IN BRIEF

GENETICS

Genetic links between diabetes and albuminuria

Loci that are associated with albuminuria in diabetes mellitus have been identified by GWAS meta-analysis of albuminuria traits in the general population. An association between *CUBN* and urinary albumin-to-creatinine ratio (UACR) was replicated, and gene-by-diabetes interactions were detected at the *HS6ST1* and *RAB38/CTSC* loci, where a genetic effect on the UACR was found in those with diabetes. *Rab38*-/- rats had higher urinary albumin concentrations and reduced levels of megalin and cubilin at the proximal tubule cell surface compared to controls, and the expression of *RAB38* was higher in the tubuli of patients with diabetic kidney disease than controls.

 $\begin{tabular}{ll} \textbf{ORIGINAL ARTICLE} Teumer, A. \it{et al.} Genome-wide association studies identify genetic loci associated with albuminuria in diabetes. \it{Diabetes} \hdots http://dx.doi.org/10.2337/db15-1313$

■ IMMUNOSUPPRESSION

Modulation of BK polyomavirus replication

The effects of immunosuppressive drugs on BK polyomavirus (BKV) replication have been compared in a new study. Sirolimus inhibited viral replication up to 24 h postinfection, but not thereafter, and similar results were found for other mTOR inhibitors and ciclosporin A. Conversely, tacrolimus — a calcineurin inhibitor — activated BKV replication. The effects of tacrolimus and sirolimus were mediated through FKBP12 in renal tubular epithelial cells. The researchers propose that these data provide a rationale for clinical trials aimed at reducing the risk of BKV replication in renal transplantation.

ORIGINAL ARTICLE Hirsch, H. H. et al. BK polyomavirus replication in renal tubular epithelial cells is inhibited by sirolimus, but activated by tacrolimus through a pathway involving FKBP-12. Am. J. Transplant. http://dx.doi.org/10.1111/ajt.13541

BASIC RESEARCH

TMEM107: a new ciliopathy transition zone gene

A bioinformatics-based analysis has identified *TMEM107* as a candidate transition zone (TZ) ciliary gene that is mutated in oral–facial–digital and Joubert syndromes. Functional analyses performed in *C. elegans* showed that TMEM107 contributes to ciliary composition and function in a redundant manner with NPHP-4, and regulates cilium integrity, TZ docking, and assembly of membrane-to-microtubule (Y-link) connectors. TMEM107 localizes to layer three of the 'MKS module' in the TZ, where it organizes recruitment of ciliopathy proteins.

ORIGINAL ARTICLE Lambacher, N. J. et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. *Nat. Cell Bio.* http://dx.doi.org/10.1038/ncb3273

PROGENITOR CELLS

Promotion of nephron progenitor cell self-renewal

BMP, FGF, and WNT signalling regulate self-renewal of nephron progenitor cells (NPCs). A molecular analysis by Muthukrishnan *et al.* to delineate these pathways found that BMP7 activates TAK1 and JNK, resulting in JUN phosphorylation, *Myc* and *Ccnd1* transcriptional regulation, and NPC proliferation. JUN is regulated by BMP7, whereas its partner FOS is regulated by FGF9. The researchers show that BMP7 and FGF9 both regulate *AP-1* transcription, cell cycle progression, and NPC proliferation, and highlight the cooperation between these two NPC self-renewal pathways.

ORIGINAL ARTICLE Muthukrishnan, S. D. et al. Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells. Nat. Commun. http://dx.doi.org/10.1038/ncomms10027