Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The epigenetic landscape of renal cancer

Key Points

  • The most common mutations in renal cancers occur in the VHL gene; they disrupt many cellular pathways, notably those involved in the hypoxic response

  • Other common mutations affect genes encoding proteins involved in histone modification and chromatin remodelling; mutations of these epigenetic modifier genes influence genome-wide gene expression

  • Many key pathways involved in physiological renal cell function are disrupted by inappropriate silencing of component genes through methylation of CpG regions in promoters; these disruptions contribute to renal cancer development

  • Alteration of the expression of microRNAs (miRNAs) in renal cancers contributes to the disruption of important cellular networks

  • In Wilms tumour, a common childhood renal cancer, miRNA maturation and degradation are often disrupted via mutations of key components of the miRNA biogenesis pathway

  • Epigenetically disrupted genes in renal cancers are good candidate targets for the development of robust prognostic and diagnostic tools and novel therapeutics

Abstract

The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Involvement of pVHL in cellular physiology and RCC.
Figure 2: Histone acetylation regulates gene expression.
Figure 3: Multiple pathways are epigenetically dysregulated in renal cancer.
Figure 4: microRNAs control the balance of tumour-suppressor HIF1α and oncogenic HIF2.
Figure 5: microRNA pathways dysregulated in Wilms tumours.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Alt, A. L. et al. Survival after complete surgical resection of multiple metastases from renal cell carcinoma. Cancer 117, 2873–2882 (2011).

    Article  PubMed  Google Scholar 

  3. Morris, M. R. & Maher, E. R. Epigenetics of renal cell carcinoma: the path towards new diagnostics and therapeutics. Genome Med. 2, 59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  5. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

  6. Ricketts, C. J. et al. Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma. Epigenetics 7, 278–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ricketts, C. J. et al. Methylation profiling and evaluation of demethylating therapy in renal cell carcinoma. Clin. Epigenetics 5, 16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morris, M. R. et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30, 1390–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Hoffman, A. M. & Cairns, P. Epigenetics of kidney cancer and bladder cancer. Epigenomics 3, 19–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Laird, P. W. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Londin, E. et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc. Natl Acad. Sci. USA 112, E1106–E1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Lopez-Beltran, A., Scarpelli, M., Montironi, R. & Kirkali, Z. 2004 WHO classification of the renal tumors of the adults. Eur. Urol. 49, 798–805 (2006).

    Article  PubMed  Google Scholar 

  17. Breslow, N., Beckwith, J. B., Ciol, M. & Sharples, K. Age distribution of Wilms' tumor: report from the National Wilms' Tumor Study. Cancer Res. 48, 1653–1657 (1988).

    CAS  PubMed  Google Scholar 

  18. Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Moore, L. E. et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 7, e1002312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nickerson, M. L. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 15, 55–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Kibel, A., Iliopoulos, O., DeCaprio, J. A. & Kaelin, W. G. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Tomlinson, I. P. M. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Morris, M. R. et al. Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. J. Clin. Pathol. 57, 706–711 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vanharanta, S. et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet. 74, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Astuti, D. et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet 357, 1181–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ricketts, C. et al. Germline SDHB mutations and familial renal cell carcinoma. J. Natl Cancer Inst. 100, 1260–1262 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancel Cell 8, 143–153 (2005).

    Article  CAS  Google Scholar 

  35. Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fischbach, B. V., Trout, K. L., Lewis, J., Luis, C. A. & Sika, M. WAGR syndrome: a clinical review of 54 cases. Pediatrics 116, 984–988 (2005).

    Article  PubMed  Google Scholar 

  37. Ruteshouser, E. C., Robinson, S. M. & Huff, V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 47, 461–470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Torrezan, G. T. et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 5, 4039 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Rakheja, D. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat. Commun. 2, 4802 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell. Biol. 16, 258–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iorio, M. V. et al. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4, 143–159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geisler, S. & Coller, J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell. Biol. 14, 699–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet. 14, 765–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Patil, V., Ward, R. L. & Hesson, L. B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9, 823–828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. David Allis, C. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Easwaran, H. & Baylin, S. B. Epigenetic abnormalities in cancer find a “home on the range”. Cancer Cell 23, 1–3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han, H. et al. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum. Mol. Genet. 20, 4299–4310 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stirzaker, C. et al. Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat. Commun. 6, 58999 (2015).

    Article  CAS  Google Scholar 

  55. Goelz, S. E., Vogelstein, B., Hamilton, S. R. & Feinberg, A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187–190 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Jaenisch, R., Chen, R. Z., Pettersson, U., Beard, C. & Jackson-Grusby, L. DNA hypomethylation leads to elevated mutation rates. Nature 395, 89–93 (1998).

    Article  PubMed  Google Scholar 

  57. Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Ohtani-Fujita, N. et al. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8, 1063–1067 (1993).

    CAS  PubMed  Google Scholar 

  59. Hattori, N. & Ushijima, T. Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem. Biophys. Res. Commun. 455, 3–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Malouf, G. et al. Association of CpG island methylator phenotype with clear-cell renal cell carcinoma aggressiveness [abstract]. J. Clin. Oncol. 32, 4574 (2014).

    Article  Google Scholar 

  61. Hughes, L. A. et al. The CpG island methylator phenotype: what's in a name? Cancer Res. 73, 5858–5868 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Lin, R.-K. & Wang, Y.-C. Dysregulated transcriptional and post-translational control of DNA methyltransferases in cancer. Cell Biosci. http://dx.doi.org/10.1186/2045-3701-4-46 (2014).

  63. Hermann, A., Gowher, H. & Jeltsch, A. Biochemistry and biology of mammalian DNA methyltransferases. Cell. Mol. Life Sci. 61, 2571–2587 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Ropero, S. & Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1, 19–25 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He, Y.-F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pfeifer, G. P., Kadam, S. & Jin, S.-G. 5-Hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin 6, 10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 5, e15367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Munari, E. et al. Global 5-hydroxymethylcytosine levels are profoundly reduced in multiple genitourinary malignancies. PLoS ONE 11, e0146302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sérandour, A. A. et al. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res. 40, 8255–8265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zbar, B., Brauch, H., Talmadge, C. & Linehan, M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327, 721–724 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. Valenta, T. et al. The many faces and functions of β-catenin. EMBO J. 31, 2714–2736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chitalia, V. C. et al. Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL. Nat. Cell Biol. 10, 1208–1216 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kruck, S. et al. Impact of an altered Wnt1/β-catenin expression on clinicopathology and prognosis in clear cell renal cell carcinoma. Int. J. Mol. Sci. 14, 10944–10957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Clifford, S. C., Prowse, A. H., Affara, N. A., Buys, C. H. & Maher, E. R. Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes. Chromosomes Cancer 22, 200–209 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Young, A. C. et al. Analysis of VHL gene alterations and their relationship to clinical parameters in sporadic conventional renal cell carcinoma. Clin. Cancer Res. 15, 7582–7592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Herman, J. G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA 91, 9700–9704 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Behrens, J. B. One hit, two outcomes for VHL-mediated tumorigenesis. Nat. Cell Biol. 10, 1127–1128 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Cruciat, C.-M. & Niehrs, C. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. http://dx.doi.org/10.1101/cshperspect.a015081 (2012).

  80. Gumz, M. L. et al. Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin. Cancer Res. 13, 4740–4749 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Kawakami, K. et al. Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res. 69, 8603–8610 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hirata, H. et al. Wnt antagonist gene DKK2 is epigenetically silenced and inhibits renal cancer progression through apoptotic and cell cycle pathways. Clin. Cancer Res. 15, 5678–5687 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Ueno, K. et al. Wnt antagonist DICKKOPF-3 (Dkk-3) induces apoptosis in human renal cell carcinoma. Mol. Carcinog. 50, 449–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Hirata, H. et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int. J. Cancer 128, 1793–1803 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Ibanez de Caceres, I. et al. Identification of novel target genes by an epigenetic reactivation screen of renal cancer. Cancer Res. 66, 5021–5028 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Ricketts, C. J., Hill, V. K. & Linehan, W. M. Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA Kidney Renal Clear Cell Carcinoma (KIRC) project. PLoS ONE 9, e85621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dallol, A. et al. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 21, 3020–3028 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Astuti, D. et al. SLIT2 promoter methylation analysis in neuroblastoma, Wilms' tumour and renal cell carcinoma. Br. J. Cancer 90, 515–521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gao, C. F. & Vande Woude, G. F. HGF/SF-Met signaling in tumor progression. Cell Res. 15, 49–51 (2005).

    Article  PubMed  Google Scholar 

  90. Mehlen, P., Delloye-Bourgeois, C. & Chédotal, A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat. Rev. Cancer 11, 188–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Yuasa-Kawada, J., Kinoshita-Kawada, M., Rao, Y. & Wu, J. Y. Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc. Natl Acad. Sci. USA 106, 14530–14535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stella, M. C., Trusolino, L. & Comoglio, P. M. The Slit/Robo system suppresses hepatocyte growth factor-dependent invasion and morphogenesis. Mol. Biol. Cell 20, 642–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hesson, L. B., Cooper, W. N. & Latif, F. Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene 26, 7283–7301 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Morrissey, C. et al. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res. 61, 7277–7281 (2001).

    CAS  PubMed  Google Scholar 

  95. Lusher, M. E. et al. Biallelic epigenetic inactivation of the RASSF1A tumor suppressor gene in medulloblastoma development. Cancer Res. 62, 5906–5911 (2002).

    CAS  PubMed  Google Scholar 

  96. Donninger, H., Vos, M. D. & Clark, G. J. The RASSF1A tumor suppressor. J. Cell Sci. 120, 3163–3172 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Albiges, L. et al. MET is a potential target across all papillary renal cell carcinomas: result from a large molecular study of pRCC with CGH array and matching gene expression array. Clin. Cancer Res. 20, 3411–3421 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Trusolino, L., Bertotti, A. & Comoglio, P. M. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell. Biol. 11, 834–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Kataoka, H. et al. Hepatocyte growth factor activator inhibitor type 1 is a specific cell surface binding protein of hepatocyte growth factor activator (HGFA) and regulates HGFA activity in the pericellular microenvironment. J. Biol. Chem. 275, 40453–40462 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Morris, M. R. et al. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res. 65, 4598–4606 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Behrens, J. et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/β-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J. Cell Biol. 120, 757–766 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Esteban, M. A. et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res. 66, 3567–3575 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Evans, A. J. et al. VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol. Cell. Biol. 27, 157–169 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 15, 178–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zavadil, J. & Böttinger, E. P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. van Roy, F. Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat. Rev. Cancer 14, 121–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. McRonald, F. E. et al. CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Mol. Cancer 8, 31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Morris, M. et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29, 2104–2117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mäki, J. M. Lysyl oxidases in mammalian development and certain pathological conditions. Histol. Histopathol. 24, 651–660 (2009).

    PubMed  Google Scholar 

  112. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell. Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Linehan, W. M. & Ricketts, C. J. The metabolic basis of kidney cancer. Semin. Cancer Biol. 23, 46–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Khoo, S. K. et al. Inactivation of BHD in sporadic renal tumors. Cancer Res. 63, 4583–4587 (2003).

    CAS  PubMed  Google Scholar 

  117. da Silva, N. F. et al. Analysis of the Birt–Hogg–Dubé (BHD) tumour suppressor gene in sporadic renal cell carcinoma and colorectal cancer. J. Med. Genet. 40, 820–824 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Deckers, I. A. et al. Promoter methylation of CDO1 identifies clear-cell renal cell cancer patients with poor survival outcome. Clin. Cancer Res. 21, 3492–3500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fisel, P. et al. DNA methylation of the SLC16A3 promoter regulates expression of the human lactate transporter MCT4 in renal cancer with consequences for clinical outcome. Clin. Cancer Res. 19, 5170–5181 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Stipanuk, M. H., Ueki, I., Dominy, J. E., Simmons, C. R. & Hirschberger, L. L. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37, 55–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Jeschke, J. et al. Frequent inactivation of cysteine dioxygenase type 1 contributes to survival of breast cancer cells and resistance to anthracyclines. Clin. Cancer Res. 19, 3201–3211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dietrich, D. et al. CDO1 promoter methylation is a biomarker for outcome prediction of anthracycline treated, estrogen receptor-positive, lymph node-positive breast cancer patients. BMC Cancer 10, 247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vedeld, H. M. et al. The novel colorectal cancer biomarkers CDO1, ZSCAN18 and ZNF331 are frequently methylated across gastrointestinal cancers. Int. J. Cancer 136, 844–853 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Meller, S. et al. CDO1 promoter methylation is associated with gene silencing and is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients. Epigenetics http://dx.doi.org/10.1080/15592294.2016.1241931 (2016).

  125. Dulaimi, E. et al. Promoter hypermethylation profile of kidney cancer. Clin. Cancer Res. 10, 3972–3979 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Morris, M. R. et al. Multigene methylation analysis of Wilms' tumour and adult renal cell carcinoma. Oncogene 22, 6794–6801 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Christoph, F. et al. Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer. Br. J. Cancer 95, 1701–1707 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bachman, K. E. et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res. 59, 798–802 (1999).

    CAS  PubMed  Google Scholar 

  129. Masson, D. et al. Loss of expression of TIMP3 in clear cell renal cell carcinoma. Eur. J. Cancer 46, 1430–1437 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Ellinger, J. et al. DNA hypermethylation in papillary renal cell carcinoma. BJU Int. 107, 664–669 (2011).

    Article  PubMed  Google Scholar 

  131. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  132. Siggens, L. & Ekwall, K. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J. Intern. Med. 276, 201–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Lizio, M. et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 16, 22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hu, C. Y. et al. Kidney cancer is characterized by aberrant methylation of tissue-specific enhancers that are prognostic for overall survival. Clin. Cancer Res. 20, 4349–4360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8, 389–399 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Thompson, M. Polybromo-1: the chromatin targeting subunit of the PBAF complex. Biochimie 91, 309–319 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Reisman, D., Glaros, S. & Thompson, E. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Ibragimova, I., Cairns, P., Maradeo, M. & Dulaimi, E. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin- modifying genes is absent or rare in clear cell RCC. Epigenetics 8, 486–493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Xia, W. et al. BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer. Cancer Res. 68, 1667–1674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Macher-Goeppinger, S. et al. PBRM1 (BAF180) protein is functionally regulated by p53-induced protein degradation in renal cell carcinomas. J. Pathol. 237, 460–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Pawłowski, R. et al. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int. J. Cancer 132, E11–E17 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Joseph, R. W. et al. Investigative Urology Clear Cell Renal Cell Carcinoma Subtypes Identified by BAP1 and PBRM1 Expression. J. Urol. 195, 180–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Sánchez-Tilló, E. et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 29, 3490–3500 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Yan, H.-B. et al. Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription. Carcinogenesis 35, 867–876 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Chowdhury, B. et al. PBRM1 regulates the expression of genes involved in metabolism and cell adhesion in renal clear cell carcinoma. PLoS ONE 11, e0153718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Brownlee, P. M., Chambers, A. L., Cloney, R., Bianchi, A. & Downs, J. A. BAF180 promotes cohesion and prevents genome instability and aneuploidy. Cell Rep. 6, 973–981 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  152. Sun, X.-J. et al. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J. Biol. Chem. 280, 35261–35271 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

  154. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Al Sarakbi, W. et al. The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters. BMC Cancer 9, 290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hakimi, A. A. et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin. Cancer Res. 19, 3259–3267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wagner, E. J. & Carpenter, P. B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell. Biol. 13, 115–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chantalat, S. et al. Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. Genome Res. 21, 1426–1437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Simon, J. M. et al. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res. 24, 241–250 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Carvalho, S. et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. eLife 3, e02482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li, F. et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153, 590–600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kooistra, S. M. & Helin, K. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell. Biol. 13, 297 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Niu, X. et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31, 776–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Schödel, J. et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur. Urol. 69, 646–657 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Peña-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Carbone, M. et al. BAP1 and cancer. Nat. Rev. Cancer 13, 153–159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nishikawa, H. et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 69, 111–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Pan, H. et al. BAP1 regulates cell cycle progression through E2F1 target genes and mediates transcriptional silencing via H2A monoubiquitination in uveal melanoma cells. Int. J. Biochem. Cell Biol. 60, 176–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Bott, M. et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat. Genet. 43, 668–672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kapur, P. et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet. Oncol. 14, 159–167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Griffiths-Jones, S. The microRNA registry. Nucleic Acids Res. 32, D109–D111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lin, S. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321–333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71–84 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Petillo, D. et al. MicroRNA profiling of human kidney cancer subtypes. Int. J. Oncol. 35, 109–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Sellitti, D. F. & Doi, S. Q. MicroRNAs in renal cell carcinoma. MicroRNA 4, 26–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Jerónimo, C. & Henrique, R. Epigenetic biomarkers in urological tumors: a systematic review. Cancer Lett. 342, 264–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Zaravinos, A. et al. New miRNA profiles accurately distinguish renal cell carcinomas and upper tract urothelial carcinomas from the normal kidney. PLoS ONE 9, e91646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Juan, D. et al. Identification of a microRNA panel for clear-cell kidney cancer. Urology 75, 835–841 (2010).

    Article  PubMed  Google Scholar 

  183. Gottardo, F. et al. Micro-RNA profiling in kidney and bladder cancers. Urol. Oncol. 25, 387–392 (2006).

    Article  CAS  Google Scholar 

  184. Jung, M. et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell. Mol. Med. 13, 3918–3928 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Huang, Y. et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur. J. Surg. Oncol. 35, 1119–1123 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Nakada, C. et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J. Pathol. 216, 418–427 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Osanto, S. et al. Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS ONE 7, e38298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25, 5675–5686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Shen, C. et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov. 1, 222–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mathew, L. K. et al. Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2a activity. Cancer Discov. http://dx.doi.org/10.1158/2159-8290.CD-13-0291 (2014).

  192. McCormick, R. I. et al. miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br. J. Cancer 108, 1133–1142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Huang, X. & Zuo, J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response. Acta Biochim. Biophys. Sin. (Shanghai). 46, 220–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Samaan, S. et al. miR-210 is a prognostic marker in clear cell renal cell carcinoma. J. Mol. Diagn. 17, 136–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Müller, S. et al. Exploring the miRNA-mRNA regulatory network in clear cell renal cell carcinomas by next-generation sequencing expression profiles. Biomed. Res. Int. 2014, 948408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kurozumi, A., Goto, Y., Okato, A., Ichikawa, T. & Seki, N. Aberrantly expressed microRNAs in bladder cancer and renal cell carcinoma. J. Hum. Genet. http://dx.doi.org/10.1038/jhg.2016.84 (2016).

  197. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial–mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Huang, J. et al. Hypoxia-induced downregulation of miR-30c promotes epithelial-mesenchymal transition in human renal cell carcinoma. Cancer Sci. 104, 1609–1617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen, X. et al. miR-141 is a key regulator of renal cell carcinoma proliferation and metastasis by controlling EphA2 expression. Clin. Cancer Res. 20, 2617–2630 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Sun, C. et al. Down-regulation of c-Met and Bcl2 by microRNA-206, activates apoptosis, and inhibits tumor cell proliferation, migration and colony formation. Oncotarget 6, 25533–25574 (2015).

    PubMed  PubMed Central  Google Scholar 

  205. Yan, D. et al. MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J. Biol. Chem. 284, 29596–29604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Xu, M. & Mo, Y.-Y. The Akt-associated microRNAs. Cell. Mol. Life Sci. 69, 3601–3612 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zaman, M. S. et al. Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS ONE 7, e50203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lian, J.-H., Wang, W.-H., Wang, J.-Q., Zhang, Y.-H. & Li, Y. MicroRNA-122 promotes proliferation, invasion and migration of renal cell carcinoma cells through the PI3K/Akt signaling pathway. Asian Pac. J. Cancer Prev. 14, 5017–5021 (2013).

    Article  PubMed  Google Scholar 

  209. Hildebrandt, M. A. et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene 29, 5724–5728 (2010).

    Article  CAS  PubMed  Google Scholar 

  210. Gebauer, K. et al. Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br. J. Cancer 108, 131–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Li, C. & Wang, Y. MicroRNAs in renal cell carcinoma: a systematic review of clinical implications. Oncol. Rep. 33, 1571–1578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Du, M. et al. Genetic variations in microRNAs and the risk and survival of renal cell cancer. Carcinogenesis 35, 1629–1635 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Lin, J. et al. Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis 31, 1805–1812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wu, M. K. et al. Biallelic DICER1 mutations occur in Wilms tumours. J. Pathol. 230, 154–164 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  216. Melton, C., Judson, R. L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Shyh-Chang, N. et al. Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell 12, 395–406 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Thornton, J. E. & Gregory, R. I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 22, 474–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971–982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chang, H.-M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. Nature 497, 244–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Faehnle, C. R., Walleshauser, J. & Joshua-Tor, L. Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway. Nature 514, 252–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lubas, M. et al. Exonuclease hDIS3L2 specifies an exosome-independent 3′-5′ degradation pathway of human cytoplasmic mRNA. EMBO J. 32, 1855–1868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ustianenko, D. et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Battagli, C. et al. Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res. 63, 8695–8699 (2003).

    CAS  PubMed  Google Scholar 

  227. Hoque, M. O. et al. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res. 64, 5511–5517 (2004).

    Article  CAS  PubMed  Google Scholar 

  228. de Martino, M., Klatte, T., Haitel, A. & Marberger, M. Serum cell-free DNA in renal cell carcinoma: a diagnostic and prognostic marker. Cancer 118, 82–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Bennett, K. L. et al. Germline and somatic DNA methylation and epigenetic regulation of KILLIN in renal cell carcinoma. Genes Chromosomes Cancer 50, 654–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Liao, L. M. et al. LINE-1 methylation levels in leukocyte DNA and risk of renal cell cancer. PLoS ONE 6, e27361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Urakami, S. et al. Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin. Cancer Res. 12, 6989–6997 (2006).

    Article  CAS  PubMed  Google Scholar 

  232. Malouf, G. G. et al. DNA methylation signature reveals cell ontogeny of renal cell carcinomas. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-15-1217 (2016).

  233. Wei, J.-H. et al. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Nat. Commun. 6, 8699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Winter, S. et al. Methylomes of renal cell lines and tumors or metastases differ significantly with impact on pharmacogenes. Sci. Rep. 6, 29930 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Kovac, M. et al. Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution. Nat. Commun. 6, 6336 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Jafri, M. et al. Germline mutations in the CDKN2B tumor suppressor gene predispose to renal cell carcinoma. Cancer Discov. 5, 723–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Wang, C. et al. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci. Rep. 5, 7610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Fedorko, M. et al. Combination of MiR-378 and MiR-210 serum levels enables sensitive detection of renal cell carcinoma. Int. J. Mol. Sci. 16, 23382–23389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Redova, M. et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J. Transl Med. 10, 55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Prior, C. et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS ONE 9, e86263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gámez-Pozo, A. et al. MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients. Neoplasia 14, 1144–1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Chen, Y., Gao, D.-Y. & Huang, L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  245. Joeckel, T. E. et al. Clinical results with the DNA hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in patients with myelodysplastic syndromes: an update. Semin. Hematol. 49, 330–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  246. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01628471?term=NCT01628471&rank=1 (2015).

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/showNCT02178072?term=NCT02178072&rank=1 (2016).

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01038778?term=NCT01038778&rank=1 (2016).

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01005797?term=NCT01005797&rank=1 (2015).

  250. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00278395?term=NCT00278395&rank=1 (2015).

  251. Landreville, S. et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin. Cancer Res. 18, 408–416 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the article's content, writing, and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Mark R. Morris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

microRNAs

Small, noncoding RNAs that regulate gene expression post-transcriptionally by targeting specific mRNAs for inhibition or degradation through complimentary base pairing.

Condensed chromatin

Regions of chromatin where nucleosomes are closely packed together preventing transcription.

Relaxed chromatin

Regions of the chromatin where nucleosomes vacate promoter regions allowing access to transcription factors and the transcriptional machinery.

CpG islands

Region of DNA with a high frequency of 5′–C–phosphate–G–3′ (CpG) dinucleotides. These regions are frequent around transcriptional start sites.

CpG island methylator phenotype

(CIMP). Tumour phenotype that is characterized by widespread and elevated levels of CpG island methylation. This phenotype represents a clinically and aetiologically distinct group

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, M., Latif, F. The epigenetic landscape of renal cancer. Nat Rev Nephrol 13, 47–60 (2017). https://doi.org/10.1038/nrneph.2016.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing