Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of diabetic complications

Key Points

  • The majority of the morbidity and mortality associated with diabetes mellitus is due to complications, such as diabetic kidney disease

  • A limited understanding of the underlying mechanisms responsible for the development of diabetic complications compromises efforts to develop novel strategies for treatment and prevention

  • Studies of human genetics offer powerful tools for delivering robust mechanistic insights into complex traits, such as diabetic complications, which have a substantial genetic component

  • Scientific progress to date has been limited by small sample sizes and/or phenotypic imprecision; however, several major discovery efforts are underway that have been designed to address these issues

  • The identification of genetic variants with robust effects on the risk of developing diabetic complications will accelerate efforts to develop more effective strategies for treatment and prevention

Abstract

The rising global prevalence of diabetes mellitus is accompanied by an increasing burden of morbidity and mortality that is attributable to the complications of chronic hyperglycaemia. These complications include blindness, renal failure and cardiovascular disease. Current therapeutic options for chronic hyperglycaemia reduce, but do not eradicate, the risk of these complications. Success in defining new preventative and therapeutic strategies hinges on an improved understanding of the molecular processes involved in the development of these complications. This Review explores the role of human genetics in delivering such insights, and describes progress in characterizing the sequence variants that influence individual predisposition to diabetic kidney disease, retinopathy, neuropathy and accelerated cardiovascular disease. Numerous risk variants for microvascular complications of diabetes have been reported, but very few have shown robust replication. Furthermore, only limited evidence exists of a difference in the repertoire of risk variants influencing macrovascular disease between those with and those without diabetes. Here, we outline the challenges associated with the genetic analysis of diabetic complications and highlight ongoing efforts to deliver biological insights that can drive translational benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the workflow of genome-wide association studies.
Figure 2: GWAS sample sizes and locus discovery rates for complex traits.
Figure 3: Regional association plot of the correlation of SNPs in the 9p21.3 region with T2DM and CAD.
Figure 4: Schematic of future directions for characterizing genetic associations with complications of diabetes.

Similar content being viewed by others

References

  1. Alberti, K. G. & Zimmet, P. Global burden of disease—where does diabetes mellitus fit in? Nat. Rev. Endocrinol. 9, 258–260 (2013).

    PubMed  Google Scholar 

  2. American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 31, 596–615 (2008).

  3. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf (2011).

  4. Gilg, J., Rao, A. & Fogarty, D. UK Renal Registry 16th annual report: chapter 1 UK renal replacement therapy incidence in 2012: national and centre-specific analyses. Nephron Clin. Pract. 125, 1–27 (2013).

    PubMed  Google Scholar 

  5. Orchard, T. J. et al. Prevalence of complications in IDDM by sex and duration. Pittsburgh Epidemiology of Diabetes Complications Study II. Diabetes 39, 1116–1124 (1990).

    CAS  PubMed  Google Scholar 

  6. Forbes, J. M. & Cooper, M. E. Mechanisms of diabetic complications. Physiol. Rev. 93, 137–188 (2013).

    CAS  PubMed  Google Scholar 

  7. Fioretto, P. et al. Heterogeneous nature of microalbuminuria in NIDDM: studies of endothelial function and renal structure. Diabetologia 41, 233–236 (1998).

    CAS  PubMed  Google Scholar 

  8. Pham, T. T., Sim, J. J., Kujubu, D. A., Liu, I. L. & Kumar, V. A. Prevalence of nondiabetic renal disease in diabetic patients. Am. J. Nephrol. 27, 322–328 (2007).

    PubMed  Google Scholar 

  9. Wolf, G., Muller, N., Mandecka, A. & Muller, U. A. Association of diabetic retinopathy and renal function in patients with types 1 and 2 diabetes mellitus. Clin. Nephrol. 68, 81–86 (2007).

    CAS  PubMed  Google Scholar 

  10. Huang, F. et al. Renal pathological change in patients with type 2 diabetes is not always diabetic nephropathy: a report of 52 cases. Clin. Nephrol. 67, 293–297 (2007).

    CAS  PubMed  Google Scholar 

  11. Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).

    CAS  PubMed  Google Scholar 

  12. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  13. Gilbertson, D. T. et al. Projecting the number of patients with end-stage renal disease in the United States to the year 2015. J. Am. Soc. Nephrol. 16, 3736–3741 (2005).

    PubMed  Google Scholar 

  14. Cook, D. et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    CAS  PubMed  Google Scholar 

  15. Borch-Johnsen, K. et al. Is diabetic nephropathy an inherited complication? Kidney Int. 41, 719–722 (1992).

    CAS  PubMed  Google Scholar 

  16. The Diabetes Control and Complications Trial Research Group. Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 46, 1829–1839 (1997).

  17. Quinn, M., Angelico, M. C., Warram, J. H. & Krolewski, A. S. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 39, 940–945 (1996).

    CAS  PubMed  Google Scholar 

  18. Seaquist, E. R., Goetz, F. C., Rich, S. & Barbosa, J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N. Engl. J. Med. 320, 1161–1165 (1989).

    CAS  PubMed  Google Scholar 

  19. Earle, K., Walker, J., Hill, C. & Viberti, G. Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N. Engl. J. Med. 326, 673–677 (1992).

    CAS  PubMed  Google Scholar 

  20. Krolewski, A. S. et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N. Engl. J. Med. 318, 140–145 (1988).

    CAS  PubMed  Google Scholar 

  21. Roglic, G. et al. Parental history of hypertension and parental history of diabetes and microvascular complications in insulin-dependent diabetes mellitus: the EURODIAB IDDM Complications Study. Diabet. Med. 15, 418–426 (1998).

    CAS  PubMed  Google Scholar 

  22. Pettitt, D. J., Saad, M. F., Bennett, P. H., Nelson, R. G. & Knowler, W. C. Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 33, 438–443 (1990).

    CAS  PubMed  Google Scholar 

  23. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    CAS  PubMed  Google Scholar 

  24. Ritz, E., Zeng, X. X. & Rychlik, I. Clinical manifestation and natural history of diabetic nephropathy. Contrib. Nephrol. 170, 19–27 (2011).

    PubMed  Google Scholar 

  25. Krolewski, A. S., Warram, J. H., Christlieb, A. R., Busick, E. J. & Kahn, C. R. The changing natural history of nephropathy in type I diabetes. Am. J. Med. 78, 785–794 (1985).

    CAS  PubMed  Google Scholar 

  26. Dronavalli, S., Duka, I. & Bakris, G. L. The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 4, 444–452 (2008).

    CAS  PubMed  Google Scholar 

  27. Steinke, J. M. et al. The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54, 2164–2171 (2005).

    CAS  PubMed  Google Scholar 

  28. Perkins, B. A., Ficociello, L. H., Roshan, B., Warram, J. H. & Krolewski, A. S. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 77, 57–64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson, R. G. et al. Incidence of end-stage renal disease in type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia 31, 730–736 (1988).

    CAS  PubMed  Google Scholar 

  30. Harjutsalo, V., Katoh, S., Sarti, C., Tajima, N. & Tuomilehto, J. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes 53, 2449–2454 (2004).

    CAS  PubMed  Google Scholar 

  31. Langefeld, C. D. et al. Heritability of GFR and albuminuria in Caucasians with type 2 diabetes mellitus. Am. J. Kidney Dis. 43, 796–800 (2004).

    PubMed  Google Scholar 

  32. Krolewski, A. S. et al. A genome-wide linkage scan for genes controlling variation in urinary albumin excretion in type II diabetes. Kidney Int. 69, 129–136 (2006).

    CAS  PubMed  Google Scholar 

  33. Forsblom, C. M., Kanninen, T., Lehtovirta, M., Saloranta, C. & Groop, L. C. Heritability of albumin excretion rate in families of patients with type II diabetes. Diabetologia 42, 1359–1366 (1999).

    CAS  PubMed  Google Scholar 

  34. Edwards, B. J., Haynes, C., Levenstien, M. A., Finch, S. J. & Gordon, D. Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies. BMC Genet. 6, 18 (2005).

    PubMed  PubMed Central  Google Scholar 

  35. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Boger, C. A. & Sedor, J. R. GWAS of diabetic nephropathy: is the GENIE out of the bottle? PLoS Genet. 8, e1002989 (2012).

    PubMed  PubMed Central  Google Scholar 

  37. Ellis, J. W. et al. Validated SNPs for eGFR and their associations with albuminuria. Hum. Mol. Genet. 21, 3293–3298 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Placha, G., Canani, L. H., Warram, J. H. & Krolewski, A. S. Evidence for different susceptibility genes for proteinuria and ESRD in type 2 diabetes. Adv. Chronic Kidney Dis. 12, 155–169 (2005).

    PubMed  Google Scholar 

  39. Chan, Y. et al. An excess of risk-increasing low-frequency variants can be a signal of polygenic inheritance in complex diseases. Am. J. Hum. Genet. 94, 437–452 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gambara, V., Mecca, G., Remuzzi, G. & Bertani, T. Heterogeneous nature of renal lesions in type II diabetes. J. Am. Soc. Nephrol. 3, 1458–1466 (1993).

    CAS  PubMed  Google Scholar 

  41. Ruggenenti, P. & Remuzzi, G. Nephropathy of type 1 and type 2 diabetes: diverse pathophysiology, same treatment? Nephrol. Dial. Transplant. 15, 1900–1902 (2000).

    CAS  PubMed  Google Scholar 

  42. Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Barreiro, L. B., Laval, G., Quach, H., Patin, E. & Quintana-Murci, L. Natural selection has driven population differentiation in modern humans. Nat. Genet. 40, 340–345 (2008).

    CAS  PubMed  Google Scholar 

  44. Genovese, G. et al. Association of trypanolytic APOL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Palmer, N. D. et al. Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease. PLoS ONE 9, e88273 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mooyaart, A. L. et al. Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54, 544–553 (2011).

    CAS  PubMed  Google Scholar 

  48. Nikzamir, A., Nakhjavani, M., Esteghamati, A. & Rashidi, A. Correlates of ACE activity in macroalbuminuric type 2 diabetic patients treated with chronic ACE inhibition. Nephrol. Dial. Transplant. 23, 1274–1277 (2008).

    CAS  PubMed  Google Scholar 

  49. Rigat, B. et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, F. et al. Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J. Renin Angiotensin Aldosterone Syst. 13, 161–174 (2012).

    CAS  PubMed  Google Scholar 

  51. Germain, M. et al. SORBS1 gene, a new candidate for diabetic nephropathy: results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia 58, 543–548 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Hoggart, C. J., Clark, T. G., De Iorio, M., Whittaker, J. C. & Balding, D. J. Genome-wide significance for dense SNP and resequencing data. Genet. Epidemiol. 32, 179–185 (2008).

    PubMed  Google Scholar 

  53. Thompson, J. R., Attia, J. & Minelli, C. The meta-analysis of genome-wide association studies. Brief Bioinform. 12, 259–269 (2011).

    PubMed  Google Scholar 

  54. Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    CAS  PubMed  Google Scholar 

  55. Deloukas, P. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45, 25–33 (2013).

    CAS  PubMed  Google Scholar 

  56. Craig, D. W., Millis, M. P. & DiStefano, J. K. Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to type 1 diabetes. Diabet. Med. 26, 1090–1098 (2009).

    CAS  PubMed  Google Scholar 

  57. Pezzolesi, M. G. et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 58, 1403–1410 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Williams, W. W. et al. Association testing of previously reported variants in a large case-control meta-analysis of diabetic nephropathy. Diabetes 61, 2187–2194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  60. Sandholm, N. et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 8, e1002921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schelling, J. R. et al. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: the Family Investigation of Nephropathy and Diabetes (FIND). Diabetes 57, 235–243 (2008).

    CAS  PubMed  Google Scholar 

  62. Igo, R. P. Jr et al. Genomewide linkage scan for diabetic renal failure and albuminuria: the FIND study. Am. J. Nephrol. 33, 381–389 (2011).

    PubMed  PubMed Central  Google Scholar 

  63. Thameem, F. et al. A genome-wide search for linkage of estimated glomerular filtration rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND). PLoS ONE 8, e81888 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. McDonough, C. W. et al. A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int. 79, 563–572 (2011).

    PubMed  Google Scholar 

  65. Rayner, N. W. et al. Abstracts of the 74th Scientific Sessions of the American Diabetes Association. Whole-exome sequencing in type 1 diabetic nephropathy. Diabetes 63 (Suppl. 1), A37 (2014).

    Google Scholar 

  66. Bonomo, J. A. et al. Coding variants in nephrin (NPHS1) and susceptibility to nephropathy in African Americans. Clin. J. Am. Soc. Nephrol. 9, 1434–1440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Majithia, A. R. et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc. Natl Acad. Sci. USA 111, 13127–13132 (2014).

    CAS  PubMed  Google Scholar 

  68. Rani, P. K. et al. Albuminuria and diabetic retinopathy in type 2 diabetes mellitus. Sankara Nethralaya Diabetic Retinopathy Epidemiology And Molecular Genetic Study (SN-DREAMS, report 12). Diabetol. Metab. Syndr. 3, 9 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Drury, P. L. et al. Estimated glomerular filtration rate and albuminuria are independent predictors of cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia 54, 32–43 (2011).

    CAS  PubMed  Google Scholar 

  70. Groop, P. H. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58, 1651–1658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Viswanath, K. & McGavin, D. D. Diabetic retinopathy: clinical findings and management. Community Eye Health 16, 21–24 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yau, J. W. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35, 556–564 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Arar, N. H. et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest. Ophthalmol. Vis. Sci. 49, 3839–3845 (2008).

    PubMed  PubMed Central  Google Scholar 

  74. Hietala, K., Forsblom, C., Summanen, P., Groop, P. H. & FinnDiane Study Group. Heritability of proliferative diabetic retinopathy. Diabetes 57, 2176–2180 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Looker, H. C. et al. Genome-wide linkage analyses to identify loci for diabetic retinopathy. Diabetes 56, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  76. Cho, H. & Sobrin, L. Genetics of diabetic retinopathy. Curr. Diab. Rep. 14, 515 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Sobrin, L. et al. Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: the Candidate Gene Association Resource (CARe). Invest. Ophthalmol. Vis. Sci. 52, 7593–7602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Awata, T. et al. A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 51, 1635–1639 (2002).

    CAS  PubMed  Google Scholar 

  79. Stevens, A., Soden, J., Brenchley, P. E., Ralph, S. & Ray, D. W. Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter. Cancer Res. 63, 812–816 (2003).

    CAS  PubMed  Google Scholar 

  80. Qiu, M., Xiong, W., Liao, H. & Li, F. VEGF −634G>C polymorphism and diabetic retinopathy risk: a meta-analysis. Gene 518, 310–315 (2013).

    CAS  PubMed  Google Scholar 

  81. Zhao, T. & Zhao, J. Association between the −634C/G polymorphisms of the vascular endothelial growth factor and retinopathy in type 2 diabetes: a meta-analysis. Diabetes Res. Clin. Pract. 90, 45–53 (2010).

    CAS  PubMed  Google Scholar 

  82. Abhary, S., Hewitt, A. W., Burdon, K. P. & Craig, J. E. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes 58, 2137–2147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Abhary, S. et al. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care 33, 1834–1836 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Tong, Z. et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc. Natl Acad. Sci. USA 105, 6998–7003 (2008).

    CAS  PubMed  Google Scholar 

  85. Sheu, W. H. et al. Genome-wide association study in a Chinese population with diabetic retinopathy. Hum. Mol. Genet. 22, 3165–3173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, Y. C. et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology 118, 642–648 (2011).

    PubMed  Google Scholar 

  87. Grassi, M. A. et al. Genome-wide meta-analysis for severe diabetic retinopathy. Hum. Mol. Genet. 20, 2472–2481 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Grassi, M. A. et al. Replication analysis for severe diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 53, 2377–2381 (2012).

    PubMed  PubMed Central  Google Scholar 

  89. Said, G. Diabetic neuropathy—a review. Nat. Clin. Pract. Neurol. 3, 331–340 (2007).

    PubMed  Google Scholar 

  90. Bennett, D. L. H. & Woods, C. G. Painful and painless channelopathies. Lancet Neurol. 13, 587–599 (2014).

    CAS  PubMed  Google Scholar 

  91. Ciccacci, C. et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol. 51, 663–671 (2014).

    CAS  PubMed  Google Scholar 

  92. Barakat, K. & Hitman, G. A. Genetic susceptibility to macrovascular complications of type 2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab. 15, 359–370 (2001).

    CAS  PubMed  Google Scholar 

  93. Beckman, J. A., Creager, M. A. & Libby, P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287, 2570–2581 (2002).

    CAS  PubMed  Google Scholar 

  94. Waller, B. F., Palumbo, P. J., Lie, J. T. & Roberts, W. C. Status of the coronary arteries at necropsy in diabetes mellitus with onset after age 30 years. Analysis of 229 diabetic patients with and without clinical evidence of coronary heart disease and comparison to 183 control subjects. Am. J. Med. 69, 498–506 (1980).

    CAS  PubMed  Google Scholar 

  95. Martini, S. R. & Kent, T. A. Hyperglycaemia in acute ischemic stroke: a vascular perspective. J. Cereb. Blood Flow Metab. 27, 435–451 (2007).

    CAS  PubMed  Google Scholar 

  96. Prakash, R. et al. Vascularization pattern after ischemic stroke is different in control versus diabetic rats: relevance to stroke recovery. Stroke 44, 2875–2882 (2013).

    PubMed  Google Scholar 

  97. Chen, Q., Smith, C. Y., Bailey, K. R., Wennberg, P. W. & Kullo, I. J. Disease location is associated with survival in patients with peripheral arterial disease. J. Am. Heart Assoc. 2, e000304 (2013).

    PubMed  PubMed Central  Google Scholar 

  98. Gschwendtner, A. et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann. Neurol. 65, 531–539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. International Stroke Genetics Consortium et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat. Genet. 44, 328–333 (2012).

  100. Abboud, S. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) gene is a risk factor of large-vessel atherosclerosis stroke. PLoS ONE 2, e1043 (2007).

    PubMed  PubMed Central  Google Scholar 

  101. Samani, N. J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Murabito, J. M. et al. Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ. Cardiovasc. Genet. 5, 100–112 (2012).

    CAS  PubMed  Google Scholar 

  104. Hopewell, J. C. et al. Lipoprotein(a) genetic variants associated with coronary and peripheral vascular disease but not with stroke risk in the Heart Protection Study. Circ. Cardiovasc. Genet. 4, 68–73 (2011).

    CAS  PubMed  Google Scholar 

  105. Van Zuydam, N. R. Abstracts of the 49th Annual Meeting of the EASD: known SNPs in ADAMTS7, the 9p21 region and UBE2E interact with type 2 diabetes status to modify the risk of coronary artery disease in large populations. Diabetologia 56 (Suppl. 1), S76–S77 (2013).

    Google Scholar 

  106. Doria, A. et al. Interaction between poor glycaemic control and 9p21 locus on risk of coronary artery disease in type 2 diabetes. JAMA 300, 2389–2397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Qi, L. et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310, 821–828 (2013).

    CAS  PubMed  Google Scholar 

  108. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Morris, A. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

  111. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shea, J. et al. Comparing strategies to fine-map the association of common SNPs at chromosome 9p21 with type 2 diabetes and myocardial infarction. Nat. Genet. 43, 801–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rivera, N. V. et al. Assessment of the 9p21.3 locus in severity of coronary artery disease in the presence and absence of type 2 diabetes. BMC Med. Genet. 14, 11 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Writing Team for the Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287, 2563–2569 (2002).

  115. Writing Team for the Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290, 2159–2167 (2003).

  116. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    CAS  PubMed  Google Scholar 

  117. Kato, M. & Natarajan, R. Diabetic nephropathy—emerging epigenetic mechanisms. Nat. Rev. Nephrol. 10, 517–530 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Reddy, M. A. & Natarajan, R. Epigenetics in diabetic kidney disease. J. Am. Soc. Nephrol. 22, 2182–2185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, Q. et al. Gene expression profiling in glomeruli of diabetic nephropathy rat. Exp. Biol. Med. (Maywood) 237, 903–911 (2012).

    CAS  Google Scholar 

  121. Lee, Y. J. et al. E3 ubiquitin-protein ligases in rat kidney collecting duct: response to vasopressin stimulation and withdrawal. Am. J. Physiol. Renal Physiol. 301, F883–F896 (2011).

    CAS  PubMed  Google Scholar 

  122. Song, Y., Ailenberg, M. & Silverman, M. Human munc13 is a diacylglycerol receptor that induces apoptosis and may contribute to renal cell injury in hyperglycaemia. Mol. Biol. Cell 10, 1609–1619 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Tregouet, D. A. et al. G/T substitution in intron 1 of the UNC13B gene is associated with increased risk of nephropathy in patients with type 1 diabetes. Diabetes 57, 2843–2850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bell, C. G. et al. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med. Genomics 3, 33 (2010).

    PubMed  PubMed Central  Google Scholar 

  125. International Consortium for Blood Pressure Genome-Wide Association Studies et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

  126. Franceschini, N. et al. Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am. J. Hum. Genet. 93, 545–554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tomino, Y., Cooper, M. E., Kurtz, T. W. & Shimizu, Y. Experimental models of type-2 diabetic nephropathy. Exp. Diabetes Res. 2012, 218917 (2012).

    PubMed  PubMed Central  Google Scholar 

  128. Engelbertsen, D. et al. Increased inflammation in atherosclerotic lesions of diabetic Akita-LDLr−/− mice compared to nondiabetic LDLr−/− mice. Exp. Diabetes Res. 2012, 176162 (2012).

    PubMed  PubMed Central  Google Scholar 

  129. Brosius, F. C. 3rd et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2503–2512 (2009).

    PubMed  PubMed Central  Google Scholar 

  130. Hsueh, W. et al. Recipes for creating animal models of diabetic cardiovascular disease. Circ. Res. 100, 1415–1427 (2007).

    CAS  PubMed  Google Scholar 

  131. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, H. H., Almontashiri, N. A., Antoine, D. & Stewart, A. F. Functional genomics of the 9p21.3 locus for atherosclerosis: clarity or confusion? Curr. Cardiol. Rep. 16, 502 (2014).

    PubMed  Google Scholar 

  133. CARDIoGRAMplusC4D Consortium. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45, 25–33 (2013).

  134. Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643–2653 (2005).

    PubMed  Google Scholar 

  135. Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mueller, P. W. et al. Genetics of Kidneys in Diabetes (GoKinD) study: a genetics collection available for identifying genetic susceptibility factors for diabetic nephropathy in type 1 diabetes. J. Am. Soc. Nephrol. 17, 1782–1790 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Scott, R. A. et al. Large-scale association analyses identify new loci influencing glycaemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991–1005 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article, and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Mark I. McCarthy.

Ethics declarations

Competing interests

E.A. and N.R.V.Z. have received salary support, and L.C.G. and M.I.M, have received research support, from the Innovative Medicines Initiative and the Juvenile Diabetes Research Foundation for research on the genetic basis of diabetic complications.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlqvist, E., van Zuydam, N., Groop, L. et al. The genetics of diabetic complications. Nat Rev Nephrol 11, 277–287 (2015). https://doi.org/10.1038/nrneph.2015.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing