Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular senescence in renal ageing and disease

Key Points

  • Cellular senescence is a multi-faceted programme involved in diverse physiological and pathological processes including embryonic development, regeneration and repair, cancer-protection, ageing, and disease

  • Senescent cells that are transiently present (acute senescence) are beneficial, whereas prolonged signalling and aberrant accumulation of senescent cells (chronic senescence) impairs renal function and promotes kidney disease

  • Chronic senescent cells accumulate in the kidneys during natural ageing and have been causally linked to age-related decline in renal function

  • Senescent cell accumulation also occurs in association with several renal diseases and therapeutic damage, and correlates with disease progression or deterioration in several instances

  • Therapeutic interventions that target senescent cells, termed senotherapies, have potential to attenuate age-related renal dysfunction, improve disease outcome, and ensure success of kidney transplantation

  • Development of effective and safe senotherapies should greatly benefit from future research aimed at understanding of the location, origin and properties of senescent cells in greater detail

Abstract

The senescence programme is implicated in diverse biological processes, including embryogenesis, tissue regeneration and repair, tumorigenesis, and ageing. Although in vivo studies of senescence are in their infancy, evidence suggesting that senescent cells are a heterogeneous cell type is accumulating: senescence can be induced by different stressors, and senescent cells have varying degrees of genomic and epigenomic instability and different cell origins, contributing to their diversity. Two main classes of senescent cells have been identified: acute and chronic senescent cells. Acute senescent cells are generated during coordinated, beneficial biological processes characterized by a defined senescence trigger, transient senescent-cell signalling functions, and eventual senescent-cell clearance. In contrast, chronic senescent cells arise more slowly from cumulative, diverse stresses and are inefficiently eliminated, leading to their accumulation and deleterious effects through a secretory phenotype. Senescent cells have been identified in many tissues and organs, including the kidney. Here, we discuss the emerging roles of senescent cells in renal development, homeostasis, and pathology. We also address how senotherapy, or targeting of senescent cells, might be used to improve renal function with normal ageing, disease, or therapy-induced damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main triggers of senescence.
Figure 2: Potential roles of senescent cells during the life of the kidney.
Figure 3: Senescent cell accumulation in the kidney associated with ageing, disease, and therapy.
Figure 4: Senotherapeutic targeting strategies.

Similar content being viewed by others

References

  1. Flatt, T. A new definition of aging? Front. Genet. 3, 148 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rose, M. R. Evolutionary Biology of Aging (Oxford Univ. Press, 1991).

    Google Scholar 

  3. Williams, G. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  4. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Baker, D. J. et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat. Cell Biol. 10, 825–836 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taddei, M. L. et al. Senescent stroma promotes prostate cancer progression: the role of miR-210. Mol. Oncol. 8, 1729–1746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W. & Raulet, D. H. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J. Exp. Med. 210, 2057–2069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bayreuther, K. et al. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc. Natl Acad. Sci. USA 85, 5112–5116 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, H., Xiong, Y. & Beach, D. Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol. Biol. Cell 4, 897–906 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, S. H. et al. Upregulation of chicken p15INK4b at senescence and in the developing brain. J. Cell Sci. 119, 2435–2443 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu, F. et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS ONE 8, e74535 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Sagiv, A. et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging (Albany NY) 8, 328–344 (2016).

    Article  CAS  Google Scholar 

  29. Wolstein, J. M. et al. INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 299, F1486–F1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baisantry, A. et al. Autophagy induces prosenescent changes in proximal tubular S3 segments. J. Am. Soc. Nephrol. 27, 1609–1616 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Megyesi, J. et al. Positive effect of the induction of p21WAF1/CIP1 on the course of ischemic acute renal failure. Kidney Int. 60, 2164–2172 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798–803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, S. et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8, 826–837 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Braun, H. et al. Cellular senescence limits regenerative capacity and allograft survival. J. Am. Soc. Nephrol. 23, 1467–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nat. Rev. Cancer 6, 472–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Sharpless, N. E., Ramsey, M. R., Balasubramanian, P., Castrillon, D. H. & DePinho, R. A. The differential impact of p16INK4a or p19ARF deficiency on cell growth and tumorigenesis. Oncogene 23, 379–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Cole, A. M. et al. p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Mol. Med. 2, 472–486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young, A. P. et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat. Cell Biol. 10, 361–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Capparelli, C. et al. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11, 2285–2302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Farmaki, E. et al. Selection of p53-deficient stromal cells in the tumor microenvironment. Genes Cancer 3, 592–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, G. et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc. Natl Acad. Sci. USA 103, 16472–16477 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Burd, C. E. et al. Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sansoni, P. et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 82, 2767–2773 (1993).

    CAS  PubMed  Google Scholar 

  46. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J. Immunol. 176, 1007–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Chung, H. Y. et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res. Rev. 8, 18–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Bernet, J. D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cosgrove, B. D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garcia-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, R. et al. Telomerase deficiency causes alveolar stem cell senescence-associated low-grade inflammation in lungs. J. Biol. Chem. 290, 30813–30829 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sone, H. & Kagawa, Y. Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48, 58–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, Z. et al. Accelerated senescence of endothelial progenitor cells in hypertension is related to the reduction of calcitonin gene-related peptide. J. Hypertens. 28, 931–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Imanishi, T., Moriwaki, C., Hano, T. & Nishio, I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J. Hypertens. 23, 1831–1837 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Westhoff, J. H. et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 52, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Joosten, S. A. et al. Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am. J. Pathol. 162, 1305–1312 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Melk, A., Schmidt, B. M., Vongwiwatana, A., Rayner, D. C. & Halloran, P. F. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am. J. Transplant. 5, 1375–1382 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Ablain, J. et al. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat. Med. 20, 167–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Dorr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Le, O. N. et al. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 9, 398–409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, M. O. et al. Effect of ionizing radiation induced damage of endothelial progenitor cells in vascular regeneration. Arterioscler. Thromb. Vasc. Biol. 32, 343–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Darmady, E. M., Offer, J. & Woodhouse, M. A. The parameters of the ageing kidney. J. Pathol. 109, 195–207 (1973).

    Article  CAS  PubMed  Google Scholar 

  64. Tan, J. C. et al. Effects of aging on glomerular function and number in living kidney donors. Kidney Int. 78, 686–692 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rule, A. D. et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med. 152, 561–567 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Elsherbiny, H. E. et al. Nephron hypertrophy and glomerulosclerosis and their association with kidney function and risk factors among living kidney donors. Clin. J. Am. Soc. Nephrol. 9, 1892–1902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rule, A. D. et al. Characteristics of renal cystic and solid lesions based on contrast-enhanced computed tomography of potential kidney donors. Am. J. Kidney Dis. 59, 611–618 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang, X. et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 85, 677–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Lorenz, E. C. et al. Clinical characteristics of potential kidney donors with asymptomatic kidney stones. Nephrol. Dial. Transplant. 26, 2695–2700 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rule, A. D. & Glassock, R. J. The Aging Kidney (UpToDate, 2016).

    Google Scholar 

  71. Esposito, C. & Dal Canton, A. Functional changes in the aging kidney. J. Nephrol. 23 (Suppl. 15), S41–S45 (2010).

    PubMed  Google Scholar 

  72. Lindeman, R. D., Tobin, J. & Shock, N. W. Longitudinal studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 33, 278–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  73. Choudhury, D. & Levi, M. Kidney aging — inevitable or preventable? Nat. Rev. Nephrol. 7, 706–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Schmitt, R. & Melk, A. New insights on molecular mechanisms of renal aging. Am. J. Transplant. 12, 2892–2900 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Clements, M. E., Chaber, C. J., Ledbetter, S. R. & Zuk, A. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS ONE 8, e70464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berkenkamp, B. et al. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS ONE 9, e88071 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang, H. C. & Fogo, A. B. Fibrosis and renal aging. Kidney Int. Suppl. 4, 75–78 (2014).

    Article  CAS  Google Scholar 

  78. McGlynn, L. M. et al. Cellular senescence in pretransplant renal biopsies predicts postoperative organ function. Aging Cell 8, 45–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Naesens, M. Replicative senescence in kidney aging, renal disease, and renal transplantation. Discov. Med. 11, 65–75 (2011).

    PubMed  Google Scholar 

  80. Tullius, S. G. et al. The combination of donor and recipient age is critical in determining host immunoresponsiveness and renal transplant outcome. Ann. Surg. 252, 662–674 (2010).

    PubMed  Google Scholar 

  81. Schmitt, R., Susnik, N. & Melk, A. Molecular aspects of renal senescence. Curr. Opin. Organ. Transplant. 20, 412–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Slegtenhorst, B. R. et al. Mechanisms and consequences of injury and repair in older organ transplants. Transplantation 97, 1091–1099 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chkhotua, A. B. et al. Increased expression of p16INK4a and p27Kip1 cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. Am. J. Kidney Dis. 41, 1303–1313 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Melk, A. et al. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int. 65, 510–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Ding, G. et al. Tubular cell senescence and expression of TGF-beta1 and p21WAF1/CIP1 in tubulointerstitial fibrosis of aging rats. Exp. Mol. Pathol. 70, 43–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Melk, A. et al. Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int. 63, 2134–2143 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Sis, B. et al. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int. 71, 218–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, J. et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl Res. 159, 454–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 295, F1563–F1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Koppelstaetter, C. et al. Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell 7, 491–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Melk, A. et al. Effects of donor age and cell senescence on kidney allograft survival. Am. J. Transplant. 9, 114–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Vinuesa, E. et al. Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J. Pathol. 214, 104–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Xue, J. L. et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J. Am. Soc. Nephrol. 17, 1135–1142 (2006).

    Article  PubMed  Google Scholar 

  95. Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rahman, M., Shad, F. & Smith, M. C. Acute kidney injury: a guide to diagnosis and management. Am. Fam. Physician 86, 631–639 (2012).

    PubMed  Google Scholar 

  97. Canaud, G. & Bonventre, J. V. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol. Dial. Transplant. 30, 575–583 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Xu, X. et al. Aging aggravates long-term renal ischemia-reperfusion injury in a rat model. J. Surg. Res. 187, 289–296 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Tumlin, J. A., Madaio, M. P. & Hennigar, R. Idiopathic IgA nephropathy: pathogenesis, histopathology, and therapeutic options. Clin. J. Am. Soc. Nephrol. 2, 1054–1061 (2007).

    Article  PubMed  Google Scholar 

  100. Lu, Y. Y. et al. Proteins induced by telomere dysfunction are associated with human IgA nephropathy. J. Zhejiang Univ. Sci. B 15, 566–574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kalyani, R. R. & Egan, J. M. Diabetes and altered glucose metabolism with aging. Endocrinol. Metab. Clin. North Am. 42, 333–347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15, 1082–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Markowski, D. N. et al. HMGA2 expression in white adipose tissue linking cellular senescence with diabetes. Genes Nutr. 8, 449–456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cao, Z. & Cooper, M. E. Pathogenesis of diabetic nephropathy. J. Diabetes Investig. 2, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mora-Fernandez, C. et al. Diabetic kidney disease: from physiology to therapeutics. J. Physiol. 592, 3997–4012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kitada, K. et al. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J. Diabetes Complications 28, 604–611 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wolf, G., Reinking, R., Zahner, G., Stahl, R. A. & Shankland, S. J. Erk 1,2 phosphorylates p27Kip1: functional evidence for a role in high glucose-induced hypertrophy of mesangial cells. Diabetologia 46, 1090–1099 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Wolf, G., Schroeder, R., Zahner, G., Stahl, R. A. & Shankland, S. J. High glucose-induced hypertrophy of mesangial cells requires p27Kip1, an inhibitor of cyclin-dependent kinases. Am. J. Pathol. 158, 1091–1100 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, X. et al. Downregulation of connexin 43 expression by high glucose induces senescence in glomerular mesangial cells. J. Am. Soc. Nephrol. 17, 1532–1542 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Al-Douahji, M. et al. The cyclin kinase inhibitor p21WAF1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int. 56, 1691–1699 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Wolf, G., Schanze, A., Stahl, R. A., Shankland, S. J. & Amann, K. p27Kip1 knockout mice are protected from diabetic nephropathy: evidence for p27Kip1 haplotype insufficiency. Kidney Int. 68, 1583–1589 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Morocutti, A. et al. Premature senescence of skin fibroblasts from insulin-dependent diabetic patients with kidney disease. Kidney Int. 50, 250–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Torres, V. E., Harris, P. C. & Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 369, 1287–1301 (2007).

    Article  PubMed  Google Scholar 

  114. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nadasdy, T. et al. Proliferative activity of cyst epithelium in human renal cystic diseases. J. Am. Soc. Nephrol. 5, 1462–1468 (1995).

    CAS  PubMed  Google Scholar 

  116. Igarashi, P. & Somlo, S. Genetics and pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 13, 2384–2398 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Park, J. Y. et al. p21 is decreased in polycystic kidney disease and leads to increased epithelial cell cycle progression: roscovitine augments p21 levels. BMC Nephrol. 8, 12 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bukanov, N. O., Smith, L. A., Klinger, K. W., Ledbetter, S. R. & Ibraghimov-Beskrovnaya, O. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444, 949–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Park, J. Y., Park, S. H. & Weiss, R. H. Disparate effects of roscovitine on renal tubular epithelial cell apoptosis and senescence: implications for autosomal dominant polycystic kidney disease. Am. J. Nephrol. 29, 509–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Hildebrandt, F., Attanasio, M. & Otto, E. Nephronophthisis: disease mechanisms of a ciliopathy. J. Am. Soc. Nephrol. 20, 23–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Lu, D. et al. Loss of Glis2/NPHP7 causes kidney epithelial cell senescence and suppresses cyst growth in the Kif3a mouse model of cystic kidney disease. Kidney Int. 89, 1307–1323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kremers, W. K. et al. Distinguishing age-related from disease-related glomerulosclerosis on kidney biopsy: the Aging Kidney Anatomy study. Nephrol. Dial. Transplant. 30, 2034–2039 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kooman, J. P., van der Sande, F. M. & Leunissen, K. M. Kidney disease and aging: a reciprocal relation. Exp. Gerontol. http://dx.doi.org/10.1016/j.exger.2016.02.003 (2016).

  124. Kooman, J. P., Kotanko, P., Schols, A. M., Shiels, P. G. & Stenvinkel, P. Chronic kidney disease and premature ageing. Nat. Rev. Nephrol. 10, 732–742 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Jia, T. et al. A novel model of adenine-induced tubulointerstitial nephropathy in mice. BMC Nephrol. 14, 116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Quimby, J. M. et al. Feline chronic kidney disease is associated with shortened telomeres and increased cellular senescence. Am. J. Physiol. Renal Physiol. 305, F295–F303 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Klinkhammer, B. M. et al. Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential. PLoS ONE 9, e92115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Oeffinger, K. C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355, 1572–1582 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Megyesi, J., Safirstein, R. L. & Price, P. M. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J. Clin. Invest. 101, 777–782 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou, H. et al. The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol. Appl. Pharmacol. 200, 111–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Wen, J. et al. Aging increases the susceptibility of cisplatin-induced nephrotoxicity. Age (Dordr.) 37, 112 (2015).

    Article  CAS  Google Scholar 

  132. Childs, B., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kamada, H. et al. Synthesis of a poly(vinylpyrrolidone-co-dimethyl maleic anhydride) co-polymer and its application for renal drug targeting. Nat. Biotechnol. 21, 399–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Franssen, E. J., Moolenaar, F., de Zeeuw, D. & Meijer, D. K. Low-molecular-weight proteins as carriers for renal drug targeting. Contrib. Nephrol. 101, 99–103 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Lin, Y. et al. Targeted drug delivery to renal proximal tubule epithelial cells mediated by 2-glucosamine. J. Control Release 167, 148–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Wischnjow, A. et al. Renal targeting: peptide-based drug delivery to proximal tubule cells. Bioconjug. Chem. 27, 1050–1057 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Wen, Z. Z. et al. Angiotensin II receptor blocker attenuates intrarenal renin-angiotensin-system and podocyte injury in rats with myocardial infarction. PLoS ONE 8, e67242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kunieda, T. et al. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 114, 953–960 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Fan, Y. Y. et al. Aldosterone/mineralocorticoid receptor stimulation induces cellular senescence in the kidney. Endocrinology 152, 680–688 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Choi, C. H., Zuckerman, J. E., Webster, P. & Davis, M. E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl Acad. Sci. USA 108, 6656–6661 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Kamaly, N., He, J. C., Ausiello, D. A. & Farokhzad, O. C. Nanomedicines for renal disease: current status and future applications. Nat. Rev. Nephrol. 12, 738–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tuffin, G., Waelti, E., Huwyler, J., Hammer, C. & Marti, H. P. Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J. Am. Soc. Nephrol. 16, 3295–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Molitoris, B. A. et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J. Am. Soc. Nephrol. 20, 1754–1764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Xu, X. M. et al. Anti-inflamm-aging effects of long-term caloric restriction via overexpression of SIGIRR to inhibit NF-kappaB signaling pathway. Cell. Physiol. Biochem. 37, 1257–1270 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Heydari, A. R., Unnikrishnan, A., Lucente, L. V. & Richardson, A. Caloric restriction and genomic stability. Nucleic Acids Res. 35, 7485–7496 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ning, Y. C. et al. Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage. Mech. Ageing Dev. 134, 570–579 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Inoki, K., Kim, J. & Guan, K. L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Iglesias-Bartolome, R. et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 11, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhuo, L. et al. Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging. Mech. Ageing Dev. 130, 700–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Kawai, M., Kinoshita, S., Ozono, K. & Michigami, T. Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of an alpha-klotho-deficient model. J. Am. Soc. Nephrol. 27, 2810–2824 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Noren Hooten, N. et al. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell 15, 572–581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Piwkowska, A. et al. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem. Biophys. Res. Commun. 393, 268–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Lee, M. J. et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol. 292, F617–F627 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Morales, A. I. et al. Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int. 77, 861–869 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Li, J. et al. Metformin protects against cisplatin-induced tubular cell apoptosis and acute kidney injury via AMPKalpha-regulated autophagy induction. Sci. Rep. 6, 23975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hoenicke, L. & Zender, L. Immune surveillance of senescent cells — biological significance in cancer- and non-cancer pathologies. Carcinogenesis 33, 1123–1126 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S. & Russo, G. L. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochem. Pharmacol. 83, 6–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. O'Hare, T. et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 65, 4500–4505 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Zhu, Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Iwasa, H., Han, J. & Ishikawa, F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 8, 131–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Alimbetov, D. et al. Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. Biogerontology 17, 305–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Tasdemir, N. et al. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 6, 612–629 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ewald, J. A., Desotelle, J. A., Wilding, G. & Jarrard, D. F. Therapy-induced senescence in cancer. J. Natl Cancer Inst. 102, 1536–1546 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ramakrishna, G. et al. Role of cellular senescence in hepatic wound healing and carcinogenesis. Eur. J. Cell Biol. 91, 739–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Kim, K. H., Chen, C. C., Monzon, R. I. & Lau, L. F. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol. Cell. Biol. 33, 2078–2090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. O'Leary, B., Finn, R. S. & Turner, N. C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13, 417–430 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Barroso-Sousa, R., Shapiro, G. I. & Tolaney, S. M. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast Care (Basel) 11, 167–173 (2016).

    Article  Google Scholar 

  173. DiRocco, D. P. et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am. J. Physiol. Renal Physiol. 306, F379–F388 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613–3622 (2000).

    CAS  PubMed  Google Scholar 

  175. Georgakopoulou, E. A. et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 5, 37–50 (2013).

    Article  CAS  Google Scholar 

  176. d'Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Aird, K. M. & Zhang, R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol. Biol. 965, 185–196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kopp, H. G., Hooper, A. T., Shmelkov, S. V. & Rafii, S. Beta-galactosidase staining on bone marrow. The osteoclast pitfall. Histol. Histopathol. 22, 971–976 (2007).

    CAS  PubMed  Google Scholar 

  179. Holt, D. J. & Grainger, D. W. Senescence and quiescence induced compromised function in cultured macrophages. Biomaterials 33, 7497–7507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yang, N. C. & Hu, M. L. The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp. Gerontol. 40, 813–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Traves, P. G., Lopez-Fontal, R., Luque, A. & Hortelano, S. The tumor suppressor ARF regulates innate immune responses in mice. J. Immunol. 187, 6527–6538 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Shapiro, G. I. et al. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res. 55, 505–509 (1995).

    CAS  PubMed  Google Scholar 

  183. Ohtani, N., Yamakoshi, K., Takahashi, A. & Hara, E. Real-time in vivo imaging of p16gene expression: a new approach to study senescence stress signaling in living animals. Cell Div. 5, 1 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  185. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  186. Rayess, H., Wang, M. B. & Srivatsan, E. S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 130, 1715–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Ben-Porath, I. & Weinberg, R. A. The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961–976 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Hochegger, K. et al. p21 and mTERT are novel markers for determining different ischemic time periods in renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 292, F762–F768 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, discussed the article's content, wrote the text and reviewed or edited the article before submission.

Corresponding authors

Correspondence to Darren J. Baker or Jan M. van Deursen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Senescence-associated secretory phenotype

(SASP). High amounts of pro-inflammatory and matrix-degrading molecules produced and secreted by senescent cells.

Immune surveillance

Mechanism by which senescent cells are detected and eliminated by the immune system.

Mesonephros

Transitory embryonic excretory organ derived from the metanephric mesenchyme that forms around embryonic day (E) 9 and degenerates by E15.5 in mice.

Functional reserve capacity

Capacity an organ to preserve function, if damage should occur.

Ciliopathies

Group of diseases that arise from mutations in genes encoding primary cilia-related proteins and that affect several organs such as the eyes, limbs and kidneys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturmlechner, I., Durik, M., Sieben, C. et al. Cellular senescence in renal ageing and disease. Nat Rev Nephrol 13, 77–89 (2017). https://doi.org/10.1038/nrneph.2016.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing