Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic reprogramming and tolerance during sepsis-induced AKI

Key Points

  • Resistance and tolerance mechanisms govern the infection response and determine host survival

  • A switch to Warburg metabolism seems to be an important survival strategy in immune cells and possibly in tubular epithelial cells in response to inflammation

  • Reprogramming of metabolic pathways is a key cellular strategy to execute resistance and tolerance protective programmes

  • Early metabolic reprogramming in the response to inflammation is crucial to determine the acute response of the cell, to avoid cell death and to determine the repair phenotype during recovery

  • Understanding of resistance and tolerance mechanisms in sepsis might provide a basis for the development of therapeutic strategies to prevent or reverse organ damage, promote recovery and decrease mortality

Abstract

The host defence against infection is an adaptive response in which several mechanisms are deployed to decrease the pathogen load, limit tissue injury and restore homeostasis. In the past few years new evidence has suggested that the ability of the immune system to limit the microbial burden — termed resistance — might not be the only defence mechanism. In fact, the capacity of the host to decrease its own susceptibility to inflammation- induced tissue damage — termed tolerance — might be as important as resistance in determining the outcome of the infection. Metabolic adaptations are central to the function of the cellular immune response. Coordinated reprogramming of metabolic signalling enables cells to execute resistance and tolerance pathways, withstand injury, steer tissue repair and promote organ recovery. During sepsis-induced acute kidney injury, early reprogramming of metabolism can determine the extent of organ dysfunction, progression to fibrosis, and the development of chronic kidney disease. Here we discuss the mechanisms of tolerance that act in the kidney during sepsis, with particular attention to the role of metabolic responses in coordinating these adaptive strategies. We suggest a novel conceptual model of the cellular and organic response to sepsis that might lead to new avenues for targeted, organ-protective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between health fitness and pathogen load.
Figure 2: Putative pathways that regulate the metabolic response of naive macrophages to sepsis.
Figure 3: Model of metabolic reprogramming in tubular epithelial cells during sepsis.
Figure 4: Potential strategies for the assessment of renal tolerance in patients with sepsis.

Similar content being viewed by others

References

  1. Schneider, D. S. & Ayres, J. S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 8, 889–895 (2008). This opinion article summarizes the evidence for specific tolerance mechanisms in animals and discusses the potential clinical implications of these findings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801–810 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng, S.-C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Hotchkiss, R. S., Monneret, G. & Payen, D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 13, 862–874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cohen, J. et al. Sepsis: a roadmap for future research. Lancet Infect. Dis. 15, 581–614 (2015).

    Article  PubMed  Google Scholar 

  6. Figueiredo, N. et al. Anthracyclines induce DNA damage response-mediated protection against severe sepsis. Immunity 39, 874–884 (2013). This study in a rodent model of sepsis demonstrates that low-dose anthracyclines confer robust protection, independent of bacterial burden, via a mechanism that involves DNA-damage-response-dependent activation of autophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zager, R. A. 'Biologic memory' in response to acute kidney injury: cytoresistance, toll-like receptor hyper-responsiveness and the onset of progressive renal disease. Nephrol. Dial. Transplant. 28, 1985–1993 (2013). This experimental study demonstrates that ischaemic or toxic renal injury triggers cellular adaptations that reprogramme the response of the kidney to subsequent injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Thakar, C. V., Yared, J.-P., Worley, S., Cotman, K. & Paganini, E. P. Renal dysfunction and serious infections after open-heart surgery. Kidney Int. 64, 239–246 (2003).

    Article  PubMed  Google Scholar 

  10. Murugan, R. & Kellum, J. A. Acute kidney injury: what's the prognosis? Nat. Rev. Nephrol. 7, 209–217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012). This review summarizes the host defence against infection and discusses the integral role of tolerance in this response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. El-Achkar, T. M. et al. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am. J. Physiol. Renal Physiol. 290, F1034–F1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. El-Achkar, T. M., Hosein, M. & Dagher, P. C. Pathways of renal injury in systemic gram-negative sepsis. Eur. J. Clin. Invest. 38, 39–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kalakeche, R. et al. Endotoxin uptake by S1 proximal tubular segment causes oxidative stress in the downstream S2 segment. J. Am. Soc. Nephrol. 22, 1505–1516 (2011). This study demonstrates that LPS can be filtered through the glomerulus, tubular epithelial cells can bind LPS through TLR4, and uptake of LPS by S1 tubular epithelial cells triggers a coordinated response characterized by oxidative stress in neighbouring cells in the S2 and S3 segments of the nephron.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naito, M., Bomsztyk, K. & Zager, R. A. Endotoxin mediates recruitment of RNA polymerase II to target genes in acute renal failure. J. Am. Soc. Nephrol. 19, 1321–1330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murugan, R. et al. Plasma inflammatory and apoptosis markers are associated with dialysis dependence and death among critically ill patients receiving renal replacement therapy. Nephrol. Dial. Transplant. 29, 1854–1864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schafer, J. F. Tolerance to plant disease. Annu. Rev. Phytopathol. 9, 235–252 (1971). This review describes the importance of tolerance mechanisms in plants.

    Article  Google Scholar 

  20. Larsen, R. et al. A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl Med. 2, 51ra71 (2010). This experimental study demonstrates that free haemoglobin induces substantial organ injury during murine sepsis, and that activation of haem-oxygenase-1 or administration of haemopexin confers protection against organ injury and a survival advantage by increasing tolerance.

    Article  PubMed  CAS  Google Scholar 

  21. Råberg, L., Sim, D. & Read, A. F. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318, 812–814 (2007). The first study to demonstrate tolerance mechanisms in mammals using a model of murine malaria and a statistical framework developed by plant ecologists.

    Article  PubMed  CAS  Google Scholar 

  22. Ferreira, A., Balla, J., Jeney, V., Balla, G. & Soares, M. P. A central role for free heme in the pathogenesis of severe malaria: the missing link? J. Mol. Med. 86, 1097–1111 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Hsiao, H.-W. et al. The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock 37, 289–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Bartz, R. R. et al. Staphylococcus aureus sepsis induces early renal mitochondrial DNA repair and mitochondrial biogenesis in mice. PLoS ONE 9, e100912 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Takasu, O. et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am. J. Respir. Crit. Care Med. 187, 509–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hallows, K. R., Mount, P. F., Pastor-Soler, N. M. & Power, D. A. Role of the energy sensor AMP-activated protein kinase in renal physiology and disease. Am. J. Physiol. Renal Physiol. 298, F1067–F1077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Escobar, D. A. et al. Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation. J. Surg. Res. 194, 262–272 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Howell, G. M. et al. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS ONE 8, e69520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002). Experimental study that demonstrates that the metabolic phenotype of activated T cells is aerobic glycolysis, and that CD28 co-stimulation through the PI3K/Akt pathway is required to increase glycolytic flux in this context.

    Article  CAS  PubMed  Google Scholar 

  30. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith, J. A., Stallons, L. J. & Schnellmann, R. G. Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 307, F435–F444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Waltz, P., Carchman, E., Gomez, H. & Zuckerbraun, B. Sepsis results in an altered renal metabolic and osmolyte profile. J. Surg. Res. 202, 8–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Patil, N. K., Parajuli, N., MacMillan-Crow, L. A. & Mayeux, P. R. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury. Am. J. Physiol. Renal Physiol. 306, F734–F743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003–4014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin, K. et al. Is acute kidney injury in the early phase of sepsis a sign of metabolic downregulation in tubular epithelial cells? Crit. Care 19 (Suppl. 1), P286 (2015).

    Article  PubMed Central  Google Scholar 

  36. Faubert, B. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17, 113–124 (2013). This experimental study demonstrates that AMPK negatively regulates aerobic glycolysis in cancer cells, and that inactivation of the AMPKα catalytic subunit promotes a metabolic shift to aerobic glycolysis, which requires HIF-1α stabilization.

    Article  CAS  PubMed  Google Scholar 

  37. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dodd, K. M., Yang, J., Shen, M. H., Sampson, J. R. & Tee, A. R. mTORC1 drives HIF-1α; and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 34, 2239–2250 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014). This study demonstrates that a shift of central glucose metabolism from oxidative phosphorylation to aerobic glycolysis is the metabolic basis for trained immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yang, L. et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat. Commun. 5, 4436 (2014). This experimental study demonstrates that pyruvate kinase M2 interacts with HIF-1α to induce aerobic glycolysis (Warburg effect) in macrophages, and that PKM2 is a key regulator of the release of high mobility group box 1 during sepsis and inflammation.

    Article  CAS  PubMed  Google Scholar 

  41. O'Neill, L. A. J. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang, L. & DeBerardinis, R. J. Cancer metabolism: when more is less. Nature 489, 511–512 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Opal, S. et al. Sirt1 activation markedly alters transcription profiles and improves outcome in experimental sepsis. Shock http://dx.doi.org/10.1097/SHK.0000000000000528 (2015).

  46. Vachharajani, V. T. et al. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J. Leukoc. Biol. 96, 785–796 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gomez, H. et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 41, 3–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeon, S.-M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661–665 (2013).

    Article  CAS  Google Scholar 

  50. Tran, M. T. et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brealey, D. et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R491–R497 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Sayeed, M. M., Zhu, M. & Maitra, S. R. Alterations in cellular calcium and magnesium during circulatory/septic shock. Magnesium 8, 179–189 (1989).

    CAS  PubMed  Google Scholar 

  54. Duchen, M. R., Verkhratsky, A. & Muallem, S. Mitochondria and calcium in health and disease. Cell Calcium 44, 1–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Haden, D. W. et al. Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am. J. Respir. Crit. Care Med. 176, 768–777 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hotchkiss, R. S., Strasser, A., McDunn, J. E. & Swanson, P. E. Cell death. N. Engl. J. Med. 361, 1570–1583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carchman, E. H., Rao, J., Loughran, P. A., Rosengart, M. R. & Zuckerbraun, B. S. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53, 2053–2062 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269–1278 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Carchman, E. H. et al. Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver. FASEB J. 27, 4703–4711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zager, R. A., Johnson, A. C. M., Hanson, S. Y. & Lund, S. Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-alpha generation and systemic release. Am. J. Physiol. Renal Physiol. 289, F289–F297 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Zager, R. A., Johnson, A. C. M., Hanson, S. Y. & Lund, S. Acute nephrotoxic and obstructive injury primes the kidney to endotoxin-driven cytokine/chemokine production. Kidney Int. 69, 1181–1188 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Han, S. H. et al. Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J. Am. Soc. Nephrol. 27, 439–453 (2016). This experimental study demonstrates a role of Lkb1 (a master regulator of metabolism) in the progression from AKI to CKD.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, T. F., Vachharajani, V. T., Yoza, B. K. & McCall, C. E. NAD+-dependent Sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287, 25758–25769 (2012). This experimental study demonstrates the roles of Sirt1 and Sirt6 in the metabolic switch from aerobic glycolysis to oxidative phosphorylation in THP-1 promonocytes during the acute inflammatory response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhong, L. & Mostoslavsky, R. SIRT6: a master epigenetic gatekeeper of glucose metabolism. Transcription 1, 17–21 (2014).

    Article  Google Scholar 

  65. Vega, R. B., Huss, J. M. & Kelly, D. P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20, 1868–1876 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lehman, J. J. et al. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106, 847–856 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kellum, J. A. et al. The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am. J. Respir. Crit. Care Med. 193, 281–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kellum, J. A. et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch. Intern. Med. 167, 1655–1663 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zager, R. A., Johnson, A. C. M. & Becker, K. Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and 'end-stage' kidney disease. Am. J. Physiol. Renal Physiol. 301, F1334–F1345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grgic, I. et al. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int. 82, 172–183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Heung, M. & Chawla, L. S. Predicting progression to chronic kidney disease after recovery from acute kidney injury. Curr. Opin. Nephrol. Hypertens. 21, 628–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Basile, D. P. et al. Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J. Am. Soc. Nephrol. 27, 687–697 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Hodgkins, K. S. & Schnaper, H. W. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr. Nephrol. 27, 901–909 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015). This study demonstrates that human and murine kidneys with tubulointerstitial fibrosis have reduced expression of enzymes involved in fatty acid oxidation, and that inhibition of these enzymes in a murine model results in renal fibrosis, which can be reversed by restoring fatty acid metabolism.

    Article  CAS  PubMed  Google Scholar 

  75. Qiu, S. et al. AMPKα2 reduces renal epithelial transdifferentiation and inflammation after injury through interaction with CK2β. J. Pathol. 237, 330–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Bihorac, A. et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am. J. Respir. Crit. Care Med. 189, 932–939 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Kashani, K. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 17, R25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sharma, A., Mucino, M. J. & Ronco, C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin. Pract. 127, 94–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, K. D. & Brakeman, P. R. Renal repair and recovery. Crit. Care Med. 36, S187–S192 (2008).

    Article  PubMed  Google Scholar 

  80. Fliser, D., Zeier, M., Nowack, R. & Ritz, E. Renal functional reserve in healthy elderly subjects. J. Am. Soc. Nephrol. 3, 1371–1377 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.G. is supported by NIH grants 1K12HL109068-02 and 1K08GM117310-01A1.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, discussed the content, wrote the article and reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Hernando Gómez or Claudio Ronco.

Ethics declarations

Competing interests

J.A.K. has received consulting fees and grant support from Astute Medical. H.G. and C.R. declare no competing interests.

PowerPoint slides

Glossary

Warburg effect

A coordinated change in cellular metabolism from oxidative phosphorylation to glycolysis to support the production of ATP and essential structural components required by the cell. This switch in metabolism can occur even in aerobic conditions.

Autophagy

An intracellular degradation pathway in which cellular components are taken up by autophagosomes and transported to lysosomes for degradation and recycling.

Oxidative phosphorylation

A metabolic process in which electrons derived from oxidation of carbon fuels (such as glucose and fats) are transported through electron acceptors and donors in the inner mitochondrial membrane. This process releases the energy required to generate adenosine triphosphate in the presence of oxygen.

Tricarboxylic acid cycle

A series of enzyme-catalysed reactions that through oxidation of acetyl-coenzyme A (derived from carbohydrate, fat and protein), yields reducing equivalents such as NADH, which are necessary for many processes including ATP generation.

Mitophagy

A specialized form of autophagy that targets and degrades dysfunctional mitochondria.

Biogenesis

Mitochondrial biogenesis is a coordinated process that involves both nuclear and mitochondrial DNA and results in the regeneration of new mitochondria.

Epithelial-to-mesenchymal transition

In the context of organ injury, epithelial-to-mesenchymal transition refers to the process by which epithelial cells undergo a transition to myofibroblasts, which produce collagenous matrix and promote tissue fibrosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, H., Kellum, J. & Ronco, C. Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat Rev Nephrol 13, 143–151 (2017). https://doi.org/10.1038/nrneph.2016.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing