraiva Câmara or Kunitoshi Iseki or Holly Kramer or Zhi-Hong Liu or Kumar Sharma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Câmara, N., Iseki, K., Kramer, H. et al. Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat Rev Nephrol 13, 181–190 (2017). https://doi.org/10.1038/nrneph.2016.191

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing