Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scleroderma renal crisis and renal involvement in systemic sclerosis

A Corrigendum to this article was published on 02 January 2018

This article has been updated

Key Points

  • Renal dysfunction associated with vasculopathy is a common pathology in systemic sclerosis (SSc), and usually exhibits a benign course

  • Scleroderma renal crisis (SRC) is rare — it affects 5–15% of patients, according to studies published in the past 20 years; however, a 2015 case series suggests that the incidence of SRC has decreased to 2.4%

  • Predictive factors for SRC include anti-RNA polymerase III antibodies, diffuse cutaneous disease, tendon friction rubs, and arthritis; glucocorticoid treatment is a risk factor for SRC

  • SRC should be differentiated from ANCA-positive, rapidly progressive glomerulonephritis, as treatment regimens and patient management are different

  • Control of SRC-associated hypertension with angiotensin-converting-enzyme (ACE) inhibitors in patients with SSc improves outcomes; however, this treatment does not prevent SRC, and might increase SRC-associated mortality

  • Although prognosis improved with the introduction of ACE inhibitors in the 1990s, SRC remains a major risk factor for mortality in SSc; endothelin receptor antagonists might further improve patient outcomes

Abstract

Scleroderma renal crisis (SRC) is a rare, potentially life-threatening complication that affects 2–15% of patients with systemic sclerosis (SSc, also known as scleroderma). SRC typically presents in patients with early, rapidly progressive, diffuse cutaneous SSc within the first 3–5 years after the onset of a non-Raynaud sign or symptom. SRC is characterized by an acute, usually symptomatic increase in blood pressure, a rise in serum creatinine levels, oliguria and thrombotic microangiopathy in about 50% of patients. The prognosis of SRC substantially improved in the 1980s with the introduction of angiotensin-converting-enzyme inhibitors for rapid blood pressure control, with additional antihypertensive agents as required. However, the survival of patients with SRC can still be improved. Current patient survival is 70–82% at 1 year, but decreases to 50–60% at 5 years despite dialysis support. Patients with SRC who show no signs of renal functional recovery despite timely blood pressure control are candidates for transplantation. In this Review, we discuss progress made in the identification and proactive management of patients at risk of SRC and make recommendations aimed at optimizing management for those who progress to chronic kidney failure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Currently recognized factors that influence the development of scleroderma renal crisis.
Figure 2: Pathology of scleroderma renal crisis.
Figure 3: Renal expression of endothelin ligand and receptors in scleroderma renal crisis.

Change history

  • 02 January 2018

    In the version of this article originally published in print and online, the author list was incorrect. The correct author list is Thasia G. Woodworth, Yossra A. Suliman, Wendi Li, Daniel E. Furst and Philip Clements, and has been corrected in the online version.

References

  1. 1

    Mayes, M. D. et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 48, 2246–2255 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Chifflot, H., Fautrel, B., Sordet, C., Chatelus, E. & Sibilia, J. Incidence and prevalence of systemic sclerosis: a systematic literature review. Semin. Arthritis Rheum. 37, 223–235 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Barnes, J. & Mayes, M. D. Epidemiology of systemic sclerosis: incidence, prevalence, survival, risk factors, malignancy, and environmental triggers. Curr. Opin. Rheumatol. 24, 165–170 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Steen, V. D., Syzd, A., Johnson, J. P., Greenberg, A. & Medsger, T. A. Jr. Kidney disease other than renal crisis in patients with diffuse scleroderma. J. Rheumatol. 32, 649–655 (2005).

    PubMed  PubMed Central  Google Scholar 

  5. 5

    Denton, C. P. Renal manifestations of systemic sclerosis—clinical features and outcome assessment. Rheumatology 47 (Suppl. 5), v54–v56 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Clements, P. J. et al. Abnormalities of renal physiology in systemic sclerosis. A prospective study with 10-year followup. Arthritis Rheum. 37, 67–74 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Caron, M. et al. Longitudinal study of renal function in systemic sclerosis. J. Rheumatol. 39, 1829–1834 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    DeMarco, P. J. et al. Predictors and outcomes of scleroderma renal crisis: the high-dose versus low-dose D-penicillamine in early diffuse systemic sclerosis trial. Arthritis Rheum. 46, 2983–2989 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Hudson, M. et al. Exposure to ACE inhibitors prior to the onset of scleroderma renal crisis-results from the International Scleroderma Renal Crisis Survey. Semin. Arthritis Rheum. 43, 666–672 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Denton, C. P., Lapadula, G., Mouthon, L. & Muller-Ladner, U. Renal complications and scleroderma renal crisis. Rheumatology 48 (Suppl. 3), iii32–iii35 (2009).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Steen, V. D. et al. Factors predicting development of renal involvement in progressive systemic sclerosis. Am. J. Med. 76, 779–786 (1984).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Avouac, J. et al. Joint and tendon involvement predict disease progression in systemic sclerosis: a EUSTAR prospective study. Ann. Rheum. Dis. 75, 103–109 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Teixeira, L. et al. Mortality and risk factors of scleroderma renal crisis: a French retrospective study of 50 patients. Ann. Rheum. Dis. 67, 110–116 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Penn, H. et al. Scleroderma renal crisis: patient characteristics and long-term outcomes. Q. J. Med. 100, 485–494 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Kingdon, E. J. et al. Calculated glomerular filtration rate is a useful screening tool to identify scleroderma patients with renal impairment. Rheumatology 42, 26–33 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Scheja, A., Bartosik, I., Wuttge, D. M. & Hesselstrand, R. Renal function is mostly preserved in patients with systemic sclerosis. Scand. J. Rheumatol. 38, 295–298 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Mohamed, R. H., Zayed, H. S. & Amin, A. Renal disease in systemic sclerosis with normal serum creatinine. Clin. Rheumatol. 29, 729–737 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Campo, A . et al. Hemodynamic predictors of survival in scleroderma-related pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 182, 252–260 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Bosch, J. P. et al. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am. J. Med. 75, 943–950 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Livi, R. et al. Renal functional reserve is impaired in patients with systemic sclerosis without clinical signs of kidney involvement. Ann. Rheum. Dis. 61, 682–686 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Livi, R. et al. Lack of activation of renal functional reserve predicts the risk of significant renal involvement in systemic sclerosis. Ann. Rheum. Dis. 70, 1963–1967 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Amin, A., El-Sayed, S., Taher, N., Sedki, M. & Nasr, H. Tc-99m diethylenetriamine pentaacetic acid (DTPA) renal function reserve estimation: is it a reliable predictive tool for assessment of preclinical renal involvement in scleroderma patients? Clin. Rheumatol. 31, 961–966 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Rosato, E. et al. Intrarenal hemodynamic parameters correlate with glomerular filtration rate and digital microvascular damage in patients with systemic sclerosis. Semin. Arthritis Rheum. 41, 815–821 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Granata, A. et al. Resistive intrarenal index: myth or reality? Br. J. Radiol. 87, 20140004 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Rivolta, R. et al. Renal vascular damage in systemic sclerosis patients without clinical evidence of nephropathy. Arthritis Rheum. 39, 1030–1034 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Scorza, R. et al. Effect of iloprost infusion on the resistance index of renal vessels of patients with systemic sclerosis. J. Rheumatol. 24, 1944–1948 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Shanmugam, V. K. & Steen, V. D. Renal manifestations in scleroderma: evidence for subclinical renal disease as a marker of vasculopathy. Int. J. Rheumatol. 2010, 538589 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Anavekar, N. S. et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N. Engl. J. Med. 351, 1285–1295 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Klausen, K. et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110, 32–35 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Lambers Heerspink, H. J. et al. Albuminuria assessed from first-morning-void urine samples versus 24-hour urine collections as a predictor of cardiovascular morbidity and mortality. Am. J. Epidemiol. 168, 897–905 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Hillege, H. L. et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106, 1777–1782 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Seiberlich, B., Hunzelmann, N., Krieg, T., Weber, M. & Schulze-Lohoff, E. Intermediate molecular weight proteinuria and albuminuria identify scleroderma patients with increased morbidity. Clin. Nephrol. 70, 110–117 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Bussone, G., Berezne, A., Pestre, V., Guillevin, L. & Mouthon, L. The scleroderma kidney: progress in risk factors, therapy, and prevention. Curr. Rheumatol. Rep. 13, 37–43 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Guillevin, L. et al. Scleroderma renal crisis: a retrospective multicentre study on 91 patients and 427 controls. Rheumatology. 51, 460–467 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Steen, V. D. & Medsger, T. A. Jr. Long-term outcomes of scleroderma renal crisis. Ann. Intern. Med. 133, 600–603 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Steen, V. D., Costantino, J. P., Shapiro, A. P. & Medsger, T. A. Jr. Outcome of renal crisis in systemic sclerosis: relation to availability of angiotensin converting enzyme (ACE) inhibitors. Ann. Intern. Med. 113, 352–357 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Walker, J. G. et al. Scleroderma renal crisis: poor outcome despite aggressive antihypertensive treatment. Int. Med. J. 33, 216–220 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Muangchan, C., Canadian Scleroderma Research Group, Baron, M. & Pope, J. The 15% rule in scleroderma: the frequency of severe organ complications in systemic sclerosis. A systematic review. J. Rheumatol. 40, 1545–1556 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Maurer, B. et al. Prediction of worsening of skin fibrosis in patients with diffuse cutaneous systemic sclerosis using the EUSTAR database. Ann. Rheum. Dis. 74, 1124–1131 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Varma, S. et al. Cytodiagnosis of granulocytic sarcoma presenting as superior vena cava syndrome in acute myeloblastic leukemia. A case report. Acta Cytol. 36, 371–372 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Glassock, R. J. & Rule, A. D. The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli. Kidney Int. 82, 270–277 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Mouthon, L., Bussone, G., Berezne, A., Noel, L. H. & Guillevin, L. Scleroderma renal crisis. J. Rheumatol. 41, 1040–1048 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Batal, I., Domsic, R. T., Medsger, T. A. & Bastacky, S. Scleroderma renal crisis: a pathology perspective. Int. J. Rheumatol. 2010, 543704 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Shanmugam, V. K. & Steen, V. D. Renal disease in scleroderma: an update on evaluation, risk stratification, pathogenesis and management. Curr. Opin. Rheumatol. 24, 669–676 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Mouthon, L. et al. Endothelin-1 expression in scleroderma renal crisis. Hum. Pathol. 42, 95–102 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Penn, H. et al. Targeting the endothelin axis in scleroderma renal crisis: rationale and feasibility. Q. J. Med. 106, 839–848 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Sobanski, V. et al. Prevalence of anti-RNA polymerase III antibodies in systemic sclerosis: new data from a French cohort and a systematic review and meta-analysis. Arthritis Rheumatol. 66, 407–417 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Dore, A. et al. Significance of palpable tendon friction rubs in early diffuse cutaneous systemic sclerosis. Arthritis Care Res. 65, 1385–1389 (2013).

    Article  Google Scholar 

  49. 49

    Nikpour, M. et al. Prevalence, correlates and clinical usefulness of antibodies to RNA polymerase III in systemic sclerosis: a cross-sectional analysis of data from an Australian cohort. Arthritis Res. Ther. 13, R211 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Nguyen, B., Assassi, S., Arnett, F. C. & Mayes, M. D. Association of RNA polymerase III antibodies with scleroderma renal crisis. J. Rheumatol. 37, 1068–1069 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Fonseca, C. et al. Endothelin axis polymorphisms in patients with scleroderma. Arthritis Rheum. 54, 3034–3042 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Helfrich, D. J., Banner, B., Steen, V. D. & Medsger, T. A. Jr. Normotensive renal failure in systemic sclerosis. Arthritis Rheum. 32, 1128–1134 (1989).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Steen, V. D. & Medsger, T. A. Jr. Case-control study of corticosteroids and other drugs that either precipitate or protect from the development of scleroderma renal crisis. Arthritis Rheum. 41, 1613–1619 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Iudici, M., van der Goes, M. C., Valentini, G. & Bijlsma, J. W. Glucocorticoids in systemic sclerosis: weighing the benefits and risks - a systematic review. Clin. Exp. Rheumatol. 31 (Suppl. 76), 157–165 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Keeler, E., Fioravanti, G., Samuel, B. & Longo, S. Scleroderma renal crisis or thrombotic thrombocytopenic purpura: seeing through the masquerade. Lab Med. 46, e39–e44 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Arad, U. et al. Anti-neutrophil antibody associated vasculitis in systemic sclerosis. Semin. Arthritis Rheum. 41, 223–229 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Rho, Y. H., Choi, S. J., Lee, Y. H., Ji, J. D. & Song, G. G. Scleroderma associated with ANCA-associated vasculitis. Rheumatol. Int. 26, 369–375 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Akimoto, S., Ishikawa, O., Tamura, T. & Miyachi, Y. Antineutrophil cytoplasmic autoantibodies in patients with systemic sclerosis. Br. J. Dermatol. 134, 407–410 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Derrett-Smith, E. C., Nihtyanova, S. I., Harvey, J., Salama, A. D. & Denton, C. P. Revisiting ANCA-associated vasculitis in systemic sclerosis: clinical, serological and immunogenetic factors. Rheumatology 52, 1824–1831 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Chan, P. T. & Mok, C. C. Pauci-immune crescentic glomerulonephritis in limited cutaneous systemic sclerosis. Clin. Rheumatol. 31, 1273–1277 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Quemeneur, T. et al. Systemic vasculitis during the course of systemic sclerosis: report of 12 cases and review of the literature. Medicine 92, 1–9 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Manadan, A. M., Harris, C. & Block, J. A. Thrombotic thrombocytopenic purpura in the setting of systemic sclerosis. Semin. Arthritis Rheum. 34, 683–688 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63

    Cozzi, F. et al. Prognosis of scleroderma renal crisis: a long-term observational study. Nephrol. Dial. Transplant. 27, 4398–4403 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Coppo, P. & Veyradier, A. Current management and therapeutical perspectives in thrombotic thrombocytopenic purpura. Presse Med. 41, e163–e176 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Kao, L. & Weyand, C. Vasculitis in systemic sclerosis. Int. J. Rheumatol. 2010, 385938 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Giuggioli D. et al. Systemic sclerosis and cryoglobulinemia: our experience with overlapping syndrome of scleroderma and severe cryoglobulinemic vasculitis and review of the literature. Autoimmun. Rev. 12, 1058–1063 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Furuta, S. & Jayne, D. Emerging therapies in antineutrophil cytoplasm antibody-associated vasculitis. Curr. Opin. Rheumatol. 26, 1–6 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Specks, U. et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N. Engl. J. Med. 369, 417–427 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Charles, P. et al. Rituximab: recommendations of the French Vasculitis Study Group (FVSG) for induction and maintenance treatments of adult, antineutrophil cytoplasm antibody-associated necrotizing vasculitides. Presse Med. 42, 1317–1330 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Miloslavsky, E. M. et al. Clinical outcomes of remission induction therapy for severe antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 65, 2441–2449 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Roll, P. et al. Efficacy and safety of rituximab treatment in patients with antineutrophil cytoplasmic antibody-associated vasculitides: results from a German registry (GRAID). J. Rheumatol. 39, 2153–2156 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Gomez-Puerta, J. A., Quintana, L. F., Stone, J. H., Ramos-Casals, M. & Bosch, X. B-Cell depleting agents for ANCA vasculitides: a new therapeutic approach. Autoimmun. Rev. 11, 646–652 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Lopez-Ovejero, J. A. et al. Reversal of vascular and renal crises of scleroderma by oral angiotensin-converting-enzyme blockade. N. Engl. J. Med. 300, 1417–1419 (1979).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Zawada, E. T. et al. Clinical course of patients with scleroderma renal crisis treated with captopril. Nephron 27, 74–78 (1981).

    PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Traub, Y. M. et al. Hypertension and renal failure (scleroderma renal crisis) in progressive systemic sclerosis. Review of a 25-year experience with 68 cases. Medicine 62, 335–352 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Montanelli, G., Beretta, L., Santaniello, A. & Scorza, R. Effect of dihydropyridine calcium channel blockers and glucocorticoids on the prevention and development of scleroderma renal crisis in an Italian case series. Clin. Exp. Rheumatol. 31 (Suppl. 76), 135–139 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Walker, K. M. et al. Treatment of systemic sclerosis complications: what to use when first-line treatment fails—a consensus of systemic sclerosis experts. Semin. Arthritis Rheum. 42, 42–55 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Pope, J. et al. Prazosin for Raynaud's phenomenon in progressive systemic sclerosis. Cochrane Database Systematic Reviews, Issue 2. Art. No.: CD000956. http://dx.doi.org/10.1002/14651858.CD000956

  80. 80

    Mohokum, M., Hartmann, P. & Schlattmann, P. The association of Raynaud syndrome with beta-blockers: a meta-analysis. Angiology 63, 535–540 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    Avouac, J., Wipff, J., Kahan, A. & Allanore, Y. Effects of oral treatments on exercise capacity in systemic sclerosis related pulmonary arterial hypertension: a meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 67, 808–814 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Izzedine, H., Rouvier, P. & Deray, G. Endothelin receptor antagonism-based treatment for scleroderma renal crisis. Am. J. Kidney Dis. 62, 394–395 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT01241383 (2015).

  84. 84

    Kohan, D. E. & Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 86, 896–904 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Himmelfarb, J. & Tuttle, K. R. New therapies for diabetic kidney disease. N. Engl. J. Med. 369, 2549–2550 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Eckardt, K. U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382, 158–169 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT01858532 (2016).

  88. 88

    Denton, C. P. & Black, C. M. Scleroderma—clinical and pathological advances. Best Pract. Res. Clin. Rheumatol. 18, 271–290 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Schioppo, T. et al. N-TproBNP as biomarker in systemic sclerosis. Clin. Rev. Allergy Immunol. 43, 292–301 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Gibney, E. M. et al. Kidney transplantation for systemic sclerosis improves survival and may modulate disease activity. Am. J. Transplant. 4, 2027–2031 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Siva, B. et al. End-stage kidney disease due to scleroderma—outcomes in 127 consecutive ANZDATA registry cases. Nephrol. Dial. Transplant. 26, 3165–3171 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Pham, P. T. et al. Predictors and risk factors for recurrent scleroderma renal crisis in the kidney allograft: case report and review of the literature. Am. J. Transplant. 5, 2565–2569 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Shegogue, D. & Trojanowska, M. Mammalian target of rapamycin positively regulates collagen type I production via a phosphatidylinositol 3-kinase-independent pathway. J. Biol. Chem. 279, 23166–23175 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Su, T. I. et al. Rapamycin versus methotrexate in early diffuse systemic sclerosis: results from a randomized, single-blind pilot study. Arthritis Rheum. 60, 3821–3830 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Clements, P. J. et al. Cyclosporine in systemic sclerosis. Results of a forty-eight-week open safety study in ten patients. Arthritis Rheum. 36, 75–83 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Chang, Y. J. & Spiera, H. Renal transplantation in scleroderma. Medicine 78, 382–385 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Mangray, M. & Vella, J. P. Hypertension after kidney transplant. Am. J. Kidney Dis. 57, 331–341 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Cheung, W. Y., Gibson, I. W., Rush, D., Jeffery, J. & Karpinski, M. Late recurrence of scleroderma renal crisis in a renal transplant recipient despite angiotensin II blockade. Am. J. Kidney Dis. 45, 930–934 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Hudson, M. et al. An international, web-based, prospective cohort study to determine whether the use of ACE inhibitors prior to the onset of scleroderma renal crisis is associated with worse outcomes—methodology and preliminary results. Int. J. Rheumatol. 210, 347402 (2010).

    Google Scholar 

  100. 100

    Hesselstrand, R., Scheja, A. & Wuttge, D. M. Scleroderma renal crisis in a Swedish systemic sclerosis cohort: survival, renal outcome, and RNA polymerase III antibodies as a risk factor. Scand. J. Rheumatol. 41, 39–43 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.A.S. is funded by an Egyptian government scholarship programme of joint supervision in collaboration with D.E.F and the Division of Rheumatology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA. We thank Gabriel Valdivia (University of California, Los Angeles, USA) for administrative assistance.

Author information

Affiliations

Authors

Contributions

D.E.F. and T.G.W. wrote the article and provided substantial contribution to discussion of content. D.E.F., T.G.W. and P.C. reviewed and/or edited the manuscript before submission. All authors researched data for the article.

Corresponding authors

Correspondence to Daniel E. Furst or Philip Clements.

Ethics declarations

Competing interests

D.E.F. received research funding and consultation fees, and is on the advisory boards for Actelion, Gilead Sciences Inc., United Biosource Corporation (UCB), Pfizer, and Novartis. Y.A.S., T.G.W. and P.C. declare no competing interests.

PowerPoint slides

Related links

Related links

DATABASES

United Network for Organ Sharing database

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woodworth, T., Suliman, Y., Li, W. et al. Scleroderma renal crisis and renal involvement in systemic sclerosis. Nat Rev Nephrol 12, 678–691 (2016). https://doi.org/10.1038/nrneph.2016.124

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing