Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical inactivity: a risk factor and target for intervention in renal care

An Erratum to this article was published on 13 April 2017

This article has been updated

Key Points

  • Physical inactivity is a major modifiable risk factor for poor health-related quality of life, morbidity and mortality in patients with renal disease

  • An urgent need exists for the better assessment and management of physical inactivity in patients with renal disease

  • The level of physical activity in patients with chronic kidney disease (CKD) commonly decreases with disease progression, and does not fully recover after transplantation

  • Regular physical activity is beneficial across all stages of CKD, improving cardiometabolic, neuromuscular, and cognitive function, and can reduce the comorbidity burden in patients with renal disease

  • Physical activity, together with nutrition, is now recognized as an important component in the management of patients with CKD; a behavioural approach is crucial to help patients successfully adopt and maintain improved physical activity habits

Abstract

Regular physical activity is associated with an increased quality of life and reduced morbidity and mortality in the general population and in patients with chronic kidney disease (CKD). Physical activity, cardiorespiratory fitness, and muscle mass decrease even in the early stages of CKD, and continue to decrease with disease progression; notably, full recovery is generally not achieved with transplantation. The combined effects of uraemia and physical inactivity drive the loss of muscle mass. Regular physical activity benefits cardiometabolic, neuromuscular and cognitive function across all stages of CKD, and therefore provides an approach to address the multimorbidity of the CKD population. Interestingly, maintenance of muscle health is associated with renoprotective effects. Despite evidence of its benefits, physical activity and exercise management are not routinely addressed in the care of these patients. Although studies defining the optimum frequency, duration and intensity of physical activity are lacking, evidence from related fields can guide practical approaches to the care of patients with renal disease. Optimization of metabolic and nutritional status alongside promotion of physical activity is recommended. Behavioural approaches are now recognized as crucial in helping patients to adopt lifestyle changes and might prove valuable in integrating physical activity into renal care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cycle of decreased physical functioning and reduced physical activity.
Figure 2: Change in physical activity level according to severity of chronic kidney disease (CKD) and transplantation status.
Figure 3: Association between physical activity, muscle mass and mortality in renal transplant recipients.
Figure 4: The contribution of chronic kidney disease (CKD) and related comorbidities on physical functioning and risk of mortality.

Similar content being viewed by others

Change history

  • 21 March 2017

    In the original pdf and online versions of this article, the y-axes of FIGS 3b–c and components of Supplementary information S1 (table) were incorrect, and the permissions line for FIGS 3a–b was not included. These errors have now been corrected in the online pdf and html versions of the manuscript.

References

  1. Medibank Private. The cost of physical inactivity: what is the lack of participation in physical activity costing in Australia? Medibank http://www.medibank.com.au/client/documents/pdfs/pyhsical_inactivity.pdf (2007).

  2. Martin, B. et al. Economic benefits of the health-enhancing effects of physical activity: first estimates for Switzerland. Schweiz. Z. Med. Traumatol. 49, 131–133 (2001).

    Google Scholar 

  3. Katzmarzyk, P. & Janssen, I. The economic costs associated with physical inactivity and obesity in Canada: an update. Can. J. Appl. Physiol. 29, 90–115 (2004).

    Article  PubMed  Google Scholar 

  4. Chenoweth, D. & Leutzinger, J. The economic cost of physical inactivity and excess weight in american adults. J. Phys. 3, 148–163 (2008).

    Google Scholar 

  5. World Health Organization. Global Recommendations on Physical Activity for Health (WHO, 2010).

  6. Kohl, H. W. et al. The pandemic of physical inactivity: global action for public health. Lancet 380, 294–305 (2012). Lancet Physical Activity Series paper that summarizes present global efforts to counteract the global problem of physical inactivity and point the way forward to address the pandemic of physical inactivity.

    Article  PubMed  Google Scholar 

  7. Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012).

    Article  PubMed  Google Scholar 

  8. Sallis, R. Developing healthcare systems to support exercise: exercise as the fifth vital sign. Br. J. Sports Med. 45, 473–474 (2011). An editorial that discusses the vital importance of assessing physical activity in clinical patient care. Furthermore, the paper highlights the gaps in current health-care systems that impair proper assessment as well as the prescription and referral of physical activity and exercise in clinical care.

    Article  PubMed  Google Scholar 

  9. Coombes, J. S., Law, J., Lancashire, B. & Fassett, R. “Exercise is medicine”: curbing the burden of chronic disease and physical inactivity. Asia Pac. J. Public Health 27, NP600–NP605 (2015).

    Article  PubMed  Google Scholar 

  10. Williams, A. D., Fassett, R. G. & Coombes, J. S. Exercise in CKD: why is it important and how should it be delivered? Am. J. Kidney Dis. 64, 329–331 (2014).

    Article  PubMed  Google Scholar 

  11. Blair, S. N., Sallis, R. E., Hutber, A. & Archer, E. Exercise therapy — the public health message. Scand. J. Med. Sci. Sport 22, 24–28 (2012).

    Article  Google Scholar 

  12. Das, P. & Horton, R. Rethinking our approach to physical activity. Lancet 380, 189–190 (2012).

    Article  PubMed  Google Scholar 

  13. Johansen, K. L. Exercise in end-stage renal disease population. J. Am. Soc. Nephrol. 18, 1845–1854 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Zelle, D. M. et al. Low physical activity and risk of cardiovascular and all-cause mortality in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 6, 898–905 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. O'Hare, A. M., Tawney, K., Bacchetti, P. & Johansen, K. L. Decreased survival among sedentary patients undergoing dialysis: results from the dialysis morbidity and mortality study wave 2. Am. J. Kidney Dis. 41, 447–454 (2003).

    Article  PubMed  Google Scholar 

  16. Beddhu, S., Baird, B. C., Zitterkoph, J., Neilson, J. & Greene, T. Physical activity and mortality in chronic kidney disease (NHANES III). Clin. J. Am. Soc. Nephrol. 4, 1901–1906 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. van den Ham, E. C. H. et al. Similarities in skeletal muscle strength and exercise capacity between renal transplant and hemodialysis patients. Am. J. Transplant. 5, 1957–1965 (2005).

    Article  PubMed  Google Scholar 

  18. Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin — proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807–1819 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Price, S. R. et al. Mechanisms contributing to muscle-wasting in acute uremia: activation of amino acid catabolism. J. Am. Soc. Nephrol. 9, 439–443 (1998).

    CAS  PubMed  Google Scholar 

  20. Johansen, K. L. & Painter, P. Exercise in individuals with CKD. Am. J. Kidney Dis. 59, 126–134 (2012). In-depth review that covers the rationale for exercise in patients with CKD not requiring dialysis and the effects of exercise training on physical functioning, progression of kidney disease, and cardiovascular risk factors.

    Article  PubMed  Google Scholar 

  21. Williams, T. & McKenna, M. Exercise limitation following transplantation. Compr. Physiol. 2, 1937–1979 (2012).

    PubMed  Google Scholar 

  22. Hartmann, E. L. et al. Physical function in older candidates for renal transplantation: an impaired population. Clin. J. Am. Soc. Nephrol. 4, 588–594 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bailey, J. L., Zheng, B., Hu, Z., Price, S. R. & Mitch, W. E. Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. J. Am. Soc. Nephrol. 17, 1388–1394 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Workeneh, B. B. T. & Mitch, W. W. E. Review of muscle wasting associated with chronic kidney disease. Am. J. Clin. Nutr. 91, 1128–1132 (2010).

    Article  CAS  Google Scholar 

  25. Wang, X. & Mitch, W. E. Mechanisms of muscle wasting in chronic kidney diease. Nat. Rev. Nephrol. 10, 504–516 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johansen, K. Physical functioning and exercise capacity in patients on dialysis. Adv. Ren. Replace. Ther. 6, 141–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Wilund, K. R. & Painter, P. Formation of an exercise in CKD working group. Am. J. Kidney Dis. 64, 2016 (2016).

    Google Scholar 

  28. Krause, R. et al. Nephrologists' view on exercise training in chronic kidney disease (results of the questionnaire at the WCN 2003). Clin. Nephrol. 61 (Suppl. 1), S2–S4 (2004).

    PubMed  Google Scholar 

  29. Schrag, W. et al. Multidisciplinary team renal rehabilitation: interventions and outcomes. Adv. Ren. Replace. Ther. 6, 282–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kozuki, M., SadaYoshimi, I., Ito, H. & TakashiTakesi, S. Japanese Society of Renal Rehabilitation. JSRR http://jsrr.jimdo.com/ (in Japanese) (2015).

  31. National Kidney Foundation. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. Suppl. 2, 337–414 (2012).

  32. Kokkinos, P. Physical activity, health benefits, and mortality risk. ISRN Cardiol. 2012, 718789 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lindstrom, J. et al. The Finnish Diabetes Prevention Study (DPS). Diabetes Care 26, 3230–3236 (2003).

    Article  PubMed  Google Scholar 

  34. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intevention or Metformin. N. Engl. J. Med. 346, 393–403 (2002).

  35. Heiwe, S. & Jacobson Stefan, H. Exercise training for adults with chronic kidney disease. Cochrane Database Syst. Rev. 10, CD003236 (2011).

    Google Scholar 

  36. Barcellos, F. C., Santos, I. S., Umpierre, D., Bohlke, M. & Hallal, P. C. Effects of exercise in the whole spectrum of chronic kidney disease: a systematic review. Clin. Kidney J. 8, 753–765 (2015). A systematic literature review on the effectiveness of exercise interventions among CKD patients. The article summarizes the effects of exercise on physical fitness, muscular strength, heart rate variability, inflammatory and nutritional markers and progression of CKD.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van Craenenbroeck, A. H. et al. Effect of moderate aerobic exercise training on endothelial function and arterial stiffness in CKD stages 3-4: a randomized controlled trial. Am. J. Kidney Dis. 66, 285–296 (2015).

    Article  PubMed  Google Scholar 

  38. Howden, E. J. et al. Exercise training in CKD: efficacy, adherence, and safety. Am. J. Kidney Dis. 65, 583–591 (2015).

    Article  PubMed  Google Scholar 

  39. Watson, E. L. et al. Progressive resistance exercise training in CKD: a feasibility study. Am. J. Kidney Dis. 66, 249–257 (2015).

    Article  PubMed  Google Scholar 

  40. Didsbury, M. et al. Exercise training in solid organ transplant recipients. Transplantation 95, 679–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Hawkins, M. S. et al. Association between physical activity and kidney function: national health and nutrition examination survey. Med. Sci. Sports Exerc. 43, 1457–1464 (2011).

    Article  PubMed  Google Scholar 

  42. Johansen, K. L. et al. Physical activity levels in patients on hemodialysis and healthy sedentary controls. Kidney Int. 57, 2564–2570 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Zamojska, S., Szklarek, M., Niewodniczy, M. & Nowicki, M. Correlates of habitual physical activity in chronic haemodialysis patients. Nephrol. Dial. Transplant. 21, 1323–1327 (2006).

    Article  PubMed  Google Scholar 

  44. Nielens, H. et al. Increase of physical activity level after successful renal transplantation: a 5 year follow-up study. Nephrol. Dial. Transplant. 16, 134–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Heng, A.-E. et al. Energy expenditure, spontaneous physical activity and with weight gain in kidney transplant recipients. Clin. Nutr. 34, 457–464 (2015).

    Article  PubMed  Google Scholar 

  46. Baria, F. et al. Activity-related energy expenditure of patients undergoing hemodialysis. J. Ren. Nutr. 21, 226–234 (2011).

    Article  PubMed  Google Scholar 

  47. Zelle, D. M. et al. The role of diet and physical activity in post-transplant weight gain after renal transplantation. Clin. Transplant. 27, E484–E490 (2013).

    Article  PubMed  Google Scholar 

  48. Dontje, M. L. et al. Longitudinal measurement of physical activity following kidney transplantation. Clin. Transplant. 28, 394–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Avesani, C. M. et al. Physical activity and energy expenditure in haemodialysis patients: an international survey. Nephrol. Dial. Transplant. 27, 2430–2434 (2012).

    Article  PubMed  Google Scholar 

  50. Han, M. et al. Quantifying physical activity levels and sleep in hemodialysis patients using a commercially available activity tracker. Blood Purif. 41, 194–204 (2016).

    Article  PubMed  Google Scholar 

  51. Gordon, E. et al. Longitudinal analysis of physical activity, fluid intake, and graft function among kidney transplant recipients. Transpl. Int. 22, 990–998 (2009).

    Article  PubMed  Google Scholar 

  52. Smart, N. et al. Exercise and Sport Science Australia (ESSA) position statement on exercise and chronic kidney disease. J. Sci. Med. Sport 16, 406–411 (2013).

    Article  PubMed  Google Scholar 

  53. The Life Options Rehabilitation Advisory Council. Building quality of life: a practical guide to renal rehabilitation. LORAC http://lifeoptions.org/catalog/pdfs/booklets/qualoflife.pdf (1997).

  54. Artinian, N. et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation 122, 406–441 (2010). A landmark paper that provides evidence-based and expert opinion recommendations for implementing physical activity interventions. It summarizes the most efficacious and effective intervention strategies, as well as guidelines for their practical implementation. Importantly, behavioural approaches to facilitate long-term maintenance of physical activity are also discussed.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100, 126–131 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sieverdes, J. C. et al. Physical activity, cardiorespiratory fitness and the incidence of type 2 diabetes in a prospective study of men. Br. J. Sports Med. 44, 238–244 (2010).

    Article  PubMed  Google Scholar 

  57. Blair, S. N. et al. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA 262, 2395–2401 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Gulati, M., Black, H. R., Arnsdorf, M. F., Shaw, L. J. & Bakris, G. L. Kidney dysfunction, cardiorespiratory fitness, and the risk of death in women. J. Womens Health (Larchmt) 21, 917–924 (2012).

    Article  Google Scholar 

  59. Ahmed, A. et al. Prognostic value of cardiorespiratory fitness in patients with chronic renal dysfunction: the FIT (Henry Ford Exercise Testing) project. Circulation 132, A13614 (2015).

    Google Scholar 

  60. Pechter, U. et al. Beneficial effects of water-based exercise in patients with chronic kidney disease. Int. J. Rehabil. Res. 26, 153–156 (2003).

    Article  PubMed  Google Scholar 

  61. Headley, S. et al. Short-term aerobic exercise and vascular function in stage 3 CKD: a randomized controlled trial. Am. J. Kidney Dis. 64, 222–229 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Leehey, D. J. et al. Aerobic exercise in obese diabetic patients with chronic kidney disease: a randomized and controlled pilot study. Cardiovasc. Diabetol. 8, 62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gregory, S. M. et al. Lack of circulating bioactive and immunoreactive IGF-I changes despite improved fitness in chronic kidney disease patients following 48 weeks of physical training. Growth Horm. IGF Res. 21, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Howden, E. J. et al. Effects of exercise and lifestyle intervention on cardiovascular function in CKD. Clin. J. Am. Soc. Nephrol. 8, 1494–1501 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Castaneda, C. et al. Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. Ann. Intern. Med. 135, 965–976 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Baria, F. et al. Randomized controlled trial to evaluate the impact of aerobic exercise on visceral fat in overweight chronic kidney disease patients. Nephrol. Dial. Transplant. 29, 857–864 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Leikis, M. J. et al. Exercise performance falls over time in patients with chronic kidney disease despite maintenance of hemoglobin concentration. Clin. J. Am. Soc. Nephrol. 1, 488–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Koufaki, P., Mercer, T. H. & Naish, P. F. Effects of exercise training on aerobic and functional capacity of end-stage renal disease patients. Clin. Physiol. Funct. Imaging 22, 115–124 (2002).

    Article  PubMed  Google Scholar 

  69. Kouidi, E. J., Grekas, D. M. & Deligiannis, A. P. Effects of exercise training on noninvasive cardiac measures in patients undergoing long-term hemodialysis: a randomized controlled trial. Am. J. Kidney Dis. 54, 511–521 (2009).

    Article  PubMed  Google Scholar 

  70. Painter, P. L. et al. A randomized trial of exercise training after renal transplantation. Transplantation 74, 42–48 (2002).

    Article  PubMed  Google Scholar 

  71. Kouidi, E., Vergoulas, G., Anifanti, M. & Deligrannis, A. A randomized controlled trial of exercise training on cardiovascular and autonomic function among renal transplant recipients. Nephrol. Dial. Transplant. 28, 1294–1305 (2013).

    Article  PubMed  Google Scholar 

  72. van den Ham, E. C. H. et al. The functional, metabolic, and anabolic responses to exercise training in renal transplant and hemodialysis patients. Transplantation 83, 1059–1068 (2007).

    Article  PubMed  Google Scholar 

  73. Riess, K. J. et al. Exercise training improves aerobic capacity, muscle strength, and quality of life in renal transplant recipients. Appl. Physiol. Nutr. Metab. 39, 566–571 (2014).

    Article  PubMed  Google Scholar 

  74. Greenwood, S. A. et al. Aerobic or resistance training and pulse wave velocity in kidney transplant recipients: a 12-week pilot randomized controlled trial (the Exercise in Renal Transplant [ExeRT] Trial). Am. J. Kidney Dis. 66, 689–698 (2015).

    Article  PubMed  Google Scholar 

  75. van den Ham, E. C. et al. Similarities in skeletal muscle strength and exercise capacity between renal transplant and hemodialysis patients. Am. J. Transplant 5, 1957–1965 (20016).

  76. Janicki, J., Weber, K. & McElroy, P. Use of the cardiopulmonary exercise test to evaluate the patient with chronic heart failure. Eur. Heart J. 9 (Suppl. H), 55–58 (1988).

    Article  PubMed  Google Scholar 

  77. Björnstad, H. et al. Recommendations for exercise testing in chronic heart failure patients. Eur. Heart J. 22, 37–45 (2001).

    Article  Google Scholar 

  78. Soumagne, D. Weber classification in cardiac rehabilitation. Acta Cardiol. 67, 285–290 (2012).

    Article  PubMed  Google Scholar 

  79. Maaten, J. M. & Voors, A. A. Renal dysfunction in heart failure with a preserved ejection fraction: cause or consequence? Eur. J. Heart Fail. 18, 113–114 (2016).

    Article  PubMed  Google Scholar 

  80. Painter, P. & Roshanravan, B. The association of physical activity and physical function with clinical outcomes in adults with chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 22, 615–623 (2013).

    Article  PubMed  Google Scholar 

  81. Dew, M. et al. Does transplantation produce quality of life benefits? A quantitative analysis of the literature. Transplantation 64, 1261–1273 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  83. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32 (Suppl. 3), S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Foley, R., Parfrey, P. & Sarnak, M. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 9, S16–23 (1998).

    CAS  PubMed  Google Scholar 

  85. Oterdoom, L. H. et al. N-terminal pro-B-type natriuretic peptide and mortality in renal transplant recipients versus the general population. Transplantation 87, 1562–1570 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Aakhus, S., Dahl, K. & Wideroe, T. Cardiovascular disease in stable renal transplant recipients in Norway: morbidity and mortality during a 5-yr follow-up. Clin. Transplant. 18, 596–604 (2004).

    Article  PubMed  Google Scholar 

  87. Briggs, J. Causes of death after renal transplantation. Nephrol. Dial. Transplant. 16, 1545–1549 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Heiwe, S. & Jacobson, S. H. Exercise training in adults with CKD: a systematic review and meta-analysis. Am. J. Kidney Dis. 64, 383–393 (2014). Systematic review and meta-analysis of randomized controlled trials in adults with CKD stages 2–5, those on dialysis, and kidney transplant recipients. Outcomes include aerobic capacity, muscular functioning, cardiovascular function, walking capacity, and health-related quality of life.

    Article  PubMed  Google Scholar 

  89. Orcy, R. B., Dias, P. S., Seus, T. L., Barcellos, F. C. & Bohlke, M. Combined resistance and aerobic exercise is better than resistance training alone to improve functional performance of haemodialysis patients — sesults of a randomized controlled trial. Physiother. Res. Int. 17, 235–243 (2012).

    Article  PubMed  Google Scholar 

  90. Bauman, A. E. et al. Correlates of physical activity: why are some people physically active and others not? Lancet 380, 258–271 (2012).

    Article  PubMed  Google Scholar 

  91. Proctor, D. N. et al. Relative infuence of physical activity, muscle mass and strength on bone density. Osteoporos. Int. 11, 944–952 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Baumgartner, R. N., Waters, D. L., Gallagher, D., Morley, J. E. & Garry, P. J. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 107, 123–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Baxmann, A. C. et al. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin C. Clin J Am Soc Nephrol. 3, 348–354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tynkevich, E. et al. Decrease in urinary creatinine excretion in early stage chronic kidney disease. PLoS ONE 9, 18–24 (2014).

    Article  CAS  Google Scholar 

  95. Johansen, K. L. et al. Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int. 63, 291–297 (2003).

    Article  PubMed  Google Scholar 

  96. McIntyre, C. W. et al. Patients receiving maintenance dialysis have more severe functionally significant skeletal muscle wasting than patients with dialysis-independent chronic kidney disease. Nephrol. Dial. Transplant. 21, 2210–2216 (2006).

    Article  PubMed  Google Scholar 

  97. Wang, X. & Mitch, W. Muscle wasting from kidney failure — a model for catabolic conditions. Int. J. Cell Biol. 45, 2230–2238 (2013).

    Article  CAS  Google Scholar 

  98. Goldsmith, D., Massey, Z. & Brandenburg, V. The uses and abuses of Vitamin D compounds in chronic kidney disease-mineral bone disease (CKD-MBD). Semin. Nephrol. 34, 660–668 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Stenvinkel, P., Carrero, J. J., Von Walden, F., Ikizler, T. A. & Nader, G. A. Muscle wasting in end-stage renal disease promulgates premature death: established, emerging and potential novel treatment strategies. Nephrol. Dial. Transplant. 31, 1070–1077 (2016).

    Article  PubMed  Google Scholar 

  100. Odden, M. C., Whooley, M. A. & Shlipak, M. G. Association of chronic kidney disease and anemia with physical capacity: the heart and soul study. J. Am. Soc. Nephrol. 15, 2908–2915 (2004).

    Article  PubMed  Google Scholar 

  101. Canadian Erythropoietin Study Group. Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. Canadian Erythropoietin Study Group. BMJ 300, 573–578 (1990).

  102. McMahon, L. P. et al. Physical performance and associated electrolyte changes after haemoglobin normalization: a comparative study in haemodialysis patients. Nephrol. Dial. Transplant. 14, 1182–1187 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Klip, I. T. et al. The additive burden of iron deficiency in the cardiorenal-anaemia axis: scope of a problem and its consequences. Eur. J. Heart Fail. 16, 655–662 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Ponikowski, P. et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 36, 657–668 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Dunn, L. L., Rahmanto, Y. S. & Richardson, D. R. Iron uptake and metabolism in the new millennium. Trends Cell Biol. 17, 93–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Fairbanks, V. & Beutler, E. in Williams Hematology 6th edn Ch. 6 (ed Beutler, E.) 617–651 (McGraw-Hill, 2001).

    Google Scholar 

  108. Haas, J. D. & Iv, T. B. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J. Nutr. 131, 676S–688S (2001).

    Article  CAS  PubMed  Google Scholar 

  109. van den Ham, E. C. H., Kooman, J. P., Christiaans, M. L. & van Hooff, J. P. The influence of early steroid withdrawal on body composition and bone mineral density in renal transplantation patients. Transpl. Int. 16, 82–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Dekhuijzen, P. N. R. & Decramer, M. Steroid-induced myopathy and its significance to respiratory disease: a known disease rediscovered. Eur. Respir. J. 5, 997–1003 (1992).

    CAS  PubMed  Google Scholar 

  111. Painter, P. L. et al. Health-related fitness and quality of life following steroid withdrawal in renal transplant recipients. Kidney Int. 63, 2309–2316 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Canalis, E., Mazziotti, G., Giustina, A. & Bilezikian, J. P. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos. Int. 18, 1319–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Samra, J. S. et al.Effects of morning rise in cortisol concentration on regulation of lipolysis in subcutaneous adipose tissue. Am. J. Physiol. 271, E996–E1002 (1996).

    CAS  PubMed  Google Scholar 

  114. Steiger, U. et al. Body composition and fuel metabolism after kidney grafting. Eur. J. Clin. Invest. 25, 809–816 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Joist, H., Brennan, D. & Coyne, D. Anemia in the kidney-transplant patient. Adv. Chron. Kidney Dis. 13, 4–10 (2006).

    Article  Google Scholar 

  116. Sanchez, H. et al. Immunosuppressive treatment affects cardiac and skeletal muscle mitochondria by the toxic effect of vehicle. J. Mol. Cell. Cardiol. 32, 323–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Henke, W. & Jung, K. Comparison of the effects of the immunosuppressive agents FK 506 and cyclosporin A on rat kidney mitochondria. Biochem. Pharmacol. 46, 829–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Murray, L., Reilly, J., Choudhry, M. & Durnin, J. V. A longitudinal study of changes in body composition and basal metabolism in physically active elderly men. Eur. J. Appl. Physiol. Occup. Physiol. 72, 215–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Wall, B. T., Dirks, M. L. & Van Loon, L. J. C. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res. Rev. 12, 898–906 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Krasnoff, J. & Painter, P. The physiological consequences of bed rest and inactivity. Adv. Reni Replace. Ther. 6, 124–132 (1999).

    Article  CAS  Google Scholar 

  121. Zelle, D. M. et al. Fear of movement and low self-efficacy are important barriers in physical activity after renal transplantation. PLoS ONE 11, e0147609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bossola, M. et al. Self-reported physical activity in patients on chronic hemodialysis: correlates and barriers. Blood Purif. 38, 24–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Clarke, A. L. et al. Motivations and barriers to exercise in chronic kidney disease: a qualitative study. Nephrol. Dial. Transplant. 30, 1885–1892 (2015).

    Article  PubMed  Google Scholar 

  124. Sánchez, Z. V. et al. Perceived barriers and facilitators to physical activity in kidney transplant recipients. Prog. Transplant. 17, 324–331 (2007).

    Article  PubMed  Google Scholar 

  125. Delgado, C. & Johansen, K. L. Barriers to exercise participation among dialysis patients. Nephrol. Dial. Transplant. 27, 1152–1157 (2012).

    Article  PubMed  Google Scholar 

  126. Goodman, E. D. & Ballou, M. B. Perceived barriers and motivators to exercise in hemodialysis patients. Nephrol. Nurs. J. 31, 23–29 (2004).

    PubMed  Google Scholar 

  127. Fiaccadori, E. et al. Barriers to physical activity in chronic hemodialysis patients: a single-center pilot study in an Italian dialysis facility. Kidney Blood Press. Res. 39, 169–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Gordon, E., Prohaska, T., Gallant, M. & Siminoff, L. Self-care strategies and barriers among kidney transplant recipients: a qualitative study. Chron. Illn. 5, 75–91 (2009).

    Article  Google Scholar 

  129. Bandura, A. Health promotion by social cognitive means. Health Educ. Behav. 31, 143–164 (2004).

    Article  PubMed  Google Scholar 

  130. Humpel, N., Owen, N. & Leslie, E. Environmental factors associated with adults' participation in physical activity: a review. Am. J. Prev. Med. 22, 188–199 (2002).

    Article  PubMed  Google Scholar 

  131. Centers for Disease Control and Prevention. Promoting Physical Activity: a Guide for Community Action (Human Kinetics, 1999).]

  132. Berlin, J. & Colditz, G. A meta-analysis of physical activity in the prevention of coronary heart disease. Am. J. Epidemiol. 132, 612–628 (1990).

    Article  CAS  PubMed  Google Scholar 

  133. Leitzmann, M. F. et al. Physical activity recommendations and decreased risk of mortality. Arch. Intern. Med. 167, 2453–2460 (2007).

    Article  PubMed  Google Scholar 

  134. Hu, F. B. et al. Physical activity and risk of stroke in women. J. Am. Med. Assoc. 283, 2961–2967 (2000).

    Article  CAS  Google Scholar 

  135. Lee, I. et al. Impact of physical inactivity on the world´s major non-communicable diseases. Lancet 380, 219–229 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Batty, G. D. Physical activity and coronary heart disease in older adults. A systematic review of epidemiological studies. Eur. J. Public Health 12, 171–176 (2002).

    Article  PubMed  Google Scholar 

  137. Helmrich, S., Ragland, D., Leung, R. & Paffenbarger, R. Physical activity and reduces occurrence of non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 325, 147–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  138. Beddhu, S., Wei, G., Marcus, R. L., Chonchol, M. & Greene, T. Light-intensity physical activities and mortality in the United States general population and CKD subpopulation. Clin. J. Am. Soc. Nephrol. 10, 1145–1153 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tentori, F. et al. Physical exercise among participants in the Dialysis Outcomes and Practice Patterns Study (DOPPS): correlates and associated outcomes. Nephrol. Dial. Transplant. 25, 3050–3062 (2010).

    Article  PubMed  Google Scholar 

  140. Sietsema, K. E., Amato, A., Adler, S. G. & Brass, E. P. Exercise capacity as a predictor of survival among ambulatory patients with end-stage renal disease. Kidney Int. 65, 719–724 (2004).

    Article  PubMed  Google Scholar 

  141. Rosas, S. E. et al. Pretransplant physical activity predicts all-cause mortality in kidney transplant recipients. Am. J. Nephrol. 35, 17–23 (2012).

    Article  PubMed  Google Scholar 

  142. Greenwood, S. A. et al. Effect of exercise training on estimated GFR, vascular health, and cardiorespiratory fitness in patients with CKD: a pilot randomized controlled trial. Am. J. Kidney Dis. 65, 425–434 (2015).

    Article  PubMed  Google Scholar 

  143. Aoike, D. T. et al. Impact of home-based aerobic exercise on the physical capacity of overweight patients with chronic kidney disease. Int. Urol. Nephrol. 47, 359–367 (2015).

    Article  PubMed  Google Scholar 

  144. The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of InterventionsVersion 5.1.0 (eds Higgins, J. & Green, S.) (Cochrane, 2011).

  145. National Health and Medical Research Council. How to Review the Evidence: Systematic Identification and Review of the Scientific Literature (NHRMC, 1999).

  146. Song, W. J. & Sohng, K. Y. Effects of progressive resistance training on body composition, physical fitness and quality of life of patients on hemodialysis. J. Korean Acad. Nurs. 42, 947–956 (2012).

    Article  PubMed  Google Scholar 

  147. Wilund, K. R., Tomayko, E. J., Wu, P., Chung, H. R. & Vallurupalli, S. Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study. Nephrol. Dial. Transplant. 25, 2695–2701 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Pellizzaro, C. O., Thomé, F. S. & Veronese, F. V. Effect of peripheral and respiratory muscle training on the functional capacity of hemodialysis patients. Ren. Fail. 35, 189–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Afshar, R., Shegarfy, L., Shavandi, N. & Sanavi, S. Effects of aerobic exercise and resistance training on lipid profiles and inflammation status in patients on maintenance hemodialysis. Indian J. Nephrol. 20, 185–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Castaneda, C. et al. Resistance training to reduce the malnutrition–inflammation complex syndrome of chronic kidney disease. Am. J. Kidney Dis. 43, 607–616 (2004).

    Article  PubMed  Google Scholar 

  151. Viana, J. L. et al. Evidence for anti-inflammatory effects of exercise in CKD. J. Am. Soc. Nephrol. 25, 1–10 (2014).

    Article  Google Scholar 

  152. Painter, P. L. et al. Effects of exercise training on coronary heart disease risk factors in renal transplant recipients. Am. J. Kidney Dis. 42, 362–369 (2003).

    Article  PubMed  Google Scholar 

  153. Lorenz, E. et al. Adherence to a pedometer-based physical activity intervention following kidney transplant and impact on metabolic parameters. Clin. Transplant. 29, 560–568 (2015).

    Article  PubMed  Google Scholar 

  154. Goldberg, A. et al. Therapeutic benefits of exercise training for hemodialysis patients. Kidney Int. Suppl. 16, S303–S309 (1983).

    CAS  PubMed  Google Scholar 

  155. Sharif, A., Moore, R. & Baboolal, K. Influence of lifestyle modification in renal transplant recipients with postprandial hyperglycemia. Transplantation 85, 353–358 (2008).

    Article  PubMed  Google Scholar 

  156. Paulweber, B. et al. A European evidence-based guideline for the prevention of type 2 diabetes. Horm. Metab. Res. 42 (Suppl. 1), S3–S36 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Roumen, C., Blaak, E. E. & Corpeleijn, E. Lifestyle intervention for prevention of diabetes: determinants of success for future implementation. Nutr. Rev. 67, 132–146 (2009).

    Article  PubMed  Google Scholar 

  158. Laaksonen, D. et al. PA in the prevention of type 2 diabetes. The Finnish Diabetes Prevention Study. Diabetes 54, 158–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

  160. Kohler, M., Schanzer, W. & Thevis, M. Effects of exercise on the urinary proteome. Adv. Exp. Med. Biol. 845, 121–131 (2015).

    Article  PubMed  Google Scholar 

  161. Poortmans, J. & Labilloy, D. The influence of work intensity on postexercise proteinuria. Eur. J. Appl. Physiol. Occup. Physiol. 57, 260–263 (1988).

    Article  CAS  PubMed  Google Scholar 

  162. Obermayr, R. P. et al. Predictors of new-onset decline in kidney function in a general middle-European population. Nephrol. Dial. Transplant. 23, 1265–1273 (2008).

    Article  PubMed  Google Scholar 

  163. Robinson-Cohen, C. et al. Physical activity and rapid decline in kidney function among older adults. Arch. Intern. Med. 169, 2116–2123 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Karstoft, K. & Pedersen, B. Skeletal muscle as a gene regulatory endocrine organ. Curr. Opin. Clin. Nutr. Metab. Care 19, 270–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Pedersen, B. K. The diseasome of physical inactivity — and the role of myokines in muscle-fat cross talk. J. Physiol. 587, 5559–5568 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rondon-Berrios, H., Wang, Y. & Mitch, W. E. Can muscle–kidney crosstalk slow progression of CKD? J. Am. Soc. Nephrol. 25, 2681–2683 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. van Ree, R. M. et al. Plasma procalcitonin is an independent predictor of graft failure late after renal transplantation. Transplantation 88, 279–287 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Ross, R. Atherogenesis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Pedersen, B. K. Muscles and their myokines. J. Exp. Biol. 214, 337–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Petersen, A. M. & Pedersen, B. K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 98, 1154–1162 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Schnyder, S. & Handschin, C. Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone 80, 115–125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Corpeleijn, E. et al. Postprandial interleukin-6 release from skeletal muscle in men with impaired glucose tolerance can be reduced by weight loss. J. Clin. Endocrinol. Metab. 90, 5819–5824 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Kalantar-Zadeh, K. Causes and consequences of the reverse epidemiology of body mass index in dialysis patients. J. Ren. Nutr. 15, 142–147 (2005).

    Article  PubMed  Google Scholar 

  175. Chazot, C. et al. Is there any survival advantage of obesity in Southern European haemodialysis patients. Nephrol. Dial. Transplant. 24, 2871–2876 (2009).

    Article  PubMed  Google Scholar 

  176. Leavey, S., McCullough, K. & Hecking, E. Body mass index and mortality in “healthier” as compared with “sicker” haemodialysis patients: results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transplant. 16, 2386–2394 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Marcelli, D. et al. Body composition and survival in dialysis patients: results from an international cohort study. Clin. J. Am. Soc. Nephrol. 10, 1192–1200 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Prado, C. M. M. & Heymsfield, S. B. Lean tissue imaging: a new era for nutritional assessment and intervention. J. Parenter. Enteral. Nutr. 38, 940–953 (2014).

    Article  Google Scholar 

  179. Addison, O., Marcus, R. L., Lastayo, P. C. & Ryan, A. S. Intermuscular fat: a review of the consequences and causes. Int. J. Endocrinol. 2014, 309570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Prado, C., Gonzalez, M. & Heymsfield, S. Body composition phenotypes and obesity paradox. Curr. Opin. Clin. Nutr. Metab. Care 18, 535–551 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Oterdoom, L. H. et al. Urinary creatinine excretion reflecting muscle mass is a predictor of mortality and graft loss in renal transplant recipients. Transplantation 86, 391–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Oterdoom, L. H. et al. Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis 207, 534–540 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Deetman, P. E. et al. Urinary urea excretion and long-term outcome after renal transplantation. Transplantation 99, 1009–1015 (2014).

    Article  CAS  Google Scholar 

  184. Deetman, P. E. et al. Uncovering of body mass index as a risk factor for poor long-term outcome after renal transplantation. Transplantation 99, e5–e6 (2015).

    Article  PubMed  Google Scholar 

  185. Tonelli, M. et al. Comorbidity as a driver of adverse outcomes in people with chronic kidney disease. Kidney Int. 88, 859–866 (2015).

    Article  PubMed  Google Scholar 

  186. National Kidney Foundation. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. 45 (Suppl. 3), 16–153 (2005).

  187. About revision of medical fee in Heisei 28. Ministry of Health, Labor and Welfare in Japan [online], (2016).

  188. Lopes, A. A. et al. Associations of self-reported physical activity types and levels with quality of life, depression symptoms, and mortality in hemodialysis patients: the DOPPS. Clin. J. Am. Soc. Nephrol. 9, 1702–1712 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Matsuzawa, R. et al. Habitual physical activity measured by accelerometer and survival in maintenance hemodialysis patients. Clin. J. Am. Soc. Nephrol. 7, 2010–2016 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Kraemer, W. & Ratamess, N. Hormonal responses and adaptations to resistance exercise and training. Sport Med. 35, 339–361 (2005).

    Article  Google Scholar 

  191. Arnarson, A., Geirsdottir, O. G., Ramel, A., Jonsson, P. V. & Thorsdottir, I. Insulin-like growth factor-1 and resistance exercise in community dwelling old adults. J. Nutr. Health Aging 19, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Smilios, I., Pilianidis, T., Karamouzis, M. & Tokmakidis, S. P. Hormonal responses after various resistance exercise protocols. Med. Sci. Sports Exerc. 35, 644–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Life Options Rehabilitation Advisory Council. Renal Rehabilitation: Bridging the Barriers (Medical Education Institute, 1994).

  194. Garber, C. E. et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43, 1334–1359 (2011).

    Article  PubMed  Google Scholar 

  195. Tanaka, H., Monahan, K. D. & Seals, D. R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 37, 153–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Cupisti, A. et al. Nutrition and physical activity in CKD patients. Kidney Blood Press. Res. 39, 107–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Mitch, W. E. Insights into the abnormalities of chronic renal disease attributed to malnutrition. J. Am. Soc. Nephrol. 13 (Suppl. 1), S22–S27 (2002).

    CAS  PubMed  Google Scholar 

  198. Tuomilehto, J., Schwarz, P. & Lindstrom, J. Long-term benefits from lifestyle interventions for type 2 diabetes prevention. Diabetes Care 34 (Suppl. 2), s210–s214 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Morganroth, J. & Moore, E. Congestive Heart Failure (eds Morganroth, J. & Moore, E.) (Springer-Verlag, 1986).

    Google Scholar 

  200. Sedentary Behaviour Research Network. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 37, 540–542 (2012).

    Article  Google Scholar 

  201. Johansen, K. L. et al. Association of physical activity with survival among ambulatory patients on dialysis: the comprehensive dialysis study. Clin. J. Am. Soc. Nephrol. 8, 248–253 (2013).

    Article  PubMed  Google Scholar 

  202. Stack, A. G., Molony, D. A., Rives, T., Tyson, J. & Murthy, B. V. R. Association of physical activity with mortality in the US dialysis population. Am. J. Kidney Dis. 45, 690–701 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All authors researched data for the article, provided substantial contribution to discussions of the content and contributed to writing and to review/editing of the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contribution to discussions of the content and contributed to writing and to review/editing of the manuscript before submission.

Corresponding author

Correspondence to Gerjan Navis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Cochrane Risk of Bias Assessment pertaining to table 3. (PDF 53 kb)

Supplementary information S2 (table)

Evidence-based benefits of physical activity in patients with renal disease (PDF 95 kb)

PowerPoint slides

Glossary

Physical functioning

The ability to perform locomotor tasks, such as activities of daily living, in a normal manner.

VO2peak

The peak amount of oxygen that the body is able to utilize during sustained physical exertion.

Sarcopenia

The age-related loss of skeletal muscle mass and function that affects millions of older adults. This loss of muscle mass and function can lead to limitations in physical functioning and decreased quality of life.

Physical deconditioning

The deterioration of the cardiovascular and musculoskeletal system, primarily induced by physical inactivity, debilitating disease, prolonged bed rest, or sarcopenia.

Vigorous intensity physical activity

Exercise that requires a large amount of effort, causing rapid breathing and a substantial increase in heart rate, such as jogging, swimming laps, and hiking uphill.

Moderate intensity

Exercise that requires a moderate amount of effort that noticeably accelerates the heart rate and breathing, such as brisk walking, easy cycling and general gardening.

Pulse wave velocity

The velocity at which the arterial pulse propagates through the circulatory system. It is a widely used, simple, non-invasive method to determine arterial distensibility and endothelial function.

High sensitivity (hs)-CRP

C-reactive protein (CRP) is an acute phase protein that is raised in many different infections. High-sensitivity CRP (hs-CRP) is a sensitive test, used more commonly in apparently healthy people.

Glycated haemoglobin

Glucose-bound haemoglobin.

Postprandial glucose levels

Refers to the blood glucose level measured 2 h after a meal, a time period in which postprandial glucose level is normalized in people with normal glucose tolerance. Postprandial glucose abnormality is the first indicator of impaired glucose metabolism, as it is the result of reduced first-phase insulin secretion.

Muscle secretome

A complex set of several hundred peptides secreted from muscle cells; secretion of many of these peptides is dependent upon muscle contraction.

Bioimpedance

A commonly used method for estimating body composition (lean body mass and body fat) by calculating the opposition to the flow (impedance) of an electric current through body tissues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelle, D., Klaassen, G., van Adrichem, E. et al. Physical inactivity: a risk factor and target for intervention in renal care. Nat Rev Nephrol 13, 152–168 (2017). https://doi.org/10.1038/nrneph.2016.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing