Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring the genetic basis of early-onset chronic kidney disease

Key Points

  • Approximately 20% of cases of chronic kidney disease (CKD) that manifest before the age of 25 years are caused by single gene mutations in any one of >200 different genes

  • Molecular genetic diagnostics can provide patients with a molecular diagnosis for their disease and can generate new insights into disease mechanisms

  • Molecular genetic diagnostics might also have consequences for personalized treatment and prevention of CKD

  • Indication-driven mutation analysis panels are available to guide the genetic diagnosis of common early-onset kidney diseases, such as congenital anomalies of the kidneys and urinary tract, steroid-resistant nephrotic syndrome, ciliopathies and nephrolithiasis

Abstract

The primary causes of chronic kidney disease (CKD) in children differ from those of CKD in adults. In the USA the most common diagnostic groups of renal disease that manifest before the age of 25 years are congenital anomalies of the kidneys and urinary tract, steroid-resistant nephrotic syndrome, chronic glomerulonephritis and renal cystic ciliopathies, which together encompass >70% of early-onset CKD diagnoses. Findings from the past decade suggest that early-onset CKD is caused by mutations in any one of over 200 different monogenic genes. Developments in high-throughput sequencing in the past few years has rendered identification of causative mutations in this high number of genes feasible. Use of genetic analyses in patients with early onset-CKD will provide patients and their families with a molecular genetic diagnosis, generate new insights into disease mechanisms, facilitate aetiology-based classifications of patient cohorts for clinical studies, and might have consequences for personalized approaches to the prevention and treatment of CKD. In this Review, we discuss the implications of next-generation sequencing in clinical genetic diagnostics and the discovery of novel genes in early-onset CKD. We also delineate the resulting opportunities for deciphering disease mechanisms and the therapeutic implications of these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenic pathways of steroid resistant nephrotic syndrome (SRNS).

Similar content being viewed by others

References

  1. Inker, L. A. et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 63, 713–735 (2014).

    Article  PubMed  Google Scholar 

  2. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gee, H. Y. et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 85, 880–887 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Devuyst, O. et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 383, 1844–1859 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vivante, A., Kohl, S., Hwang, D. Y., Dworschak, G. C. & Hildebrandt, F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr. Nephrol. 29, 695–704 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saisawat, P. et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 85, 1310–1317 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Ebarasi, L. et al. Defects of CRB2 cause steroid-resistant nephrotic syndrome. Am. J. Hum. Genet. 96, 153–161 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Lovric, S. et al. Rapid detection of monogenic causes of childhood-onset steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 9, 1109–1116 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kohl, S. et al. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 25, 1917–1922 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hwang, D. Y. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 85, 1429–1433 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, J. M., Stablein, D. M., Munoz, R., Hebert, D. & McDonald, R. A. Contributions of the Transplant Registry: the 2006 Annual Report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr. Transplant. 11, 366–373 (2007).

    Article  PubMed  Google Scholar 

  13. Harambat, J., van Stralen, K. J., Kim, J. J. & Tizard, E. J. Epidemiology of chronic kidney disease in children. Pediatr. Nephrol. 27, 363–373 (2012).

    Article  PubMed  Google Scholar 

  14. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein — nephrin — is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Somlo, S. & Mundel, P. Getting a foothold in nephrotic syndrome. Nat. Genet. 24, 333–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Vivante, A. et al. Mutations in TBX18 cause dominant urinary tract malformations via transcriptional dysregulation of ureter development. Am. J. Hum. Genet. 97, 291–301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lovric, S., Ashraf, S., Tan, W. & Hildebrandt, F. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfv355 (2015).

  19. Trautmann, A. et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin. J. Am. Soc. Nephrol. 10, 592–600 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaki, M. et al. Genotype-phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int. 80, 1239–1245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palumbo, P. et al. Variable phenotype in 17q12 microdeletions: clinical and molecular characterization of a new case. Gene 538, 373–378 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y. Z. et al. Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chinese Med. J. 123, 3326–3333 (2010).

    CAS  Google Scholar 

  25. Hasselbacher, K. et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 70, 1008–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Tory, K. et al. Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nat. Genet. 46, 299–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freedman, B. I. et al. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J. Am. Soc. Nephrol. 21, 1422–1426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friedman, D. J., Kozlitina, J., Genovese, G., Jog, P. & Pollak, M. R. Population-based risk assessment of APOL1 on renal disease. J. Am. Soc. Nephrol. 22, 2098–2105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Genovese, G. et al. A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int. 78, 698–704 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dummer, P. D. et al. APOL1 kidney disease risk variants: an evolving landscape. Seminars Nephrol. 35, 222–236 (2015).

    Article  CAS  Google Scholar 

  33. Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khanna, H. et al. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat. Genet. 41, 739–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deltas, C., Pierides, A. & Voskarides, K. Molecular genetics of familial hematuric diseases. Nephrol. Dial. Transplant. 28, 2946–2960 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bell, C. J. et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 3, 65ra64 (2011).

    Article  CAS  Google Scholar 

  38. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sanna-Cherchi, S. et al. Mutations in DSTYK and dominant urinary tract malformations. N. Engl. J. Med. 369, 621–629 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Sethi, S. & Fervenza, F. C. Membranoproliferative glomerulonephritis — a new look at an old entity. N. Engl. J. Med. 366, 1119–1131 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Halbritter, J. et al. High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. J. Med. Genet. 49, 756–767 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Halbritter, J. et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum. Genet. 132, 865–884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. George, J. N. & Nester, C. M. Syndromes of thrombotic microangiopathy. N. Engl. J. Med. 371, 654–666 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Halbritter, J. et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 26, 543–551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Braun, D. A. et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney Int. http://dx.doi.org/10.1038/ki.2015.317 (2015).

  47. Sanna-Cherchi, S. et al. Copy-number disorders are a common cause of congenital kidney malformations. Am. J. Hum. Genet. 91, 987–997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weber, S. et al. Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol. Dial. Transplant. 26, 136–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Ruf, R. G. et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J. Am. Soc. Nephrol. 15, 722–732 (2004).

    Article  PubMed  Google Scholar 

  50. Weber, S. et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int. 66, 571–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Chernin, G. et al. Genotype/phenotype correlation in nephrotic syndrome caused by WT1 mutations. Clin. J. Am. Soc. Nephrol. 5, 1655–1662 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Montini, G., Malaventura, C. & Salviati, L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N. Engl. J. Med. 358, 2849–2850 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ashraf, S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest. 123, 5179–5189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gee, H. Y. et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J. Clin. Invest. 123, 3243–3253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gee, H. Y. et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J. Clin. Invest. 125, 2375–2384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397–1405 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Moriniere, V. et al. Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J. Am. Soc. Nephrol. 25, 2740–2751 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harris, P. C. & Rossetti, S. Molecular diagnostics for autosomal dominant polycystic kidney disease. Nat. Rev. Nephrology 6, 197–206 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    Article  PubMed  Google Scholar 

  62. Staiger, K. et al. Hypomagnesemia and nephrocalcinosis in a patient with two heterozygous mutations in the CLDN16 gene. J. Nephrol. 20, 107–110 (2007).

    CAS  PubMed  Google Scholar 

  63. Otto, E. A. et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet. 42, 840–850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giglio, S. et al. Heterogeneous genetic alterations in sporadic nephrotic syndrome associate with resistance to immunosuppression. J. Am. Soc. Nephrol. 26, 230–236 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Boyer, O. et al. Mutational analysis of the PLCE1 gene in steroid resistant nephrotic syndrome. J. Med. Genet. 47, 445–452 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Lipska, B. S. et al. Genetic screening in adolescents with steroid-resistant nephrotic syndrome. Kidney Int. 84, 206–213 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Ross, L. F. et al. Technical report: ethical and policy issues in genetic testing and screening of children. Genet. Med. 15, 234–245 (2013).

    Article  PubMed  Google Scholar 

  68. Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K. & Mardis, E. R. The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hildebrandt, F. et al. A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet. 5, e1000353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Green, R. C. et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 5, 565–574 (2013).

    Article  CAS  Google Scholar 

  72. Yang, Y. et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312, 1870–1879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, H. et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312, 1880–1887 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Lowik, M. M. et al. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int. 72, 1198–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Kaplan, J. M. et al. Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Zenker, M. et al. Human laminin β2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Gee, H. Y. et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 94, 884–890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Diomedi-Camassei, F. et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol. 18, 2773–2780 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ozaltin, F. Primary coenzyme Q10 (CoQ10) deficiencies and related nephropathies. Pediatr. Nephrol. 29, 961–969 (2014).

    Article  PubMed  Google Scholar 

  82. Salviati, L. et al. Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65, 606–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Rotig, A. et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Saisawat, P. et al. Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int. 81, 196–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Bettencourt-Dias, M., Hildebrandt, F., Pellman, D., Woods, G. & Godinho, S. A. Centrosomes and cilia in human disease. Trends Genet. 27, 307–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hildebrandt, F., Attanasio, M. & Otto, E. Nephronophthisis: disease mechanisms of a ciliopathy. J. Am. Soc. Nephrol. 20, 23–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Lemaire, M. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 45, 531–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Neumann, H. P. et al. Haemolytic uraemic syndrome and mutations of the factor H gene: a registry-based study of German speaking countries. J. Med. Genet. 40, 676–681 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Noris, M. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 5, 1844–1859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Westra, D. et al. Atypical hemolytic uremic syndrome and genetic aberrations in the complement factor H-related 5 gene. J. Hum. Genet. 57, 459–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Goldfarb, D. S. The search for monogenic causes of kidney stones. J. Am. Soc. Nephrol. 26, 507–510 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Weber, S. et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J. Am. Soc. Nephrol. 19, 891–903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brockschmidt, A. et al. CHD1L: a new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT). Nephrol. Dial. Transplant. 27, 2355–2364 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Abdelhak, S. et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat. Genet. 15, 157–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Pandolfi, P. P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet. 11, 40–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Van Esch, H. et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406, 419–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Lindner, T. H. et al. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β. Hum. Mol. Genet. 8, 2001–2008 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sanyanusin, P., McNoe, L. A., Sullivan, M. J., Weaver, R. G. & Eccles, M. R. Mutation of PAX2 in two siblings with renal-coloboma syndrome. Hum. Mol. Genet. 4, 2183–2184 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Skinner, M. A. et al. Renal aplasia in humans is associated with RET mutations.. Am. J. Hum. Genet. 82, 344–351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lu, W. et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am. J. Hum. Genet. 80, 616–632 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kohlhase, J., Wischermann, A., Reichenbach, H., Froster, U. & Engel, W. Mutations in the SALL1 putative transcription factor gene cause Townes−Brocks syndrome. Nat. Genet. 18, 81–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Ruf, R. G. et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1−SIX1−DNA complexes. Proc. Natl Acad. Sci. USA 101, 8090–8095 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hoskins, B. E. et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am. J. Hum. Genet. 80, 800–804 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gimelli, S. et al. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum. Mut. 31, 1352–1359 (2010).

    Article  PubMed  Google Scholar 

  106. Hwang, D. Y. et al. Mutations of the SLIT2−ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum. Genet. 134, 905–916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gbadegesin, R. A. et al. TNXB mutations can cause vesicoureteral reflux. J. Am. Soc. Nephrol. 24, 1313–1322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jenkins, D. et al. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J. Am. Soc. Nephrol. 16, 2141–2149 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Biason-Lauber, A., Konrad, D., Navratil, F. & Schoenle, E. J. A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N. Engl. J. Med. 351, 792–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vivante, A. et al. Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical Wnt signaling. J. Am. Soc. Nephrol. 24, 550–558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gribouval, O. et al. Mutations in genes in the renin–angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 37, 964–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Weber, S. et al. Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a prune-belly-like syndrome. Am. J. Hum. Genet. 89, 668–674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Barak, H. et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev. Cell 22, 1191–1207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McGregor, L. et al. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat. Genet. 34, 203–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Bulum, B. et al. HPSE2 mutations in urofacial syndrome, non-neurogenic neurogenic bladder and lower urinary tract dysfunction. Nephron 130, 54–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Humbert, C. et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am. J. Hum. Genet. 94, 288–294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stuart, H. M. et al. LRIG2 mutations cause urofacial syndrome. Am. J. Hum. Genet. 92, 259–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hardelin, J. P. et al. X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene. Proc. Natl Acad. Sci. USA 89, 8190–8194 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shih, N. Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Sethi, S., Fervenza, F. C., Zhang, Y. & Smith, R. J. Secondary focal and segmental glomerulosclerosis associated with single-nucleotide polymorphisms in the genes encoding complement factor H and C3. Am. J. Kidney Dis. 60, 316–321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ovunc, B. et al. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria. J. Am. Soc. Nephrol. 22, 1815–1820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ozaltin, F. et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J. Am. Soc. Nephrol. 24, 377–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Has, C. et al. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kambham, N. et al. Congenital focal segmental glomerulosclerosis associated with beta4 integrin mutation and epidermolysis bullosa. Am. J. Kidney Dis. 36, 190–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Yasukawa, T. et al. Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J. Biol. Chem. 275, 4251–4257 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Mele, C. et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Miyake, N. et al. Biallelic mutations in nuclear pore complex subunit nup107 cause early-childhood-onset steroid-resistant nephrotic syndrome. Am. J. Hum. Genet. 97, 555–566 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lopez, L. C. et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet. 79, 1125–1129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ozaltin, F. et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 89, 139–147 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Berkovic, S. F. et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am. J. Hum. Genet. 82, 673–684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Boerkoel, C. F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 30, 215–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Colin, E. et al. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am. J. Hum. Genet. 95, 637–648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vodopiutz, J. et al. WDR73 mutations cause infantile neurodegeneration and variable glomerular kidney disease. Hum. Mut. 36, 1021–1028 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Jinks, R. N. et al. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain 138, 2173–2190 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gbadegesin, R. A. et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J. Am. Soc. Nephrol. 25, 1991–2002 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. McIntosh I. et al. Mutation analysis of LMX1B gene in nail-patella syndrome patients. Am. J. Hum. Genet. 63, 1651–1658 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Heath, K. E. et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am. J. Hum. Genet. 69, 1033–1045 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jeanpierre, C. et al. Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am. J. Hum. Genet. 62, 824–833 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fremeaux-Bacchi, V. et al. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J. Med. Genet. 41, e84 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McRae, J. L. et al. Human factor H-related protein 5 (FHR-5). A new complement-associated protein. J. Biol. Chem. 276, 6747–6754 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Gale, D. P. et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 376, 794–801 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Athanasiou, Y. et al. Familial C3 glomerulopathy associated with CFHR5 mutations: clinical characteristics of 91 patients in 16 pedigrees. Clin. J. Am. Soc. Nephrol.: CJASN 6, 1436–1446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Castelletti, F. et al. Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc. Natl Acad. Sci. USA 105, 2538–2543 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mochizuki, T. et al. Identification of mutations in the α3(IV) and α4(IV) collagen genes in autosomal recessive Alport syndrome. Nat. Genet. 8, 77–81 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Marcocci, E. et al. Autosomal dominant Alport syndrome: molecular analysis of the COL4A4 gene and clinical outcome. Nephrol. Dial. Transplant. 24, 1464–1471 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Noris, M. et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362, 1542–1547 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Knebelmann, B. et al. Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome. Am. J. Hum. Genet. 59, 1221–1232 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Anker, M. C. et al. Alport syndrome with diffuse leiomyomatosis. Am. J. Med. Genet. 119A, 381–385 (2003).

    Article  PubMed  Google Scholar 

  154. Hildebrandt, F. et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 17, 149–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Saunier, S. et al. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum. Mol. Genet. 6, 2317–2323 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Otto, E. A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left–right axis determination. Nat. Genet. 34, 413–420 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Olbrich, H. et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat. Genet. 34, 455–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Otto, E. et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am. J. Hum. Genet. 71, 1167–1171 (2002).

    Article  Google Scholar 

  159. Delous, M. et al. Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum. Mol. Genet. 18, 4711–4723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Otto, E. A. et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior–Løken syndrome and interacts with RPGR and calmodulin. Nat. Genet. 37, 282–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Sayer, J. A. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Attanasio, M. et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat. Genet. 39, 1018–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Delous, M. et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat. Genet. 39, 875–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Otto, E. A. et al. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J. Am. Soc. Nephrol. 19, 587–592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Otto, E. A. et al. Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J. Med. Genet. 46, 663–670 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Davis, E. E. et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat. Genet. 43, 189–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Coussa, R. G. et al. WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior–Løken syndrome. Clin. Genet. 84, 150–159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chaki, M. et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150, 533–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hoff, S. et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat. Genet. 45, 951–956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Reed, B. Y. et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J. Clin. Endocrinol. Metab. 87, 1476–1485 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Purdue, P. E., Allsop, J., Isaya, G., Rosenberg, L. E. & Danpure, C. J. Mistargeting of peroxisomal l-alanine:glyoxylate aminotransferase to mitochondria in primary hyperoxaluria patients depends upon activation of a cryptic mitochondrial targeting sequence by a point mutation. Proc. Natl Acad. Sci. USA 88, 10900–10904 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hidaka, Y., Palella, T. D., O'Toole, T. E., Tarle, S. A. & Kelley, W. N. Human adenine phosphoribosyltransferase. Identification of allelic mutations at the nucleotide level as a cause of complete deficiency of the enzyme. J. Clin. Invest. 80, 1409–1415 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stover, E. H. et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J. Med. Genet. 39, 796–803 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Karet, F. E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet. 21, 84–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Venta, P. J., Welty, R. J., Johnson, T. M., Sly, W. S. & Tashian, R. E. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His→Tyr): complete structure of the normal human CA II gene. Am. J. Hum. Genet. 49, 1082–1090 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Pearce, S. H. et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N. Engl. J. Med. 335, 1115–1122 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445–449 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Simon, D. B. et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat. Genet. 17, 171–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schlingmann, K. P. et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N. Engl. J. Med. 365, 410–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Jaureguiberry, G. et al. Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiol. 122, 1–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Cramer, S. D., Ferree, P. M., Lin, K., Milliner, D. S. & Holmes, R. P. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Mol. Genet. 8, 2063–2069 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Hamilton, A. J. et al. The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype. J. Med. Genet. 51, 165–169 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Belostotsky, R. et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet. 87, 392–399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Davidson, B. L. et al. Identification of 17 independent mutations responsible for human hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency. Am. J. Hum. Genet. 48, 951–958 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Simon, D. B. et al. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat. Genet. 14, 152–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  188. Reilly, D. S., Lewis, R. A., Ledbetter, D. H. & Nussbaum, R. L. Tightly linked flanking markers for the Lowe oculocerebrorenal syndrome, with application to carrier assessment. Am. J. Hum. Genet. 42, 748–755 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Simon, D. B. et al. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nat. Genet. 13, 183–188 (1996).

    Article  CAS  PubMed  Google Scholar 

  190. Enomoto, A. et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417, 447–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  191. Matsuo, H. et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Prie, D. et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med. 347, 983–991 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. Lorenz-Depiereux, B. et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am. J. Hum. Genet. 78, 193–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  194. Calonge, M. J. et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat. Genet. 6, 420–425 (1994).

    Article  CAS  PubMed  Google Scholar 

  195. Bruce, L. J. et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J. Clin. Invest. 100, 1693–1707 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Feliubadalo, L. et al. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat. Genet. 23, 52–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  197. Karim, Z. et al. NHERF1 mutations and responsiveness of renal parathyroid hormone. N. Engl. J. Med. 359, 1128–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Scott, P. et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J. Am. Soc. Nephrol. 10, 1007–1013 (1999).

    CAS  PubMed  Google Scholar 

  199. Ichida, K. et al. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J. Clin. Invest. 99, 2391–2397 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wainwright, C. E. et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220–231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work described in this Review was supported by grants from the NIH (R01-DK088767 to F.H.) and by the March of Dimes Foundation (6FY11-241). A.V. is a recipient of the Fulbright postdoctoral scholar award for 2013 and is also supported by grants from the Manton Center Fellowship Program, Boston Children's Hospital, Boston, Massachusetts, USA, and the Mallinckrodt Research Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Hildebrandt.

Ethics declarations

Competing interests

F.H. receives royalties for a mutation analysis panel that is licensed to Claritas Genomics. A.V. declares no competing interests.

PowerPoint slides

Glossary

Penetrance

The proportion of individuals who express a certain phenotype in relation to the number of individuals that carry the pathogenic variant(s). Incomplete penetrance refers to the observation that some individuals with the mutation do not develop the disease phenotype.

Next-generation sequencing

A DNA sequencing method that enables simultaneous sequencing of multiple DNA segments in a high-throughput manner. Also known as massively parallel sequencing.

Whole exome sequencing

Targeted capture and sequencing of the exome using next-generation sequencing. This method offers a powerful approach towards the identification of monogenic disease-causing genes.

Variant

A difference in a DNA sequence compared to a 'normal' reference sequence. A variant can be benign (for example, a single nucleotide polymorphism) or disease-causing (for example, a mutation).

Allele

Specific DNA sequence variant in a given gene. Alleles can be designated according to their frequency as common or rare alleles.

Phenotype

The observable characteristics of an individual as a morphological, clinical or biochemical trait. A phenotype can also be the presence or absence of a disease.

Genotype

The set of alleles (variants of genes) that structure an individual's genetic makeup.

Expressivity

Variation of the expression of the phenotype among affected individuals with the same genotype. Variable expressivity refers to different degrees of severity and/or organ involvement in different affected individuals that carry an identical mutation.

Exon

The protein coding part of a gene. Exons are spliced together following gene transcription to form mRNA, which is translated into protein.

Exome

The protein coding sequences of the entire genome (comprising 1% of the human genome).

Variant filtering

The process of excluding variants as disease-causing. For instance, very common variants and variants that do not alter the protein sequence are excluded.

Homozygosity mapping

A technique in which the homozygous regions across the genome are identified. This strategy is effective for the discovery of autosomal recessive monogenic disease genes in consanguineous families.

Phenocopies

A variation in a phenotype of given trait that can mimick a different trait.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivante, A., Hildebrandt, F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol 12, 133–146 (2016). https://doi.org/10.1038/nrneph.2015.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing