Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives

Key Points

  • Cystinosis is a multi-systemic lysosomal storage disease caused by inactivating mutations in, or the absence of, the lysosomal membrane exporter for cystine, cystinosin; cystinosis is the main cause of hereditary renal Fanconi syndrome

  • Treatment with cysteamine efficiently depletes lysosomal cystine and delays progression to renal insufficiency; however, cysteamine does not reverse established renal Fanconi syndrome, indicating functions of cystinosin beyond cystine transport

  • Insights from mechanistic studies suggest that the pathological mechanisms of Fanconi syndrome in cystinosis are multifactorial, involving oxidative stress and impaired vesicular trafficking, autophagy, and mTORC1 and TFEB signalling

  • Haematopoietic stem cell (HSC) transplantation ameliorates renal Fanconi syndrome in cystinotic mice; HSCs differentiate into macrophages that transfer cystinosin-bearing lysosomes into proximal tubule cells via tunnelling nanotubes that cross the tubular basement membrane

  • Since tunnelling nanotubes contain donor-derived cytosol and carry all types of organelles, this mechanism should be generic and could be used to correct other genetic diseases that affect proximal tubule cells

Abstract

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CTNS produces two isoforms with distinct subcellular localizations.
Figure 2: Cystine crystals accumulate within lysosomes of cystinotic cells.
Figure 3: Cell biological alterations in cystinotic cells.
Figure 4: Origin and consequences of swan neck deformities.
Figure 5: Cystinosin deficiency and oxidative stress in proximal tubular cells.
Figure 6: Lysosomal membrane transport and luminal events associated with cystinosis and cysteamine therapy.
Figure 7: Proposed mechanisms by which haematopoietic stem cell (HSC) transplantation rescues cystinosis- induced Fanconi syndrome.

Similar content being viewed by others

References

  1. Fanconi, G. Die nicht diabetischen glykosurien und hyperglykamiendes altem kindes. Jahrbuch Kinderheilkunde 133, 257–300 (1931).

    CAS  Google Scholar 

  2. De Toni, G. Remarks on the relations between renal rickets (renal dwarfism) and renal diabetes. Acta Paediatr. 16, 479–484 (1933).

    Article  Google Scholar 

  3. Debre, R., Marie, J., Cleret, J. & Messimy, R. Rachitisme tardif coexistant avec une nephrite chronique et une glycosurie. Arch. Med. Enfants 37, 597–606 (1934).

    Google Scholar 

  4. Haffner, D. et al. Long-term outcome of paediatric patients with hereditary tubular disorders. Nephron 83, 250–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Gahl, W. A., Thoene, J. G. & Schneider, J. A. Cystinosis. N. Engl. J. Med. 347, 111–121 (2002).

    Article  PubMed  Google Scholar 

  6. Cohen, C. et al. Excellent long-term outcome of renal transplantation in cystinosis patients. Orphanet J. Rare Diseases 10, 90 (2015).

    Article  Google Scholar 

  7. Gahl, W. A., Kuehl, E. M., Iwata, F., Lindblad, A. & Kaiser-Kupfer, M. I. Corneal crystals in nephropathic cystinosis: natural history and treatment with cysteamine eyedrops. Mol. Genet. Metab. 71, 100–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Brodin-Sartorius, A. et al. Cysteamine therapy delays the progression of nephropathic cystinosis in late adolescents and adults. Kidney Int. 81, 179–189 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Langman, C. B. et al. Controversies and research agenda in nephropathic cystinosis: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 89, 1192–1203 (2016).

    Article  PubMed  Google Scholar 

  10. Nesterova, G. & Gahl, W. Nephropathic cystinosis: late complications of a multisystemic disease. Pediatr. Nephrol. 23, 863–878 (2008).

    Article  PubMed  Google Scholar 

  11. Goldman, H., Scriver, C. R., Aaron, K., Delvin, E. & Canlas, Z. Adolescent cystinosis: comparisons with infantile and adult forms. Pediatrics 47, 979–988 (1971).

    CAS  PubMed  Google Scholar 

  12. Cogan, D. G., Kuwabara, T., Kinoshita, J., Sheehan, L. & Merola, L. Cystinosis in an adult. J. Am. Med. Assoc. 164, 394–396 (1957).

    Article  CAS  PubMed  Google Scholar 

  13. Town, M. et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat. Genet. 18, 319–324. (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Cherqui, S., Kalatzis, V., Trugnan, G. & Antignac, C. The targeting of cystinosin to the lysosomal membrane requires a tyrosine-based signal and a novel sorting motif. J. Biol. Chem. 276, 13314–13321 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kalatzis, V., Cherqui, S., Antignac, C. & Gasnier, B. Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter. EMBO J. 20, 5940–5949. (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalatzis, V. et al. The ocular anomalies in a cystinosis animal model mimic disease pathogenesis. Pediatr. Res. 62, 156–162 (2007).

    Article  PubMed  Google Scholar 

  17. Simpson, J. et al. Quantitative in vivo and ex vivo confocal microscopy analysis of corneal cystine crystals in the Ctns knockout mouse. Mol. Vision 17, 2212–2220 (2011).

    Google Scholar 

  18. Cherqui, S. et al. Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol. Cell. Biol. 22, 7622–7632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheung, W. W. et al. Muscle wasting and adipose tissue browning in infantile nephropathic cystinosis. J. Cachexia Sarcopenia Muscle 7, 152–164 (2016).

    Article  PubMed  Google Scholar 

  20. Gaide Chevronnay, H. P. et al. A mouse model suggests two mechanisms for thyroid alterations in infantile cystinosis: decreased thyroglobulin synthesis due to endoplasmic reticulum stress/unfolded protein response and impaired lysosomal processing. Endocrinology 6, 2349–2364 (2015).

    Article  CAS  Google Scholar 

  21. Nevo, N. et al. Renal phenotype of the cystinosis mouse model is dependent upon genetic background. Nephrol. Dial Transplant 25, 1059–1066 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Mahoney, C. P. & Striker, G. E. Early development of the renal lesions in infantile cystinosis. Pediatr. Nephrol. 15, 50–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Yeagy, B. A. et al. Kidney preservation by bone marrow cell transplantation in hereditary nephropathy. Kidney Int. 79, 1198–1206 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Schneider, J. A. Approval of cysteamine for patients with cystinosis. Pediatr. Nephrol. 9, 254 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Thoene, J. G., Oshima, R. G., Crawhall, J. C., Olson, D. L. & Schneider, J. A. Cystinosis. Intracellular cystine depletion by aminothiols in vitro and in vivo. J. Clin. Invest. 58, 180–189 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cherqui, S. Cysteamine therapy: a treatment for cystinosis, not a cure. Kidney Int. 81, 127–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gahl, W. A., Balog, J. Z. & Kleta, R. Nephropathic cystinosis in adults: natural history and effects of oral cysteamine therapy. Ann. Internal Med. 147, 242–250 (2007).

    Article  Google Scholar 

  28. Emma, F. et al. Nephropathic cystinosis: an international consensus document. Nephrol Dial Transplant 29, (Suppl 4) 87–94 (2014).

    Article  CAS  Google Scholar 

  29. Schulman, J. D. & Schneider, J. A. Cystinosis and the Fanconi syndrome. Pediatr. Clin. North Amer. 23, 779–793 (1976).

    Article  CAS  Google Scholar 

  30. Ivanova, E. A. et al. Cystinosin deficiency causes podocyte damage and loss associated with increased cell motility. Kidney Int. 89, 1037–1048 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Wilmer, M. J., Christensen, E. I., van den Heuvel, L. P., Monnens, L. A. & Levtchenko, E. N. Urinary protein excretion pattern and renal expression of megalin and cubilin in nephropathic cystinosis. Am. J. Kidney. Dis. 51, 893–903 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. North American Pediatric Renal Trials and Collaborative Studies. NAPRTCS Annual Reports. NAPRTCS Online [online] https://web.emmes.com/study/ped/annlrept/annlrept.html, (2011).

  33. Dufier, J. L., Dhermy, P., Gubler, M. C., Gagnadoux, M. F. & Broyer, M. Ocular changes in long-term evolution of infantile cystinosis. Ophthalm. Paediatr. Genet. 8, 131–137 (1987).

    Article  CAS  Google Scholar 

  34. Tsilou, E., Zhou, M., Gahl, W., Sieving, P. C. & Chan, C. C. Ophthalmic manifestations and histopathology of infantile nephropathic cystinosis: report of a case and review of the literature. Survey Ophthalmol. 52, 97–105 (2007).

    Article  Google Scholar 

  35. Gultekingil Keser, A., Topaloglu, R., Bilginer, Y. & Besbas, N. Long-term endocrinologic complications of cystinosis. Minerva Pediatr. 66, 123–130 (2014).

    CAS  PubMed  Google Scholar 

  36. Besouw, M. T., Holewijn, S., Levtchenko, E. N. & Janssen, M. C. Non-invasive measurements of atherosclerosis in adult cystinosis patients. J. Inherited Metabol. Dis. 34, 811–818 (2011).

    Article  Google Scholar 

  37. Ueda, M. et al. Coronary artery and other vascular calcifications in patients with cystinosis after kidney transplantation. Clin. J. Am. Soc. Nephrol. 1, 555–562 (2006).

    Article  PubMed  Google Scholar 

  38. Dixit, M. P. & Greifer, I. Nephropathic cystinosis associated with cardiomyopathy: a 27-year clinical follow-up. BMC Nephrol. 3, 8 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Broyer, M., Guillot, M., Gubler, M. C. & Habib, R. Infantile cystinosis: a reappraisal of early and late symptoms. Adv. Nephrol. Necker Hosp. 10, 137–166 (1981).

    CAS  PubMed  Google Scholar 

  40. Klusmann, M., Van' t Hoff, W., Monsell, F. & Offiah, A. C. Progressive destructive bone changes in patients with cystinosis. Skeletal Radiol. http://dx.doi.org/10.1007/s00256-013-1735-z

  41. Bacchetta, J. et al. Skeletal implications and management of cystinosis: three case reports and literature review. Bonekey Rep. 5, 828 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ballantyne, A. O. & Trauner, D. A. Neurobehavioral consequences of a genetic metabolic disorder: visual processing deficits in infantile nephropathic cystinosis. Cogn. Behav. Neurol. 13, 254–263 (2000).

    CAS  Google Scholar 

  43. Scarvie, K. M., Ballantyne, A. O. & Trauner, D. A. Visuomotor performance in children with infantile nephropathic cystinosis. Percep. Mot. Skills 82, 67–75 (1996).

    Article  CAS  Google Scholar 

  44. Trauner, D. A., Chase, C., Scheller, J., Katz, B. & Schneider, J. A. Neurologic and cognitive deficits in children with cystinosis. J. Pediatr. 112, 912–914 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Trauner, D. A., Spilkin, A. M., Williams, J. & Babchuck, L. Specific cognitive deficits in young children with cystinosis: evidence for an early effect of the cystinosin gene on neural function. J. Pediatr. 151, 192–196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trauner, D. A. et al. Neurological impairment in nephropathic cystinosis: motor coordination deficits. Pediatr. Nephrol. 25, 2061–2066 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Viltz, L. & Trauner, D. A. Effect of age at treatment on cognitive performance in patients with cystinosis. J. Pediatr. 163, 489–492 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anikster, Y. et al. Pulmonary dysfunction in adults with nephropathic cystinosis. Chest 119, 394–401 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Sonies, B. C., Almajid, P., Kleta, R., Bernardini, I. & Gahl, W. A. Swallowing dysfunction in 101 patients with nephropathic cystinosis: benefit of long-term cysteamine therapy. Medicine 84, 137–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Levy, M. & Feingold, J. Estimating prevalence in single-gene kidney diseases progressing to renal failure. Kidney Int. 58, 925–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Bois, E., Feingold, J., Frenay, P. & Briard, M.-L. Infantile cystinosis in France: genetics, incidence, geographic distribution. J. Med. Genet. 13, 434–438 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cochat, P., Cordier, B., Lacôte, C. & Saïd, M.-H. in Cystinosis (ed. Broyer, M.) 28–35 (Elsevier, 1999).

    Google Scholar 

  53. DeBraekeleer, M. Hereditary disorders in Saguenay-Lac-St-Jean (Quebec, Canada). Hum. Hered. 41, 141–146 (1991).

    Article  CAS  Google Scholar 

  54. Attard, M. et al. Severity of phenotype in cystinosis varies with mutations in the CTNS gene: predicted effect on the model of cystinosin. Hum. Mol. Genet. 8, 2507–2514 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Kalatzis, V. et al. Characterization of a putative founder mutation that accounts for the high incidence of cystinosis in Brittany. J. Am. Soc. Nephrol. 12, 2170–2174 (2001).

    CAS  PubMed  Google Scholar 

  56. McGowan-Jordan, J. et al. Molecular Analysis of Cystinosis: Probable Irish Origin of the Most Common French Canadian Mutation. Eur. J. Hum. Genet. 7, 671–678 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Anikster, Y. et al. Identification and detection of the common 65-kb deletion breakpoint in the nephropathic cystinosis gene (CTNS). Mol. Genet. Metab. 66, 111–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Aldahmesh, M. A. et al. Characterization of CTNS mutations in Arab patients with cystinosis. Ophthalm. Genet. 30, 185–189 (2009).

    Article  CAS  Google Scholar 

  59. Owen, E. P. et al. Common mutation causes cystinosis in the majority of black South African patients. Pediatr. Nephrol. 30, 595–601 (2015).

    Article  PubMed  Google Scholar 

  60. Shahkarami, S., Galehdari, H., Ahmadzadeh, A., Babaahmadi, M. & Pedram, M. The first molecular genetics analysis of individuals suffering from nephropatic cystinosis in the Southwestern Iran. Nefrologia 33, 308–315 (2013).

    PubMed  Google Scholar 

  61. Soliman, N. A. et al. Mutational Spectrum of the CTNS Gene in Egyptian Patients with Nephropathic Cystinosis. JIMD reports 14, 87–97 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Aly, R., Makar, S., El Bakri, A. & Soliman, N. A. Neurocognitive functions and behavioral profiles in children with nephropathic cystinosis. Saudi J. Kidney Dis. Transpl. 25, 1224–1231 (2014).

    Article  PubMed  Google Scholar 

  63. Elmonem, M. A. et al. Lysosomal Storage Disorders in Egyptian Children. Indian J. Pediatr. 8, 805–813 (2016).

    Article  Google Scholar 

  64. Mirdehghan, M., Ahmadzadeh, A., Bana-Behbahani, M., Motlagh, I. & Chomali, B. Infantile cystinosis. Indian Pediatr. 40, 21–24 (2003).

    CAS  PubMed  Google Scholar 

  65. Kir'ianov, N. A., Bazhenov, E. L. & Stetsenko, E. V. [Cystinosis in an adult]. Arkh. Patol. 54, 34–36 (1992).

    CAS  PubMed  Google Scholar 

  66. Tang, S., Danda, S., Zoleikhaeian, M., Simon, M. & Huang, T. An Indian boy with nephropathic cystinosis: a case report and molecular analysis of CTNS mutation. Genet. Test. Mol. Biomarkers 13, 435–438 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, Y. J. et al. First report of CTNS mutations in a Chinese family with infantile cystinosis. ScientificWorldJournal 2015, 309410 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. The Cystinosis Collaborative Research Group. Linkage of the gene for cystinosis to markers on the short arm of chromosome 17. Nat. Genet. 10, 246–248 (1995).

  69. Taranta, A. et al. Identification and subcellular localization of a new cystinosin isoform. Am. J. Physiol. Renal Physiol. 294, F1101–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Bellomo, F. et al. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting. PLoS ONE 11, e0154805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Taranta, A. et al. Distribution of cystinosin-LKG in human tissues. Histochem. Cell Biol. 138, 351–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Andrzejewska, Z. et al. Lysosomal Targeting of Cystinosin Requires AP-3. Traffic 16, 712–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Kyttala, A., Ihrke, G., Vesa, J., Schell, M. J. & Luzio, J. P. Two motifs target Batten disease protein CLN3 to lysosomes in transfected nonneuronal and neuronal cells. Mol. Biol. Cell 15, 1313–1323 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Saudek, V. Cystinosin, MPDU1, SWEETs and KDELR belong to a well-defined protein family with putative function of cargo receptors involved in vesicle trafficking. PLoS ONE 7, e30876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ruivo, R. et al. Mechanism of proton/substrate coupling in the heptahelical lysosomal transporter cystinosin. Proc. Natl Acad. Sci. USA 109, E210–217 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, Y., Nishizawa, T., Yamashita, K., Ishitani, R. & Nureki, O. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nat. Commun. 6, 6112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jezegou, A. et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc. Natl Acad. Sci. USA 109, E3434–3443 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Thamotharan, M., Lombardo, Y. B., Bawani, S. Z. & Adibi, S. A. An active mechanism for completion of the final stage of protein degradation in the liver, lysosomal transport of dipeptides. J. Biol. Chem. 272, 11786–11790 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Thoene, J. et al. In vitro correction of disorders of lysosomal transport by microvesicles derived from baculovirus-infected Spodoptera cells. Mol. Genet. Metab. 109, 77–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Leinekugel, P., Michel, S., Conzelmann, E. & Sandhoff, K. Quantitative Correlation between the Residual Activity of Beta-Hexosaminidase-a and Arylsulfatase-a and the Severity of the Resulting Lysosomal Storage Disease. Hum. Genet. 88, 513–523 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Kalatzis, V., Nevo, N., Cherqui, S., Gasnier, B. & Antignac, C. Molecular pathogenesis of cystinosis: effect of CTNS mutations on the transport activity and subcellular localization of cystinosin. Hum. Mol. Genet. 13, 1361–1371 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Thoene, J. G. & Lemons, R. M. Cystine accumulation in cystinotic fibroblasts from free and protein-linked cystine but not cysteine. Biochem. J. 208, 823–830 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thoene, J. G. & Lemons, R. Modulation of the intracellular cystine content of cystinotic fibroblasts by extracellular albumin. Pediatr. Res. 14, 785–787 (1980).

    Article  CAS  PubMed  Google Scholar 

  84. Thoene, J. G., Oshima, R. G., Ritchie, D. G. & Schneider, J. A. Cystinotic fibroblasts accumulate cystine from intracellular protein degradation. Proc. Natl Acad. Sci. USA 74, 4505–4507 (1977).

    Article  CAS  PubMed  Google Scholar 

  85. Amsellem, S. et al. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J. Am. Soc. Nephrol. 21, 1859–1867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ovunc, B. et al. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria. J. Am. Soc. Nephrol. 22, 1815–1820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Oude Elferink, R. P., Harms, E., Strijland, A. & Tager, J. M. The intralysosomal pH in cultured human skin fibroblasts in relation to cystine accumulation in patients with cystinosis. Biochem. Biophys. Res. Commun. 116, 154–161 (1983).

    Article  CAS  PubMed  Google Scholar 

  88. Elmonem, M. A. et al. Cystinosis: a review. Orphanet J. Rare Diseases 11, 47 (2016).

    Article  Google Scholar 

  89. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Montgomery, R. R., Webster, P. & Mellman, I. Accumulation of indigestible substances reduces fusion competence of macrophage lysosomes. J. Immunol. 147, 3087–3095 (1991).

    CAS  PubMed  Google Scholar 

  91. Gaide Chevronnay, H. P. et al. Time course of pathogenic and adaptation mechanisms in cystinotic mouse kidneys. J. Am. Soc. Nephrol. 25, 1256–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gubler, M. C., Lacoste, M., Sich, M. & Broyer, M. in Cystinosis Vol. 1st (ed. Broyer, M.) 42–48 (Elsevier, 1999).

    Google Scholar 

  93. Prencipe, G. et al. Inflammasome activation by cystine crystals: implications for the pathogenesis of cystinosis. J. Am. Soc. Nephrol. 25, 1163–1169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baum, M. The Fanconi syndrome of cystinosis: insights into the pathophysiology. Pediatr. Nephrol. 12, 492–497 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Coor, C., Salmon, R. F., Quigley, R., Marver, D. & Baum, M. Role of adenosine triphosphate (ATP) and NaK ATPase in the inhibition of proximal tubule transport with intracellular cystine loading. J. Clin. Invest. 87, 955–961 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Foreman, J. W. et al. Metabolic studies of rat renal tubule cells loaded with cystine: the cystine dimethylester model of cystinosis. J. Am. Soc. Nephrol. 6, 269–272 (1995).

    CAS  PubMed  Google Scholar 

  97. Wilmer, M. J., van den Heuvel, L. P. & Levtchenko, E. N. The use of CDME in cystinosis research. Neurochem. Res. 33, 2373–2374 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Levtchenko, E. N. et al. Decreased intracellular ATP content and intact mitochondrial energy generating capacity in human cystinotic fibroblasts. Pediatr. Res. 59, 287–292 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Wilmer, M. J. et al. Mitochondrial complex V expression and activity in cystinotic fibroblasts. Pediatr. Res. 64, 495–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Taub, M. L., Springate, J. E. & Cutuli, F. Reduced phosphate transport in the renal proximal tubule cells in cystinosis is due to decreased expression of transporters rather than an energy defect. Biochem. Biophys. Res. Commun. 407, 355–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Taub, M. & Cutuli, F. Activation of AMP kinase plays a role in the increased apoptosis in the renal proximal tubule in cystinosis. Biochem. Biophys. Res. Commun. 426, 516–521 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Park, M., Helip-Wooley, A. & Thoene, J. Lysosomal cystine storage augments apoptosis in cultured human fibroblasts and renal tubular epithelial cells. J. Am. Soc. Nephrol. 13, 2878–2887 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Park, M. A., Pejovic, V., Kerisit, K. G., Junius, S. & Thoene, J. G. Increased apoptosis in cystinotic fibroblasts and renal proximal tubule epithelial cells results from cysteinylation of protein kinase Cdelta. J. Am. Soc. Nephrol. 17, 3167–3175 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Galarreta, C. I. et al. The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis. Am. J. Physiol. Renal Physiol. 308, F1155–1166 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Sansanwal, P., Kambham, N. & Sarwal, M. M. Caspase-4 may play a role in loss of proximal tubules and renal injury in nephropathic cystinosis. Pediatr. Nephrol. 25, 105–109 (2010).

    Article  PubMed  Google Scholar 

  106. Chol, M., Nevo, N., Cherqui, S., Antignac, C. & Rustin, P. Glutathione precursors replenish decreased glutathione pool in cystinotic cell lines. Biochem. Biophys. Res. Commun. 324, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Levtchenko, E. et al. Altered status of glutathione and its metabolites in cystinotic cells. Nephrol. Dial. Transplant. 20, 1828–1832 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Wilmer, M. J. et al. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells. Biochem. Biophys. Res. Commun. 337, 610–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Mannucci, L. et al. Impaired activity of the gamma-glutamyl cycle in nephropathic cystinosis fibroblasts. Pediatr. Res. 59, 332–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Rizzo, C. et al. Pyroglutamic aciduria and nephropathic cystinosis. J. Inherited Metabol. Dis. 22, 224–226 (1999).

    Article  CAS  Google Scholar 

  111. Laube, G. F. et al. Glutathione depletion and increased apoptosis rate in human cystinotic proximal tubular cells. Pediatr. Nephrol. 21, 503–509 (2006).

    Article  PubMed  Google Scholar 

  112. Sakarcan, A., Timmons, C. & Baum, M. Intracellular distribution of cystine in cystine-loaded proximal tubules. Pediatr. Res. 35, 447–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Spear, G. S., Slusser, R. J., Tousimis, A. J., Taylor, C. G. & Schulman, J. D. Cystinosis. An ultrastructural and electron-probe study of the kidney with unusual findings. Arch. Pathol. 91, 206–221 (1971).

    CAS  PubMed  Google Scholar 

  114. Pache de Faria Guimaraes, L. et al. N-Acetyl-cysteine is associated to renal function improvement in patients with nephropathic cystinosis. Pediatr. Nephrol. 29, 1097–1102 (2014).

    PubMed  Google Scholar 

  115. Moldeus, P., Ormstad, K. & Reed, D. J. Turnover of cellular glutathione in isolated rat-kidney cells. Role of cystine and methionine. Eur. J. Biochem. 116, 13–16 (1981).

    Article  CAS  PubMed  Google Scholar 

  116. Meister, A., Anderson, M. E. & Hwang, O. Intracellular cysteine and glutathione delivery systems. J. Am. College Nutr. 5, 137–151 (1986).

    Article  CAS  Google Scholar 

  117. Frey, I. M. et al. Profiling at mRNA, protein, and metabolite levels reveals alterations in renal amino acid handling and glutathione metabolism in kidney tissue of Pept2−/− mice. Physiol. Genom. 28, 301–310 (2007).

    Article  CAS  Google Scholar 

  118. Ahmed, K., Dasgupta, P. & Khan, M. S. Cystine calculi: challenging group of stones. Postgrad. Med. J. 82, 799–801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kessler, A. et al. Antioxidant effect of cysteamine in brain cortex of young rats. Neurochem. Res. 33, 737–744 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Okamura, D. M. et al. Cysteamine modulates oxidative stress and blocks myofibroblast activity in CKD. J. Am. Soc. Nephrol. 25, 43–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Wilmer, M. J. et al. Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells. Biochim. Biophys. Acta 1812, 643–651 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Raggi, C. et al. Dedifferentiation and aberrations of the endolysosomal compartment characterize the early stage of nephropathic cystinosis. Hum. Mol. Genet. 23, 2266–2278 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Ivanova, E. A. et al. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin. PLoS ONE 10, e0120998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Christensen, E. I. et al. Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc. Natl Acad. Sci. USA 100, 8472–8477 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Vicinanza, M. et al. OCRL controls trafficking through early endosomes via PtdIns4,5P(2)-dependent regulation of endosomal actin. EMBO J. 30, 4970–4985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bandyopadhyay, D., Cyphersmith, A., Zapata, J. A., Kim, Y. J. & Payne, C. K. Lysosome transport as a function of lysosome diameter. PLoS ONE 9, e86847 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, X. et al. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat. Cell Biol. 18, 404–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ivanova, E. A. et al. Ca(2+) signalling in human proximal tubular epithelial cells deficient for cystinosin. Cell Calcium 60, 282–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Johnson, J. L. et al. Upregulation of the Rab27a-dependent trafficking and secretory mechanisms improves lysosomal transport, alleviates endoplasmic reticulum stress, and reduces lysosome overload in cystinosis. Mol. Cell. Biol. 33, 2950–2962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schulman, J. D., Bradley, K. H. & Seegmiller, J. E. Cystine: compartmentalization within lysosomes in cystinotic leukocytes. Science 166, 1152–1154 (1969).

    Article  CAS  PubMed  Google Scholar 

  131. Kooistra, T., Millard, P. C. & Lloyd, J. B. Role of thiols in degradation of proteins by cathepsins. Biochem. J. 204, 471–477 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Efeyan, A., Zoncu, R. & Sabatini, D. M. Amino acids and mTORC1: from lysosomes to disease. Trends Mol. Med. 18, 524–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Napolitano, G. et al. Impairment of chaperone-mediated autophagy leads to selective lysosomal degradation defects in the lysosomal storage disease cystinosis. EMBO Mol. Med. 2, 158–174 (2015).

    Article  CAS  Google Scholar 

  135. Sansanwal, P. et al. Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J. Am. Soc. Nephrol. 21, 272–283 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol. 12, 587–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Laplante, M. & Sabatini, D. M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126, 1713–1719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Martina, J. A. & Puertollano, R. RRAG GTPases link nutrient availability to gene expression, autophagy and lysosomal biogenesis. Autophagy 9, 928–930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Andrzejewska, Z. et al. Cystinosin is a Component of the Vacuolar H+-ATPase-Ragulator-Rag Complex Controlling Mammalian Target of Rapamycin Complex 1 Signaling. J. Am. Soc. Nephrol. 27, 1678–1688 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Ivanova, E. A. et al. Altered mTOR signalling in nephropathic cystinosis. J. Inherited Metabol. Dis. 39, 457–464 (2016).

    Article  CAS  Google Scholar 

  144. Gleixner, E. M. et al. V-ATPase/mTOR signaling regulates megalin-mediated apical endocytosis. Cell Rep. 8, 10–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Rega, L. R. et al. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells. Kidney Int. 89, 862–873 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kaushik, S. & Cuervo, A. M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22, 407–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kiffin, R., Christian, C., Knecht, E. & Cuervo, A. M. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell 15, 4829–4840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A. M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 103, 5805–5810 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Balmer, C. et al. Familial X-linked cardiomyopathy (Danon disease): diagnostic confirmation by mutation analysis of the LAMP2gene. Eur. J. Pediatr. 164, 509–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Fanin, M. et al. Generalized lysosome-associated membrane protein-2 defect explains multisystem clinical involvement and allows leukocyte diagnostic screening in Danon disease. Am. J. Pathol. 168, 1309–1320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Horvath, J. et al. Identification of a novel LAMP2 mutation responsible for X-chromosomal dominant Danon disease. Neuropediatrics 34, 270–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Lima, W. R. et al. ZONAB promotes proliferation and represses differentiation of proximal tubule epithelial cells. J. Am. Soc. Nephrol. 21, 478–488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Janssens, V. et al. in Fifth International Cystinosis Research Symposium (Univ. of California, 2016).

    Google Scholar 

  155. Chevalier, R. L. The proximal tubule in cystinosis: fight or flight? J. Am. Soc. Nephrol. 25, 1131–1132 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chevalier, R. L. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am. J. Physiol. Renal Physiol. 311, F145–161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Andrzejewska, Z. et al. Cystinosin is a Component of the Vacuolar H+-ATPase-Ragulator-Rag Complex Controlling Mammalian Target of Rapamycin Complex 1 Signaling. J. Am. Soc. Nephrol. 6, 1678–1688 (2015).

    Google Scholar 

  158. Dohil, R. et al. Long-term treatment of cystinosis in children with twice-daily cysteamine. J. Pediatr. 156, 823–827 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Gangoiti, J. A. et al. Pharmacokinetics of enteric-coated cysteamine bitartrate in healthy adults: a pilot study. Br. J. Clin. Pharmacol. 70, 376–382 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dohil, R. & Cabrera, B. L. Treatment of cystinosis with delayed-release cysteamine: 6-year follow-up. Pediatr. Nephrol. 28, 507–510 (2013).

    Article  PubMed  Google Scholar 

  161. Dohil, R. et al. Twice-daily cysteamine bitartrate therapy for children with cystinosis. J. Pediatr. 156, 71–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Goldenberg, M. M. Pharmaceutical approval update. PT. 38, 323–324 (2013).

    Google Scholar 

  163. Langman, C. B. et al. Quality of life is improved and kidney function preserved in patients with nephropathic cystinosis treated for 2 years with delayed-release cysteamine bitartrate. J. Pediatr. 165, 528–533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Langman, C. B. et al. A randomized controlled crossover trial with delayed-release cysteamine bitartrate in nephropathic cystinosis: effectiveness on white blood cell cystine levels and comparison of safety. Clin. J. Am. Soc. Nephrol. 7, 1112–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kaiser-Kupfer, M. I. et al. A randomized placebo-controlled trial of cysteamine eye drops in nephropathic cystinosis. Arch. Ophthalmol. 108, 689–693 (1990).

    Article  CAS  PubMed  Google Scholar 

  166. Kumar, A. & Bachhawat, A. K. A futile cycle, formed between two ATP-dependant gamma-glutamyl cycle enzymes, gamma-glutamyl cysteine synthetase and 5-oxoprolinase: the cause of cellular ATP depletion in nephrotic cystinosis? J. Biosci. 35, 21–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Anguiano, J. et al. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat. Chem. Biol. 9, 374–382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. McNeill, A. et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 137, 1481–1495 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Medina, D. L. et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21, 421–430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535–12544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Moskot, M. et al. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J. Biol. Chem. 289, 17054–17069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Piotrowska, E. et al. Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur. J. Hum. Genet. 14, 846–852 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Piotrowska, E. et al. Genistin-rich soy isoflavone extract in substrate reduction therapy for Sanfilippo syndrome: An open-label, pilot study in 10 pediatric patients. Curr. Ther. Res. Clin. Exp. 69, 166–179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee, K. Y., Kim, J. R. & Choi, H. C. Genistein-induced LKB1-AMPK activation inhibits senescence of VSMC through autophagy induction. Vascul. Pharmacol. 81, 75–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Harrison, F. et al. Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis. Mol. Ther. 21, 433–444 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Syres, K. et al. Successful treatment of the murine model of cystinosis using bone marrow cell transplantation. Blood 114, 2542–2552 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Beck, M. Therapy for lysosomal storage disorders. IUBMB Life 62, 33–40 (2010).

    CAS  PubMed  Google Scholar 

  179. Naphade, S. et al. Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 33, 301–309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Iglesias, D. M. et al. Stem cell microvesicles transfer cystinosin to human cystinotic cells and reduce cystine accumulation in vitro. PLoS ONE 7, e42840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Onfelt, B. et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177, 8476–8483 (2006).

    Article  PubMed  Google Scholar 

  182. Marzo, L., Gousset, K. & Zurzolo, C. Multifaceted roles of tunneling nanotubes in intercellular communication. Frontiers Physiol. 3, 72 (2012).

    Article  CAS  Google Scholar 

  183. Sowinski, S., Alakoskela, J. M., Jolly, C. & Davis, D. M. Optimized methods for imaging membrane nanotubes between T cells and trafficking of HIV-1. Methods 53, 27–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Humphreys, B. D. Kidney injury, stem cells and regeneration. Curr. Opin. Nephrol. Hypertens. 23, 25–31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Yeagy, B. A. & Cherqui, S. Kidney repair and stem cells: a complex and controversial process. Pediatr. Nephrol. 26, 1427–1434 (2011).

    Article  PubMed  Google Scholar 

  186. Abrahamson, D. R. & Leardkamolkarn, V. Development of kidney tubular basement membranes. Kidney Int. 39, 382–393 (1991).

    Article  CAS  PubMed  Google Scholar 

  187. Halfter, W. et al. Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adhesion Migr. 7, 64–71 (2013).

    Article  Google Scholar 

  188. Rocca, C. J. et al. Treatment of Inherited Eye Defects by Systemic Hematopoietic Stem Cell Transplantation. Investigative Ophthalmol. Visual Sci. 56, 7214–7223 (2015).

    Article  Google Scholar 

  189. Gaide Chevronnay, H. P. et al. Hematopoietic stem cell transplantation can normalize thyroid function in a cystinosis mouse model. Endocrinology 56, 1363–1371 (2016).

    Article  CAS  Google Scholar 

  190. Soos, T. J. et al. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int. 70, 591–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Biffi, A. et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341, 1233158 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Cartier, N. et al. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol. 507, 187–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. DiGiusto, D. L. et al. Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses 5, 2898–2919 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Drakopoulou, E., Papanikolaou, E., Georgomanoli, M. & Anagnou, N. P. Towards more successful gene therapy clinical trials for beta-thalassemia. Curr. Mol. Med. 13, 1314–1330 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Zhang, L., Thrasher, A. J. & Gaspar, H. B. Current progress on gene therapy for primary immunodeficiencies. Gene Ther. 20, 963–969 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Pisoni, R. L., Acker, T. L., Lisowski, K. M., Lemons, R. M. & Thoene, J. G. A cysteine-specific lysosomal transport system provides a major route for the delivery of thiol to human fibroblast lysosomes: possible role in supporting lysosomal proteolysis. J. Cell Biol. 110, 327–335 (1990).

    Article  CAS  PubMed  Google Scholar 

  197. Lloyd, J. B. Disulphide reduction in lysosomes. The role of cysteine. Biochem. J. 237, 271–272 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lloyd, J. B. Lysosomal handling of cystine residues: stoichiometry of cysteine involvement. Biochem. J. 286, 979–980 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Pisoni, R. L., Park, G. Y., Velilla, V. Q. & Thoene, J. G. Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives. J. Biol. Chem. 270, 1179–1184 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.C. and PJ.C. are funded by the Cystinosis Research Foundation, as well as NIH grants RO1-DK090058, R21-NS090066 and grant from the Sanford Stem Cell Clinical Center (to S.C.), and Belgian F.R.S./FNRS (to P.J.C.). We acknowledge Corinne Antignac, Imagine Institute, France, for her helpful comments while assembling this Review, Heloïse Gaide Chevronnay, CELL, de Duve Institute, Belgium, for her pivotal collaboration, and Patrick Van Der Smissen, CELL & PICT, de Duve Institute, Belgium, for kindly providing electron micrographs used in Fig. 2. We are also grateful to numerous colleagues who have provided so many insightful comments and contributive suggestions over the years.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and P.J.C. contributed equally to researching data for the article, discussion of the content, and revising or editing the manuscript before submission.

Corresponding author

Correspondence to Stephanie Cherqui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

DATABASES

MIM 219800

MIM 219900

MIM 219750

Glossary

Swan neck deformities

Tubular lesions that appear in microdissected nephrons as long atrophic tubules (the 'swan necks'), appending below the glomeruli (the 'swan heads').

Founder mutations

Mutations that appear in the DNA of one or more individuals who are founders of a distinct population.

Km

Concentration of half-maximal rate. For a transporter, the Km value is inversely related to its affinity for its cargo.

Half-cystine

In biochemical assays, cystine values are reported as half-molecules because cystine was originally measured in reducing conditions (as cysteine), and cysteine is half a molecule of cystine. Cystine is now directly measured as cystine using a mass spectrometer but the values are still reported as half-cystine per mg of protein.

Lysosomal fusion

Fusion of acidified late endosomes carrying endocytic cargo with resting lysosomes bearing concentrated enzymes, or fusion between resting overloaded lysosomes (then also called interlysosomal fusion).

Lysosomal fission

Vesicular budding from endolysosomes (to regenerate late endosomes and resting lysosomes), or division of overloaded resting lysosomes into smaller ones to randomize residual content by interlysosomal fusion.

Residual body

A resting lysosome, filled with undigestible content, that no longer engages in vesicular trafficking.

Lysosomal defecation

Active exocytosis of overloaded lysosomes. This lysosomal clearing activity is stimulated by transcription factor EB.

Lysosomal amino acid sensors

Component or interacting partner of the mTOR-complex machinery that informs mTOR kinase on starvation or amino acid abundance.

Low molecular weight proteinuria

A commonly used term to describe tubular proteinuria due to defective proximal tubular endocytosis of plasma proteins selectively ultrafiltrated according to their size and/or sieving coefficient (thus excluding IgGs and other high molecular weight (MW) proteins), as opposed to non-selective glomerular leak. This terminology is convenient, but might be misleading since pure tubular proteinuria typically includes relatively high MW proteins such as transferrin (80 kDa) and even larger globular proteins.

Cross-correction

Transfer of functional protein from normal cells to deficient cells.

Pathogen spreading

Transmission of bacteria, virus or parasites from one cell to another. Bacteria and virus such as HIV have been shown to colonize cells using the tunnelling nanotube route.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherqui, S., Courtoy, P. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 13, 115–131 (2017). https://doi.org/10.1038/nrneph.2016.182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing