Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease

Key Points

  • Podocytes are susceptible to various glomerular injuries and undergo a series of adaptive, maladaptive or catastrophic responses, depending on the severity and duration of the insult

  • Wnt/β-catenin signalling is activated in glomerular podocytes in a wide variety of proteinuric kidney diseases; gain or loss-of-function studies have confirmed a role for Wnt/β-catenin signalling in mediating podocyte dysfunction and proteinuria

  • Wnt/β-catenin controls the transcription of a battery of target genes such as Snail1, MMP-7 and Fsp1, and mediates podocyte dedifferentiation and mesenchymal transition, thereby inducing podocytopathy and proteinuria

  • Wnt/β-catenin suppresses Wilms tumour protein, a key transcription factor that safeguards podocyte integrity through ubiquitin-mediated, proteasome-dependent protein degradation

  • Targeted inhibition of Wnt/β-catenin signalling by a variety of approaches preserves podocyte integrity, reduces proteinuria and ameliorates kidney damage

Abstract

Podocytes are unique, highly specialized, terminally differentiated cells that are integral components of the kidney glomerular filtration barrier. Podocytes are vulnerable to a variety of injuries and in response they undergo a series of changes ranging from hypertrophy, autophagy, dedifferentiation, mesenchymal transition and detachment to apoptosis, depending on the nature and extent of the insult. Emerging evidence indicates that Wnt/β-catenin signalling has a central role in mediating podocyte dysfunction and proteinuria. Wnts are induced and β-catenin is activated in podocytes in various proteinuric kidney diseases. Genetic or pharmacologic activation of β-catenin is sufficient to impair podocyte integrity and causes proteinuria in healthy mice, whereas podocyte-specific ablation of β-catenin protects against proteinuria after kidney injury. Mechanistically, Wnt/β-catenin controls the expression of several key mediators implicated in podocytopathies, including Snail1, the renin–angiotensin system and matrix metalloproteinase 7. Wnt/β-catenin also negatively regulates Wilms tumour protein, a crucial transcription factor that safeguards podocyte integrity. Targeted inhibition of Wnt/β-catenin signalling preserves podocyte integrity and ameliorates proteinuria in animal models. This Review highlights advances in our understanding of the pathomechanisms of Wnt/β-catenin signalling in mediating podocyte injury, and describes the therapeutic potential of targeting this pathway for the treatment of proteinuric kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spectrum of podocyte responses after injury.
Figure 2: Wnt/β-catenin signalling is activated in the injured kidney and exerts its effects by inducing transcription of target genes.
Figure 3: The interplay between Wnt/β-catenin signalling and WT1 dictates podocyte health and disease.

Similar content being viewed by others

References

  1. Reiser, J. & Sever, S. Podocyte biology and pathogenesis of kidney disease. Annu. Rev. Med. 64, 357–366 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Thomas, M. C. Pathogenesis and progression of proteinuria. Contrib. Nephrol. 170, 48–56 (2011).

    Article  PubMed  Google Scholar 

  3. Grahammer, F., Schell, C. & Huber, T. B. Molecular understanding of the slit diaphragm. Pediatr. Nephrol. 28, 1957–1962 (2013).

    Article  PubMed  Google Scholar 

  4. Brinkkoetter, P. T., Ising, C. & Benzing, T. The role of the podocyte in albumin filtration. Nat. Rev. Nephrol. 9, 328–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Mathieson, P. W. The podocyte as a target for therapies—new and old. Nat. Rev. Nephrol. 8, 52–56 (2012).

    Article  CAS  Google Scholar 

  6. Menzel, S. & Moeller, M. J. Role of the podocyte in proteinuria. Pediatr. Nephrol. 26, 1775–1780 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patrakka, J. & Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat. Rev. Nephrol. 5, 463–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Grahammer, F., Schell, C. & Huber, T. B. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat. Rev. Nephrol. 9, 587–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Dai, C. et al. Wnt/β-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol. 20, 1997–2008 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kato, H. et al. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J. Biol. Chem. 286, 26003–26015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heikkila, E. et al. β-catenin mediates adriamycin-induced albuminuria and podocyte injury in the adult mouse kidneys. Nephrol. Dial. Transplant. 25, 2437–2446 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Herman-Edelstein, M., Weinstein, T. & Gafter, U. TGFβ1-dependent podocyte dysfunction. Curr. Opin. Nephrol. Hypertens. 22, 93–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Dai, C., Saleem, M. A., Holzman, L. B., Mathieson, P. & Liu, Y. Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney Int. 77, 962–973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, L. et al. Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/β-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria. J. Biol. Chem. 288, 23368–23379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma, T. et al. High glucose induces autophagy in podocytes. Exp. Cell Res. 319, 779–789 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang, Y. S. et al. Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. Kidney Int. 78, 363–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 21, 212–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Zeng, C. et al. Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies. J. Pathol. 234, 203–213 (2014).

    CAS  PubMed  Google Scholar 

  21. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Kume, S., Yamahara, K., Yasuda, M., Maegawa, H. & Koya, D. Autophagy: emerging therapeutic target for diabetic nephropathy. Semin. Nephrol. 34, 9–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Hartleben, B., Wanner, N. & Huber, T. B. Autophagy in glomerular health and disease. Semin. Nephrol. 34, 42–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Fang, L. et al. Autophagy inhibition induces podocyte apoptosis by activating the pro-apoptotic pathway of endoplasmic reticulum stress. Exp. Cell Res. 322, 290–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Zeisberg, M. & Neilson, E. G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429–1437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, Y. et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am. J. Pathol. 172, 299–308 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, C. et al. Epithelial-to-mesenchymal transition in podocytes mediated by activation of NADPH oxidase in hyperhomocysteinemia. Pflugers Arch. 462, 455–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boini, K. M. et al. Implication of CD38 gene in podocyte epithelial-to-mesenchymal transition and glomerular sclerosis. J. Cell. Mol. Med. 16, 1674–1685 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai, H. Y. et al. The roles of connective tissue growth factor and integrin-linked kinase in high glucose-induced phenotypic alterations of podocytes. J. Cell Biochem. 113, 293–301 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, C. et al. Mesangial medium from IgA nephropathy patients induces podocyte epithelial-to-mesenchymal transition through activation of the phosphatidyl inositol-3-kinase/Akt signaling pathway. Cell Physiol. Biochem. 29, 743–752 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Lv, Z. et al. Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering β-catenin transcriptional activity under high glucose conditions. Int. J. Biochem. Cell Biol. 45, 255–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Matsui, I. et al. Snail, a transcriptional regulator, represses nephrin expression in glomerular epithelial cells of nephrotic rats. Lab. Invest. 87, 273–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, D., Dai, C., Li, Y. & Liu, Y. Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int. 80, 1159–1169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou, L. et al. Mutual antagonism of Wilms' tumor 1 and β-catenin dictates podocyte health and disease. J. Am. Soc. Nephrol. 26, 677–691 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi, Y. et al. Epithelial-mesenchymal transition as an explanation for podocyte depletion in diabetic nephropathy. Am. J. Kidney Dis. 54, 653–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. May, C. J., Saleem, M. & Welsh, G. I. Podocyte dedifferentiation: a specialized process for a specialized cell. Front. Endocrinol. 5, 148 (2014).

    Article  Google Scholar 

  38. Tan, R. J. & Liu, Y. Arrestin(g) podocyte injury with endothelin antagonism. J. Am. Soc. Nephrol. 25, 423–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Buelli, S. et al. β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J. Am. Soc. Nephrol. 25, 523–533 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Reidy, K., Kang, H. M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333–2340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herman-Edelstein, M. et al. Dedifferentiation of immortalized human podocytes in response to transforming growth factor-β: a model for diabetic podocytopathy. Diabetes 60, 1779–1788 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kriz, W. & Lemley, K. V. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J. Am. Soc. Nephrol. 26, 258–269 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, D. et al. Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J. Am. Soc. Nephrol. 16, 1733–1741 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kriz, W., Shirato, I., Nagata, M., LeHir, M. & Lemley, K. V. The podocyte's response to stress: the enigma of foot process effacement. Am. J. Physiol. Renal Physiol. 304, F333–F347 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kato, H. & Susztak, K. Repair problems in podocytes: Wnt, Notch, and glomerulosclerosis. Semin. Nephrol. 32, 350–356 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liapis, H., Romagnani, P. & Anders, H. J. New insights into the pathology of podocyte loss: mitotic catastrophe. Am. J. Pathol. 183, 1364–1374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lasagni, L., Lazzeri, E., Shankland, S. J., Anders, H. J. & Romagnani, P. Podocyte mitosis—a catastrophe. Curr. Mol. Med. 13, 13–23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou, L. L. et al. Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney Int. 76, 1148–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Y. Advanced oxidation protein products: a causative link between oxidative stress and podocyte depletion. Kidney Int. 76, 1125–1127 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Tharaux, P. L. & Huber, T. B. How many ways can a podocyte die? Semin. Nephrol. 32, 394–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, L., Tang, Y., Howell, D. N., Ruiz, P. & Spurney, R. F. A novel mouse model of podocyte depletion. Nephron Exp. Nephrol. 121, e10–e22 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Grinstein, M., Yelin, R., Herzlinger, D. & Schultheiss, T. M. Generation of the podocyte and tubular components of an amniote kidney: timing of specification and a role for Wnt signaling. Development 140, 4565–4573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tan, R. J., Zhou, D., Zhou, L. & Liu, Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int. Suppl. 4, 84–90 (2014).

    Article  CAS  Google Scholar 

  54. Xiao, L., Wang, M., Yang, S., Liu, F. & Sun, L. A glimpse of the pathogenetic mechanisms of Wnt/β-catenin signaling in diabetic nephropathy. Biomed. Res. Int. 2013, 987064 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Kawakami, T., Ren, S. & Duffield, J. S. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J. Pathol. 229, 221–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 10, 468–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Saito-Diaz, K. et al. The way Wnt works: components and mechanism. Growth Factors 31, 1–31 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, L., Li, Y., Zhou, D., Tan, R. J. & Liu, Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 24, 771–785 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He, W., Kang, Y. S., Dai, C. & Liu, Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tan, R. J. et al. Extracellular superoxide dismutase protects against proteinuric kidney disease. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014060613.

  63. Zhou, T. et al. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia 55, 255–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Shkreli, M. et al. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat. Med. 18, 111–119 (2012).

    Article  CAS  Google Scholar 

  65. Naves, M. A. et al. Podocyte Wnt/β-catenin pathway is activated by integrin-linked kinase in clinical and experimental focal segmental glomerulosclerosis. J. Nephrol. 25, 401–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461, 1002–1006 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Wickstrom, S. A., Lange, A., Montanez, E. & Fassler, R. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J. 29, 281–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, J. et al. TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci. Signal. 7, ra91 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Millanes-Romero, A. et al. Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition. Mol. Cell 52, 746–757 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, K. et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat. Cell Biol. 15, 677–687 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garcia de Herreros, A. & Baulida, J. Cooperation, amplification, and feed-back in epithelial-mesenchymal transition. Biochim. Biophys. Acta 1825, 223–228 (2012).

    CAS  PubMed  Google Scholar 

  72. Li, Y., Wen, X. & Liu, Y. Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis. Kidney Int. 81, 880–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hao, S. et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J. Am. Soc. Nephrol. 22, 1642–1653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, Z. C. et al. AKT/GSK-3β regulates stability and transcription of snail which is crucial for bFGF-induced epithelial-mesenchymal transition of prostate cancer cells. Biochim. Biophys. Acta 1840, 3096–3105 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Locatelli, M. et al. Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement. J. Am. Soc. Nephrol. 25, 1786–1798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, X. et al. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014040405.

  77. Li, C. & Siragy, H. M. High glucose induces podocyte injury via enhanced (pro)renin receptor-Wnt-β-catenin-snail signaling pathway. PLoS ONE 9, e89233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wennmann, D. O., Hsu, H. H. & Pavenstadt, H. The renin-angiotensin-aldosterone system in podocytes. Semin. Nephrol. 32, 377–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Zhou, L. et al. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 26, 107–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Sakoda, M., Itoh, H. & Ichihara, A. Podocytes as a target of prorenin in diabetes. Curr. Diabetes Rev. 7, 17–21 (2010).

    Article  Google Scholar 

  81. Hsu, H. H. et al. Mechanisms of angiotensin II signaling on cytoskeleton of podocytes. J. Mol. Med. 86, 1379–1394 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Marquez, E., Riera, M., Pascual, J. & Soler, M. J. Renin-angiotensin system within the diabetic podocyte. Am. J. Physiol. Renal Physiol. 308, F1–F10 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Ortiz-Melo, D. I. & Spurney, R. F. Special delivery: podocyte injury promotes renal angiotensin II generation from liver-derived angiotensinogen. Kidney Int. 85, 1009–1011 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Sonneveld, R. et al. Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am. J. Pathol. 184, 1715–1726 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Ruggenenti, P., Cravedi, P. & Remuzzi, G. Mechanisms and treatment of CKD. J. Am. Soc. Nephrol. 23, 1917–1928 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Lambers Heerspink, H. J., de Borst, M. H., Bakker, S. J. & Navis, G. J. Improving the efficacy of RAAS blockade in patients with chronic kidney disease. Nat. Rev. Nephrol. 9, 112–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Henderson, W. R. Jr et al. Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc. Natl Acad. Sci. USA 107, 14309–14314 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Santos, P. C., Krieger, J. E. & Pereira, A. C. Renin–angiotensin system, hypertension, and chronic kidney disease: pharmacogenetic implications. J. Pharmacol. Sci. 120, 77–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Crowley, S. D. & Coffman, T. M. Recent advances involving the renin-angiotensin system. Exp. Cell Res. 318, 1049–1056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. He, W. et al. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/β-catenin activity in CKD. J. Am. Soc. Nephrol. 23, 294–304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tan, R. J. & Liu, Y. Matrix metalloproteinases in kidney homeostasis and disease. Am. J. Physiol. Renal Physiol. 302, F1351–F1361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chiluiza, D., Krishna, S., Schumacher, V. A. & Schlondorff, J. Gain-of-function mutations in transient receptor potential C6 (TRPC6) activate extracellular signal-regulated kinases 1/2 (ERK1/2). J. Biol. Chem. 288, 18407–18420 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eckel, J. et al. TRPC6 enhances angiotensin II-induced albuminuria. J. Am. Soc. Nephrol. 22, 526–535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Krall, P. et al. Podocyte-specific overexpression of wild type or mutant trpc6 in mice is sufficient to cause glomerular disease. PLoS ONE 5, e12859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, Z., Xu, J., Xu, P., Liu, S. & Yang, Z. Wnt/β-catenin signalling pathway mediates high glucose induced cell injury through activation of TRPC6 in podocytes. Cell Prolif. 46, 76–85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. He, W. et al. Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/β-catenin signaling. J. Biol. Chem. 285, 24665–24675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sack, U. et al. S100A4-induced cell motility and metastasis is restricted by the Wnt/β-catenin pathway inhibitor calcimycin in colon cancer cells. Mol. Biol. Cell 22, 3344–3354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mundel, P. & Reiser, J. Proteinuria: an enzymatic disease of the podocyte? Kidney Int. 77, 571–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Venkatareddy, M. et al. Estimating podocyte number and density using a single histologic section. J. Am. Soc. Nephrol. 25, 1118–1129 (2014).

    Article  PubMed  Google Scholar 

  101. Wang, D., Li, Y., Wu, C. & Liu, Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS ONE 6, e17048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dong, L. et al. Integration of cistromic and transcriptomic analyses identifies Nphs2, Mafb, and Magi2 as Wilms' tumor 1 target genes in podocyte differentiation and maintenance. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014080819.

  103. Schumacher, V. A. et al. WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier. J. Am. Soc. Nephrol. 22, 1286–1296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kann, M. et al. Genome-wide analysis of Wilms' tumor 1-controlled gene expression in podocytes reveals key regulatory mechanisms. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014090940.

  105. Benetti, E. et al. A novel WT1 gene mutation in a three-generation family with progressive isolated focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 5, 698–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hall, G. et al. A novel missense mutation of Wilms' tumor 1 causes autosomal dominant FSGS. J. Am. Soc. Nephrol. 26, 831–843 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Chau, Y. Y. et al. Acute multiple organ failure in adult mice deleted for the developmental regulator WT1. PLoS Genet. 7, e1002404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gebeshuber, C. A. et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19, 481–487 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Chang, H. et al. Wt1 negatively regulates β-catenin signaling during testis development. Development 135, 1875–1885 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, M. K. et al. An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1. Proc. Natl Acad. Sci. USA 106, 11154–11159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Major, M. B. et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science 316, 1043–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, M. S. et al. A novel Wilms tumor 1 (WT1) target gene negatively regulates the WNT signaling pathway. J. Biol. Chem. 285, 14585–14593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. He, W. et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. DiRocco, D. P., Kobayashi, A., Taketo, M. M., McMahon, A. P. & Humphreys, B. D. Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J. Am. Soc. Nephrol. 24, 1399–1412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, H. R. et al. Circulating α-klotho levels in CKD and relationship to progression. Am. J. Kidney Dis. 61, 899–909 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Karalliedde, J., Maltese, G., Hill, B., Viberti, G. & Gnudi, L. Effect of renin-angiotensin system blockade on soluble Klotho in patients with type 2 diabetes, systolic hypertension, and albuminuria. Clin. J. Am. Soc. Nephrol. 8, 1899–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hu, M. C. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 22, 124–136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hu, M. C., Kuro-o, M. & Moe, O. W. Klotho and chronic kidney disease. Contrib. Nephrol. 180, 47–63 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Guan, X. et al. Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J. Pathol. 234, 560–572 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Lindberg, K. et al. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 25, 2169–2175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ren, S. et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc. Natl Acad. Sci. USA 110, 1440–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhou, D. et al. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury. Kidney Int. 82, 537–547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, X., Song, Z., Guo, Y. & Zhou, M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol. Cell Biochem. 399, 155–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Song, Z., Guo, Y., Zhou, M. & Zhang, X. The PI3K/p-Akt signaling pathway participates in calcitriol ameliorating podocyte injury in DN rats. Metabolism 63, 1324–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Sonneveld, R. et al. Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. Am. J. Pathol. 182, 1196–1204 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. de Zeeuw, D. et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376, 1543–1551 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Floege, J. Antagonism of canonical Wnt/β-catenin signaling: taking RAS blockade to the next level? J. Am. Soc. Nephrol. 26, 3–5 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose important findings could not be cited in this article due to space limitations. Reviews were often cited at the expense of original work. Our own work described in this Review was supported by the National Basic Research Program of China Grant 2012CB517700, National Science Foundation of China Grants 81130011 and 81370839, and NIH Grants DK064005 and DK091239.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching the data for the article and to discussions of the content. Y.L. wrote the article. Both authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Youhua Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Liu, Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol 11, 535–545 (2015). https://doi.org/10.1038/nrneph.2015.88

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.88

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research