Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The contribution of branching morphogenesis to kidney development and disease

Key Points

  • The basic architecture of the kidney is established during early embryonic development through iterative branching of the ureteric bud

  • Epithelial–mesenchymal cell interactions at the termini of the branching epithelium determine when and how many nephrons are generated

  • Genetic and/or environmental perturbations during kidney development can alter the developmental processes that direct branching and nephron formation and could, hence, underlie congenital and acquired nephron deficits

  • Nephron number in humans is determined at fetal stages and is emerging as a critical factor that influences adult health

Abstract

The mammalian kidney develops from a simple epithelial bud to an arborized network of tubules, which are fated to form the ureter, renal pelvis and collecting ducts. This process of ductal elaboration is achieved through an ancient developmental mechanism known as branching morphogenesis that is widely employed in glandular organs, the vasculature and lungs. It breaks up large solid tissues facilitating secretion, excretion and gas exchange, depending on the tissue. In the kidney, growth of the ureteric bud is driven by interactions between progenitor cells in the tips of the epithelial tree and their mesenchymal 'caps'. The cells of the cap mesenchyme give rise to nephrons; therefore, the interaction between these two cell populations is likely to be a critical driver of nephron number, which is determined during gestation. These cellular interactions are potentially affected by genetic mutations (congenital kidney diseases) and by changes in the fetal environment. Understanding the aetiology of congenital and acquired kidney diseases therefore requires a full appreciation of the processes involved in establishing the cellular architecture of the kidney and of the factors that affect the commitment of progenitor cells to form nephrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of mouse kidney development.
Figure 2: Features of branching morphogenesis.
Figure 3: Molecular determinants or ureteric bud formation.
Figure 4: Spatial features of branching morphogenesis.
Figure 5: Differences in kidney morphology across species.

Similar content being viewed by others

References

  1. Romagnani, P., Lasagni, L. & Remuzzi, G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat. Rev. Nephrol. 9, 137–146 (2013).

    CAS  PubMed  Google Scholar 

  2. Hoy, W. E. et al. The early development of the kidney and implications for future health. J. Dev. Orig. Health Dis. 1, 216–233 (2010).

    CAS  PubMed  Google Scholar 

  3. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediatr. Nephrol. 26, 1529–1533 (2011).

    PubMed  Google Scholar 

  4. Hughson, M. D., Douglas-Denton, R., Bertram, J. F. & Hoy, W. E. Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int. 69, 671–678 (2006).

    CAS  PubMed  Google Scholar 

  5. Keller, G., Zimmer, G., Mall, G., Ritz, E. & Amann, K. Nephron number in patients with primary hypertension. N. Engl. J. Med. 348, 101–108 (2003).

    PubMed  Google Scholar 

  6. Luyckx, V. A. et al. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382, 273–283 (2013).

    PubMed  Google Scholar 

  7. White, S. L. et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am. J. Kidney Dis. 54, 248–261 (2009).

    PubMed  Google Scholar 

  8. Fraser, E. A. The development of the vertebrate excretory system. Biol. Rev. Camb. Philos. Soc. 25, 159–187 (1950).

    CAS  PubMed  Google Scholar 

  9. Obara-Ishihara, T., Kuhlman, J., Niswander, L. & Herzlinger, D. The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126, 1103–1108 (1999).

    CAS  PubMed  Google Scholar 

  10. Hall, R. W. The development of the mesonephros and the Mullerian ducts in amphibia. Bull. Museum Comparative Zool. 45, 31–125 (1904).

    Google Scholar 

  11. de Martino, C. & Zamboni, L. A morphologic study of the mesonephros of the human embryo. J. Ultrastruct. Res. 16, 399–427 (1966).

    CAS  PubMed  Google Scholar 

  12. Kupffer, C. Untersunchungen uber die Entwicklung des Harn- und Geschlechtsystems. I. Arch. Mikroskop. Anat. Entwicklungmech. 1, 233–248 (in German) (1865).

    Google Scholar 

  13. Osathanondh, V. & Potter, E. L. Development of human kidney as shown by microdissection. III. Formation and interrelationship of collecting tubules and nephrons. Arch. Pathol. 76, 290–302 (1963).

    CAS  PubMed  Google Scholar 

  14. Saxen, L. & Sariola, H. Early organogenesis of the kidney. Pediatr. Nephrol. 1, 385–392 (1987).

    CAS  PubMed  Google Scholar 

  15. Short, K. M. et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev. Cell 29, 188–202 (2014).

    CAS  PubMed  Google Scholar 

  16. Oliver, J. Nephrons and Kidneys: a Quantitative Study of Developmental and Evolutionary Mammalian Renal Archtectonics (Harper & Row, 1968).

    Google Scholar 

  17. Brunskill, E. W. et al. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev. Cell 15, 781–791 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Georgas, K. et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev. Biol. 332, 273–286 (2009).

    CAS  PubMed  Google Scholar 

  19. Kao, R. M., Vasilyev, A., Miyawaki, A., Drummond, I. A. & McMahon, A. P. Invasion of distal nephron precursors associates with tubular interconnection during nephrogenesis. J. Am. Soc. Nephrol. 23, 1682–1690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Self, M. et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 25, 5214–5228 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    CAS  PubMed  Google Scholar 

  22. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    CAS  PubMed  Google Scholar 

  23. Xu, J. et al. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev. Cell 31, 434–447 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bouchard, M., Souabni, A., Mandler, M., Neubuser, A. & Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 16, 2958–2970 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grote, D. et al. Gata3 acts downstream of β-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet. 4, e1000316 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53–61 (2006).

    CAS  PubMed  Google Scholar 

  27. Marose, T. D., Merkel, C. E., McMahon, A. P. & Carroll, T. J. β-Catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev. Biol. 314, 112–126 (2008).

    CAS  PubMed  Google Scholar 

  28. Tsang, T. E. et al. Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev. Biol. 223, 77–90 (2000).

    CAS  PubMed  Google Scholar 

  29. Pedersen, A., Skjong, C. & Shawlot, W. Lim1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol. 288, 571–581 (2005).

    CAS  PubMed  Google Scholar 

  30. Wellik, D. M., Hawkes, P. J. & Capecchi, M. R. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev. 16, 1423–1432 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brophy, P. D., Ostrom, L., Lang, K. M. & Dressler, G. R. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128, 4747–4756 (2001).

    CAS  PubMed  Google Scholar 

  32. Torres, M., Gomez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995).

    CAS  PubMed  Google Scholar 

  33. Xu, P. X. et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat. Genet. 23, 113–117 (1999).

    CAS  PubMed  Google Scholar 

  34. Esquela, A. F. & Lee, S. J. Regulation of metanephric kidney development by growth/differentiation factor 11. Dev. Biol. 257, 356–370 (2003).

    CAS  PubMed  Google Scholar 

  35. James, R. G., Kamei, C. N., Wang, Q., Jiang, R. & Schultheiss, T. M. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133, 2995–3004 (2006).

    CAS  PubMed  Google Scholar 

  36. Nishinakamura, R. et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128, 3105–3115 (2001).

    CAS  PubMed  Google Scholar 

  37. Kume, T., Deng, K. & Hogan, B. L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387–1395 (2000).

    CAS  PubMed  Google Scholar 

  38. Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004).

    CAS  PubMed  Google Scholar 

  39. Wainwright, E. N., Wilhelm, D., Combes, A. N., Little, M. H. & Koopman, P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct–nephrogenic cord separation. Dev. Biol. 404, 88–102 (2015).

    CAS  PubMed  Google Scholar 

  40. Michos, O. et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134, 2397–2405 (2007).

    CAS  PubMed  Google Scholar 

  41. Enomoto, H. et al. GFRα1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21, 317–324 (1998).

    CAS  PubMed  Google Scholar 

  42. Sanchez, M. P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    CAS  PubMed  Google Scholar 

  43. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    CAS  PubMed  Google Scholar 

  44. Bridgewater, D. et al. Canonical WNT/β-catenin signaling is required for ureteric branching. Dev. Biol. 317, 83–94 (2008).

    CAS  PubMed  Google Scholar 

  45. Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mugford, J. W., Sipila, P., McMahon, J. A. & McMahon, A. P. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1- dependent nephron progenitor compartment within the mammalian kidney. Dev. Biol. 324, 88–98 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Costantini, F. in Kidney Development, Disease, Repair and Regeneration (ed. Little, M.) 41–53 (Academic Press, 2016).

    Google Scholar 

  48. Fisher, C. E., Michael, L., Barnett, M. W. & Davies, J. A. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128, 4329–4338 (2001).

    CAS  PubMed  Google Scholar 

  49. Jain, S., Encinas, M., Johnson, E. M. Jr & Milbrandt, J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 20, 321–333 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang, M. J., Cai, Y., Tsai, S. J., Wang, Y. K. & Dressler, G. R. Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev. Biol. 243, 128–136 (2002).

    CAS  PubMed  Google Scholar 

  51. Reginensi, A. et al. SOX9 controls epithelial branching by activating RET effector genes during kidney development. Hum. Mol. Genet. 20, 1143–1153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu, B. C. et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat. Genet. 41, 1295–1302 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Basson, M. A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005).

    CAS  PubMed  Google Scholar 

  54. Michos, O. et al. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 6, e1000809 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Jadeja, S. et al. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat. Genet. 37, 520–525 (2005).

    CAS  PubMed  Google Scholar 

  56. McGregor, L. et al. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat. Genet. 34, 203–208 (2003).

    CAS  PubMed  Google Scholar 

  57. Smyth, I. et al. The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic epidermis. Proc. Natl Acad. Sci. USA 101, 13560–13565 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Takamiya, K. et al. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 36, 172–177 (2004).

    CAS  PubMed  Google Scholar 

  59. Miner, J. H. & Li, C. Defective glomerulogenesis in the absence of laminin α5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev. Biol. 217, 278–289 (2000).

    CAS  PubMed  Google Scholar 

  60. Uchiyama, Y. et al. Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc. Natl Acad. Sci. USA 107, 9240–9245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Linton, J. M., Martin, G. R. & Reichardt, L. F. The ECM protein nephronectin promotes kidney development via integrin α8β1-mediated stimulation of Gdnf expression. Development 134, 2501–2509 (2007).

    CAS  PubMed  Google Scholar 

  62. Muller, U. et al. Integrin α8β1 is critically important for epithelial–mesenchymal interactions during kidney morphogenesis. Cell 88, 603–613 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pitera, J. E., Scambler, P. J. & Woolf, A. S. Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli. Hum. Mol. Genet. 17, 3953–3964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kopan, R., Chen, S. & Little, M. Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr. Top. Dev. Biol. 107, 293–331 (2014).

    CAS  PubMed  Google Scholar 

  65. Gong, K. Q., Yallowitz, A. R., Sun, H., Dressler, G. R. & Wellik, D. M. A Hox–Eya–Pax complex regulates early kidney developmental gene expression. Mol. Cell. Biol. 27, 7661–7668 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nie, X., Xu, J., El-Hashash, A. & Xu, P. X. Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev. Biol. 352, 141–151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Brien, L. L. et al. Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development 143, 595–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Boyle, S., Shioda, T., Perantoni, A. O. & de Caestecker, M. Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev. Dyn. 236, 2321–2330 (2007).

    CAS  PubMed  Google Scholar 

  69. Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 10, 1467–1478 (1996).

    CAS  PubMed  Google Scholar 

  70. Levinson, R. S. et al. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132, 529–539 (2005).

    CAS  PubMed  Google Scholar 

  71. Boyle, S. et al. Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev. Biol. 313, 234–245 (2008).

    CAS  PubMed  Google Scholar 

  72. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kobayashi, A. et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 3, 650–662 (2014).

    CAS  Google Scholar 

  74. Grobstein, C. Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp. Cell Res. 10, 424–440 (1956).

    CAS  PubMed  Google Scholar 

  75. Grobstein, C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 118, 52–55 (1953).

    CAS  PubMed  Google Scholar 

  76. Grobstein, C. Inductive interaction in the development of the mouse metanephros. J. Exp. Zool. 130, 319–339 (1955).

    Google Scholar 

  77. Rak-Raszewska, A., Hauser, P. V. & Vainio, S. Organ in vitro culture: what have we learned about early kidney development? Stem Cells Int. 2015, 959807 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Watanabe, T. & Costantini, F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev. Biol. 271, 98–108 (2004).

    CAS  PubMed  Google Scholar 

  79. Sweeney, D., Lindstrom, N. & Davies, J. A. Developmental plasticity and regenerative capacity in the renal ureteric bud/collecting duct system. Development 135, 2505–2510 (2008).

    CAS  PubMed  Google Scholar 

  80. Lin, Y. et al. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial–mesenchymal interactions. Int. J. Dev. Biol. 47, 3–13 (2003).

    PubMed  Google Scholar 

  81. Sampogna, R. V., Schneider, L. & Al-Awqati, Q. Developmental programming of branching morphogenesis in the kidney. J. Am. Soc. Nephrol. 26, 2414–2422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Riccio, P., Cebrian, C., Zong, H., Hippenmeyer, S. & Costantini, F. Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol. 14, e1002382 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Packard, A. et al. Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev. Cell 27, 319–330 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cebrian, C., Asai, N., D'Agati, V. & Costantini, F. The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment. Cell Rep. 7, 127–137 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pepicelli, C. V., Kispert, A., Rowitch, D. H. & McMahon, A. P. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev. Biol. 192, 193–198 (1997).

    CAS  PubMed  Google Scholar 

  86. Majumdar, A., Vainio, S., Kispert, A., McMahon, J. & McMahon, A. P. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 3175–3185 (2003).

    CAS  PubMed  Google Scholar 

  87. Ohuchi, H. et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 277, 643–649 (2000).

    CAS  PubMed  Google Scholar 

  88. Varner, V. D. & Nelson, C. M. Cellular and physical mechanisms of branching morphogenesis. Development 141, 2750–2759 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Arnould, C., Lelievre-Pegorier, M., Ronco, P. & Lelongt, B. MMP9 limits apoptosis and stimulates branching morphogenesis during kidney development. J. Am. Soc. Nephrol. 20, 2171–2180 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Steer, D. L. et al. Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney. Dev. Biol. 272, 310–327 (2004).

    CAS  PubMed  Google Scholar 

  91. Zent, R. et al. Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development. Dev. Biol. 238, 289–302 (2001).

    CAS  PubMed  Google Scholar 

  92. Zhang, X. et al. β1 integrin is necessary for ureteric bud branching morphogenesis and maintenance of collecting duct structural integrity. Development 136, 3357–3366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Qiao, J., Sakurai, H. & Nigam, S. K. Branching morphogenesis independent of mesenchymal–epithelial contact in the developing kidney. Proc. Natl Acad. Sci. USA 96, 7330–7335 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Varner, V. D., Gleghorn, J. P., Miller, E., Radisky, D. C. & Nelson, C. M. Mechanically patterning the embryonic airway epithelium. Proc. Natl Acad. Sci. USA 112, 9230–9235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, H. Y. et al. Localized smooth muscle differentiation is essential for epithelial bifurcation during branching morphogenesis of the mammalian lung. Dev. Cell 34, 719–726 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Menshykau, D., Blanc, P., Unal, E., Sapin, V. & Iber, D. An interplay of geometry and signaling enables robust lung branching morphogenesis. Development 141, 4526–4536 (2014).

    CAS  PubMed  Google Scholar 

  97. Cebrian, C., Borodo, K., Charles, N. & Herzlinger, D. A. Morphometric index of the developing murine kidney. Dev. Dyn. 231, 601–608 (2004).

    PubMed  Google Scholar 

  98. Sims-Lucas, S. et al. Three-dimensional imaging reveals ureteric and mesenchymal defects in Fgfr2-mutant kidneys. J. Am. Soc. Nephrol. 20, 2525–2533 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Combes, A. N. et al. An integrated pipeline for the multidimensional analysis of branching morphogenesis. Nat. Protoc. 9, 2859–2879 (2014).

    CAS  PubMed  Google Scholar 

  100. Short, K., Hodson, M. & Smyth, I. Spatial mapping and quantification of developmental branching morphogenesis. Development 140, 471–478 (2013).

    CAS  PubMed  Google Scholar 

  101. Short, K. M., Hodson, M. J. & Smyth, I. M. Tomographic quantification of branching morphogenesis and renal development. Kidney Int. 77, 1132–1139 (2010).

    PubMed  Google Scholar 

  102. Manning, G. & Krasnow, M. A. in The development of Drosophila melanogaster (eds Bate, W. & Martinez Aria, A.) 609–685 (Cold Spring Harbour Laboratory Press, 1993).

    Google Scholar 

  103. Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature 453, 745–750 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lamberton, T. O., Lefevre, J., Short, K. M., Smyth, I. M. & Hamilton, N. A. Comparing and distinguishing the structure of biological branching. J. Theor. Biol. 365, 226–237 (2015).

    PubMed  Google Scholar 

  105. Carroll, T. J., Park, J. S., Hayashi, S., Majumdar, A. & McMahon, A. P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    CAS  PubMed  Google Scholar 

  106. Karner, C. M. et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138, 1247–1257 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Das, A. et al. Stromal–epithelial crosstalk regulates kidney progenitor cell differentiation. Nat. Cell Biol. 15, 1035–1044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kispert, A., Vainio, S. & McMahon, A. P. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125, 4225–4234 (1998).

    CAS  PubMed  Google Scholar 

  109. Stark, K., Vainio, S., Vassileva, G. & McMahon, A. P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683 (1994).

    CAS  PubMed  Google Scholar 

  110. Burn, S. F. et al. Calcium/NFAT signalling promotes early nephrogenesis. Dev. Biol. 352, 288–298 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tanigawa, S. et al. Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev. Biol. 352, 58–69 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Boyle, S. C., Kim, M., Valerius, M. T., McMahon, A. P. & Kopan, R. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development 138, 4245–4254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Grieshammer, U. et al. FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132, 3847–3857 (2005).

    CAS  PubMed  Google Scholar 

  114. Perantoni, A. O. et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132, 3859–3871 (2005).

    CAS  PubMed  Google Scholar 

  115. Gerber, S. D., Steinberg, F., Beyeler, M., Villiger, P. M. & Trueb, B. The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev. Biol. 335, 106–119 (2009).

    CAS  PubMed  Google Scholar 

  116. Chen, S. et al. Intrinsic age-dependent changes and cell–cell contacts regulate nephron progenitor lifespan. Dev. Cell 35, 49–62 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Barak, H. et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev. Cell 22, 1191–1207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rumballe, B. A. et al. Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev. Biol. 360, 110–122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Brenner, B. M., Garcia, D. L. & Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1, 335–347 (1988).

    CAS  PubMed  Google Scholar 

  120. Lackland, D. T., Bendall, H. E., Osmond, C., Egan, B. M. & Barker, D. J. Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch. Intern. Med. 160, 1472–1476 (2000).

    CAS  PubMed  Google Scholar 

  121. Hinchliffe, S. A., Sargent, P. H., Howard, C. V., Chan, Y. F. & van Velzen, D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab. Invest. 64, 777–784 (1991).

    CAS  PubMed  Google Scholar 

  122. Hughson, M., Farris, A. B. III, Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).

    PubMed  Google Scholar 

  123. Manalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58, 770–773 (2000).

    CAS  PubMed  Google Scholar 

  124. Barker, D. J. The fetal and infant origins of adult disease. BMJ 301, 1111 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Harrison, M. & Langley-Evans, S. C. Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br. J. Nutr. 101, 1020–1030 (2009).

    CAS  PubMed  Google Scholar 

  126. Welham, S. J., Riley, P. R., Wade, A., Hubank, M. & Woolf, A. S. Maternal diet programs embryonic kidney gene expression. Physiol. Genomics 22, 48–56 (2005).

    CAS  PubMed  Google Scholar 

  127. Amri, K., Freund, N., Duong Van Huyen, J. P., Merlet-Benichou, C. & Lelievre-Pegorier, M. Altered nephrogenesis due to maternal diabetes is associated with increased expression of IGF-II/mannose-6-phosphate receptor in the fetal kidney. Diabetes 50, 1069–1075 (2001).

    CAS  PubMed  Google Scholar 

  128. Lelievre-Pegorier, M. et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 54, 1455–1462 (1998).

    CAS  PubMed  Google Scholar 

  129. Bauer, R. et al. Intrauterine growth restriction reduces nephron number and renal excretory function in newborn piglets. Acta Physiol. Scand. 176, 83–90 (2002).

    CAS  PubMed  Google Scholar 

  130. Lisle, S. J. et al. Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br. J. Nutr. 90, 33–39 (2003).

    CAS  PubMed  Google Scholar 

  131. Gray, S. P., Denton, K. M., Cullen-McEwen, L., Bertram, J. F. & Moritz, K. M. Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J. Am. Soc. Nephrol. 21, 1891–1902 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kenna, K. et al. Alcohol exposure during late gestation: multiple developmental outcomes in sheep. J. Dev. Orig. Health Dis. 3, 224–236 (2012).

    CAS  PubMed  Google Scholar 

  133. Wintour, E. M. et al. Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J. Physiol. 549, 929–935 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tendron, A. et al. Cyclosporin A administration during pregnancy induces a permanent nephron deficit in young rabbits. J. Am. Soc. Nephrol. 14, 3188–3196 (2003).

    CAS  PubMed  Google Scholar 

  135. Komhoff, M. et al. Cyclooxygenase-2-selective inhibitors impair glomerulogenesis and renal cortical development. Kidney Int. 57, 414–422 (2000).

    CAS  PubMed  Google Scholar 

  136. Nathanson, S., Moreau, E., Merlet-Benichou, C. & Gilbert, T. In utero and in vitro exposure to β-lactams impair kidney development in the rat. J. Am. Soc. Nephrol. 11, 874–884 (2000).

    CAS  PubMed  Google Scholar 

  137. Nicolaou, N., Renkema, K. Y., Bongers, E. M., Giles, R. H. & Knoers, N. V. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol. 11, 720–731 (2015).

    CAS  PubMed  Google Scholar 

  138. Vivante, A. & Hildebrandt, F. Exploring the genetic basis of early-onset chronic kidney disease. Nat. Rev. Nephrol. 12, 133–146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Skinner, M. A., Safford, S. D., Reeves, J. G., Jackson, M. E. & Freemerman, A. J. Renal aplasia in humans is associated with RET mutations. Am. J. Hum. Genet. 82, 344–351 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Weber, S. et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J. Am. Soc. Nephrol. 19, 891–903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Weber, S. et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J. Am. Soc. Nephrol. 17, 2864–2870 (2006).

    CAS  PubMed  Google Scholar 

  142. Ruf, R. G. et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1–SIX1–DNA complexes. Proc. Natl Acad. Sci. USA 101, 8090–8095 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Porteous, S. et al. Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax21Neu +/minus; mutant mice. Hum. Mol. Genet. 9, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  144. Alazami, A. M. et al. FREM1 mutations cause bifid nose, renal agenesis, and anorectal malformations syndrome. Am. J. Hum. Genet. 85, 414–418 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Vogel, M. J. et al. Mutations in GRIP1 cause Fraser syndrome. J. Med. Genet. 49, 303–306 (2012).

    PubMed  Google Scholar 

  146. Humbert, C. et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am. J. Hum. Genet. 94, 288–294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ali, A. et al. Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Hum. Mol. Genet. 16, 265–275 (2007).

    CAS  PubMed  Google Scholar 

  148. Heidet, L. et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin. J. Am. Soc. Nephrol. 5, 1079–1090 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kohlhase, J., Wischermann, A., Reichenbach, H., Froster, U. & Engel, W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat. Genet. 18, 81–83 (1998).

    CAS  PubMed  Google Scholar 

  150. Sanyanusin, P. et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat. Genet. 9, 358–364 (1995).

    CAS  PubMed  Google Scholar 

  151. Osathanondh, V. & Potter, E. L. Development of human kidney as shown by microdissection. II. Renal pelvis, calyces, and papillae. Arch. Pathol. 76, 277–289 (1963).

    CAS  PubMed  Google Scholar 

  152. Peter, K. Untersuchungen uber Bau und Entwickelung der Niere (in German) (Gustav Fischer, 1909).

    Google Scholar 

  153. Neiss, W. F. Morphogenesis and histogenesis of the connecting tubule in the rat kidney. Anat. Embryol. (Berl.) 165, 81–95 (1982).

    CAS  Google Scholar 

  154. Kaissling, B. & Kriz, W. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56, 1–123 (1979).

    CAS  PubMed  Google Scholar 

  155. Clissold, R. L., Hamilton, A. J., Hattersley, A. T., Ellard, S. & Bingham, C. HNF1B-associated renal and extra-renal disease — an expanding clinical spectrum. Nat. Rev. Nephrol. 11, 102–112 (2015).

    CAS  PubMed  Google Scholar 

  156. Carette, C. et al. Exonic duplication of the Hepatocyte Nuclear Factor-1β gene (transcription factor 2, hepatic) as a cause of maturity onset diabetes of the young type 5. J. Clin. Endocrinol. Metab. 92, 2844–2847 (2007).

    CAS  PubMed  Google Scholar 

  157. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Google Scholar 

  159. Sperber, I. Studies on the mammalian kidney. Zool. Bidrag Uppsala 22, 249–432 (1944).

    Google Scholar 

Download references

Acknowledgements

We acknowledge Dr Nicholas Hamilton and Dr James Lefevre from the University of Queensland for generating Figure 4.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission

Corresponding author

Correspondence to Ian M. Smyth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Morphometric analysis of branching morphogenesis during development (MP4 11012 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Short, K., Smyth, I. The contribution of branching morphogenesis to kidney development and disease. Nat Rev Nephrol 12, 754–767 (2016). https://doi.org/10.1038/nrneph.2016.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing