Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging role of coagulation proteases in kidney disease

Key Points

  • In addition to their pivotal and well-established functions in haemostasis, coagulation regulators and receptors mediate non-haemostatic functions in the kidney

  • Derangements of the coagulation system and altered coagulation-protease-dependent signalling in renal disease might alter disease progression

  • Coagulation proteases alter the function of a variety of renal cell types via distinct protease-activated receptors (PARs) and co-receptors

  • Activated protein C has nephroprotective effects that are at least partly independent of its anticoagulant function

  • The new drug classes of target-specific oral anticoagulants and PAR inhibitors might interfere with the functions of coagulation proteases in renal disease, with potential beneficial or adverse effects

Abstract

A role of coagulation proteases in kidney disease beyond their function in normal haemostasis and thrombosis has long been suspected, and studies performed in the past 15 years have provided novel insights into the mechanisms involved. The expression of protease-activated receptors (PARs) in renal cells provides a molecular link between coagulation proteases and renal cell function and revitalizes research evaluating the role of haemostasis regulators in renal disease. Renal cell-specific expression and activity of coagulation proteases, their regulators and their receptors are dynamically altered during disease processes. Furthermore, renal inflammation and tissue remodelling are not only associated, but are causally linked with altered coagulation activation and protease-dependent signalling. Intriguingly, coagulation proteases signal through more than one receptor or induce formation of receptor complexes in a cell-specific manner, emphasizing context specificity. Understanding these cell-specific signalosomes and their regulation in kidney disease is crucial to unravelling the pathophysiological relevance of coagulation regulators in renal disease. In addition, the clinical availability of small molecule targeted anticoagulants as well as the development of PAR antagonists increases the need for in-depth knowledge of the mechanisms through which coagulation proteases might regulate renal physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The coagulation system.
Figure 2: Initiation, amplification and propagation of coagulation.
Figure 3: Potential mechanisms of PAR activation by thrombin and aPC.
Figure 4: Expression of coagulation protease receptors in renal cells.
Figure 5: Coagulation regulators in acute kidney injury.
Figure 6: Coagulation regulators in chronic kidney injury.

Similar content being viewed by others

References

  1. Hoess, A., Watson, S., Siber, G. R. & Liddington, R. Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, Limulus anti-LPS factor, at 1.5 Å resolution. EMBO J. 12, 3351–3356 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Esmon, C. T. The interactions between inflammation and coagulation. Br. J. Haematol. 131, 417–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Benmira, S., Banda, Z. K. & Bhattacharya, V. Old versus new anticoagulants: focus on pharmacology. Recent Pat. Cardiovasc. Drug Discov. 5, 120–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Ramachandran, R., Noorbakhsh, F., Defea, K. & Hollenberg, M. D. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat. Rev. Drug Discov. 11, 69–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Adams, R. L. & Bird, R. J. Review article: coagulation cascade and therapeutics update: relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton) 14, 462–470 (2009).

    Article  CAS  Google Scholar 

  6. Eisenreich, A. & Rauch, U. Regulation and differential role of the tissue factor isoforms in cardiovascular biology. Trends Cardiovasc. Med. 20, 199–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Monroe, D. M. & Key, N. S. The tissue factor–factor VIIa complex: procoagulant activity, regulation, and multitasking. J. Thromb. Haemost. 5, 1097–1105 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Bjorkqvist, J., Nickel, K. F., Stavrou, E. & Renne, T. In vivo activation and functions of the protease factor XII. Thromb. Haemost. 112, 868–875 (2014).

    Article  PubMed  Google Scholar 

  9. Kenne, E. & Renne, T. Factor XII: a drug target for safe interference with thrombosis and inflammation. Drug Discov. Today 19, 1459–1464 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Griffin, J. H. Role of surface in surface-dependent activation of Hageman factor (blood coagulation factor XII). Proc. Natl Acad. Sci. USA 75, 1998–2002 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, S. A. et al. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl Acad. Sci. USA 103, 903–908 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Muller, F. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139, 1143–1156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, S. A. et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 116, 4353–4359 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jordan, R. E., Oosta, G. M., Gardner, W. T. & Rosenberg, R. D. The kinetics of hemostatic enzyme–antithrombin interactions in the presence of low molecular weight heparin. J. Biol. Chem. 255, 10081–10090 (1980).

    CAS  PubMed  Google Scholar 

  15. Griffin, J. H., Zlokovic, B. V. & Mosnier, L. O. Activated protein C: biased for translation. Blood 125, 2898–2907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adams, M. N. et al. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 130, 248–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, G. & Eddy, A. A. Urokinase and its receptors in chronic kidney disease. Front. Biosci. 13, 5462–5478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malgorzewicz, S., Skrzypczak-Jankun, E. & Jankun, J. Plasminogen activator inhibitor-1 in kidney pathology (review). Int. J. Mol. Med. 31, 503–510 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Luft, F. C. uPAR signaling is under par for the podocyte course. J. Mol. Med. (Berl.) 90, 1357–1359 (2012).

    Article  Google Scholar 

  20. Russo, A., Soh, U. J., Paing, M. M., Arora, P. & Trejo, J. Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc. Natl Acad. Sci. USA 106, 6393–6397 (2009).

    Article  PubMed  Google Scholar 

  21. Elmariah, S. B., Reddy, V. B. & Lerner, E. A. Cathepsin S. signals via PAR2 and generates a novel tethered ligand receptor agonist. PLoS ONE 9, e99702 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boire, A. et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Weiler, H. Multiple receptor-mediated functions of activated protein C. Hamostaseologie 31, 185–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Shahzad, K. & Isermann, B. The evolving plasticity of coagulation protease-dependent cytoprotective signalling. Hamostaseologie 31, 179–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Bouwens, E. A., Stavenuiter, F. & Mosnier, L. O. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J. Thromb. Haemost. 11, S242–S253 (2013).

    Article  Google Scholar 

  26. Hollenberg, M. D. et al. Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br. J. Pharmacol. 171, 1180–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, H., Liu, A. P., Smith, T. H. & Trejo, J. Cofactoring and dimerization of proteinase-activated receptors. Pharmacol. Rev. 65, 1198–1213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gieseler, F., Ungefroren, H., Settmacher, U., Hollenberg, M. D. & Kaufmann, R. Proteinase-activated receptors (PARs) — focus on receptor–receptor-interactions and their physiological and pathophysiological impact. Cell Commun. Signal. 11, 86 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coughlin, S. R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Madhusudhan, T. et al. Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood 119, 874–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruf, W., Disse, J., Carneiro-Lobo, T. C., Yokota, N. & Schaffner, F. Tissue factor and cell signalling in cancer progression and thrombosis. J. Thromb. Haemost. 9, S306–S315 (2011).

    Article  CAS  Google Scholar 

  32. Song, D., Ye, X., Xu, H. & Liu, S. F. Activation of endothelial intrinsic NF-κB pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood 114, 2521–2529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isermann, B. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat. Med. 13, 1349–1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Dong, W. et al. The protease aPC ameliorates renal I/R-injury by restricting YB-1 ubiquitination. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014080846.

  35. von Drygalski, A., Furlan-Freguia, C., Ruf, W., Griffin, J. H. & Mosnier, L. O. Organ-specific protection against lipopolysaccharide-induced vascular leak is dependent on the endothelial protein C receptor. Arterioscler. Thromb. Vasc. Biol. 33, 769–776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weiler, H. et al. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler. Thromb. Vasc. Biol. 21, 1531–1537 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Apostolopoulos, J. et al. The cytoplasmic domain of tissue factor in macrophages augments cutaneous delayed-type hypersensitivity. J. Leukoc. Biol. 83, 902–911 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Apostolopoulos, J., Moussa, L. & Tipping, P. G. The cytoplasmic domain of tissue factor restricts physiological albuminuria and pathological proteinuria associated with glomerulonephritis in mice. Nephron Exp. Nephrol. 116, e72–e83 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Sharma, L. et al. The cytoplasmic domain of tissue factor contributes to leukocyte recruitment and death in endotoxemia. Am. J. Pathol. 165, 331–340 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, Y. H. et al. Reduction in arthritis severity and modulation of immune function in tissue factor cytoplasmic domain mutant mice. Am. J. Pathol. 164, 109–117 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cunningham, M. A., Kitching, A. R., Tipping, P. G. & Holdsworth, S. R. Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. Kidney Int. 66, 647–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Mackman, N., Sawdey, M. S., Keeton, M. R. & Loskutoff, D. J. Murine tissue factor gene expression in vivo. Tissue and cell specificity and regulation by lipopolysaccharide. Am. J. Pathol. 143, 76–84 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Seshan, S. V. et al. Role of tissue factor in a mouse model of thrombotic microangiopathy induced by antiphospholipid antibodies. Blood 114, 1675–1683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Osterud, B. & Bjorklid, E. Sources of tissue factor. Semin. Thromb. Hemost. 32, 11–23 (2006).

    Article  PubMed  Google Scholar 

  45. Drake, T. A., Morrissey, J. H. & Edgington, T. S. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am. J. Pathol. 134, 1087–1097 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Flossel, C., Luther, T., Muller, M., Albrecht, S. & Kasper, M. Immunohistochemical detection of tissue factor (TF) on paraffin sections of routinely fixed human tissue. Histochemistry 101, 449–453 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Erlich, J. H., Holdsworth, S. R. & Tipping, P. G. Tissue factor initiates glomerular fibrin deposition and promotes major histocompatibility complex class II expression in crescentic glomerulonephritis. Am. J. Pathol. 150, 873–880 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ettelaie, C., Su, S., Li, C. & Collier, M. E. Tissue factor-containing microparticles released from mesangial cells in response to high glucose and AGE induce tube formation in microvascular cells. Microvasc. Res. 76, 152–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Wiggins, R. C., Njoku, N. & Sedor, J. R. Tissue factor production by cultured rat mesangial cells. Stimulation by TNFα and lipopolysaccharide. Kidney Int. 37, 1281–1285 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Ono, T. et al. Coagulation process proceeds on cultured human mesangial cells via expression of factor V. Kidney Int. 60, 1009–1017 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Sommeijer, D. W. et al. Renal tissue factor expression is increased in streptozotocin-induced diabetic mice. Nephron Exp. Nephrol. 101, e86–e94 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Sevastos, J. et al. Tissue factor deficiency and PAR-1 deficiency are protective against renal ischemia reperfusion injury. Blood 109, 577–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Nomura, K. et al. Roles of coagulation pathway and factor Xa in rat mesangioproliferative glomerulonephritis. Lab. Invest. 87, 150–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Cunningham, M. A. et al. Tissue factor pathway inhibitor expression in human crescentic glomerulonephritis. Kidney Int. 55, 1311–1318 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto, K. & Loskutoff, D. J. Extrahepatic expression and regulation of protein C in the mouse. Am. J. Pathol. 153, 547–555 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Song, Z. et al. Intracellular localization of protein C inhibitor (PCI) and urinary plasminogen activator in renal tubular epithelial cells from humans and human PCI gene transgenic mice. Histochem. Cell Biol. 128, 293–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Sorensen-Zender, I. et al. Role of fibrinogen in acute ischemic kidney injury. Am. J. Physiol. Renal Physiol. 305, F777–F785 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Sumi, A. et al. Roles of coagulation pathway and factor Xa in the progression of diabetic nephropathy in db/db mice. Biol. Pharm. Bull. 34, 824–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Tillet, S. et al. Kidney graft outcome using an anti-Xa therapeutic strategy in an experimental model of severe ischaemia-reperfusion injury. Br. J. Surg. 102, 132–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, Y. et al. Constitutive expression and modulation of the functional thrombin receptor in the human kidney. Am. J. Pathol. 146, 101–110 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vu, T. K., Hung., D. T., Wheaton, V. I. & Coughlin, S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Gui, Y., Loutzenhiser, R. & Hollenberg, M. D. Bidirectional regulation of renal hemodynamics by activation of PAR1 and PAR2 in isolated perfused rat kidney. Am. J. Physiol. Renal Physiol. 285, F95–F104 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. D'Andrea, M. R. et al. Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J. Histochem. Cytochem. 46, 157–164 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Vesey, D. A. et al. Thrombin stimulates proinflammatory and proliferative responses in primary cultures of human proximal tubule cells. Kidney Int. 67, 1315–1329 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Bae, J. S., Kim, I. S. & Rezaie, A. R. Thrombin down-regulates the TGF-β-mediated synthesis of collagen and fibronectin by human proximal tubule epithelial cells through the EPCR-dependent activation of PAR-1. J. Cell Physiol. 225, 233–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Molitoris, B. A. & Sutton, T. A. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int. 66, 496–499 (2004).

    Article  PubMed  Google Scholar 

  67. Nawroth, P. P. & Isermann, B. Mechanisms of diabetic nephropathy—old buddies and newcomers part 2. Exp. Clin. Endocrinol. Diabetes 118, 667–672 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Nawroth, P. P. & Isermann, B. Mechanisms of diabetic nephropathy—old buddies and newcomers part 1. Exp. Clin. Endocrinol. Diabetes 118, 571–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Nieuwdorp, M. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55, 480–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Haraldsson, B., Nystrom, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, D. & Esko, J. D. Demystifying heparan sulfate–protein interactions. Annu. Rev. Biochem. 83, 129–157 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Salmon, A. H. & Satchell, S. C. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J. Pathol. 226, 562–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Reitsma, S., Slaaf, D. W., Vink, H., van Zandvoort, M. A. & oude Egbrink, M. G. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454, 345–359 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kato, H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: basic and clinical aspects. Arterioscler. Thromb. Vasc. Biol. 22, 539–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Ho, G., Broze, G. J. Jr & Schwartz, A. L. Role of heparan sulfate proteoglycans in the uptake and degradation of tissue factor pathway inhibitor–coagulation factor Xa complexes. J. Biol. Chem. 272, 16838–16844 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. van Golen, R. F. et al. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid. Redox Signal. 21, 1098–1118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nieuwdorp, M. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55, 1127–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Christiansen, C. F. et al. Kidney disease and risk of venous thromboembolism: a nationwide population-based case-control study. J. Thromb. Haemost. 12, 1449–1454 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Kerlin, B. A., Smoyer, W. E., Tsai, J. & Boulet, S. L. Healthcare burden of venous thromboembolism in childhood chronic renal diseases. Pediatr. Nephrol. 30, 829–837 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Burton, J. O. et al. Elevated levels of procoagulant plasma microvesicles in dialysis patients. PLoS ONE 8, e72663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hrafnkelsdottir, T., Ottosson, P., Gudnason, T., Samuelsson, O. & Jern, S. Impaired endothelial release of tissue-type plasminogen activator in patients with chronic kidney disease and hypertension. Hypertension 44, 300–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Jeong, J. C., Kim, J. E., Ryu, J. W., Joo, K. W. & Kim, H. K. Plasma haemostatic potential of haemodialysis patients assessed by thrombin generation assay: hypercoagulability in patients with vascular access thrombosis. Thromb. Res. 132, 604–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Kourtzelis, I. et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood 116, 631–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ocak, G. et al. Role of hemostatic factors on the risk of venous thrombosis in people with impaired kidney function. Circulation 129, 683–691 (2014).

    Article  PubMed  Google Scholar 

  85. Schlegel, N. Thromboembolic risks and complications in nephrotic children. Semin. Thromb. Hemost. 23, 271–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Zwaginga, J. J., Koomans, H. A., Sixma, J. J. & Rabelink, T. J. Thrombus formation and platelet–vessel wall interaction in the nephrotic syndrome under flow conditions. J. Clin. Invest. 93, 204–211 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dubin, R. et al. Kidney function and multiple hemostatic markers: cross sectional associations in the multi-ethnic study of atherosclerosis. BMC Nephrol. 12, 3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Adams, M. J., Irish, A. B., Watts, G. F., Oostryck, R. & Dogra, G. K. Hypercoagulability in chronic kidney disease is associated with coagulation activation but not endothelial function. Thromb. Res. 123, 374–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Adams, G. N. et al. Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis. Blood 117, 3929–3937 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bao, Y. S. et al. Characterization of soluble thrombomodulin levels in patients with stage 3–5 chronic kidney disease. Biomarkers 19, 275–280 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Faioni, E. M. et al. Low levels of the anticoagulant activity of protein C in patients with chronic renal insufficiency: an inhibitor of protein C is present in uremic plasma. Thromb. Haemost. 66, 420–425 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Nampoory, M. R. et al. Hypercoagulability, a serious problem in patients with ESRD on maintenance hemodialysis, and its correction after kidney transplantation. Am. J. Kidney Dis. 42, 797–805 (2003).

    Article  PubMed  Google Scholar 

  93. Ghisdal, L. et al. Thrombophilic factors in stage V chronic kidney disease patients are largely corrected by renal transplantation. Nephrol. Dial. Transplant. 26, 2700–2705 (2011).

    Article  PubMed  Google Scholar 

  94. Keven, K. et al. Soluble endothelial cell protein C receptor and thrombomodulin levels after renal transplantation. Int. Urol. Nephrol 42, 1093–1098 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Undas, A., Kolarz, M., Kopec, G. & Tracz, W. Altered fibrin clot properties in patients on long-term haemodialysis: relation to cardiovascular mortality. Nephrol. Dial. Transplant. 23, 2010–2015 (2008).

    Article  PubMed  Google Scholar 

  96. Sjoland, J. A. et al. Fibrin clot structure in patients with end-stage renal disease. Thromb. Haemost. 98, 339–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Kerlin, B. A., Ayoob, R. & Smoyer, W. E. Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin. J. Am. Soc. Nephrol 7, 513–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kerlin, B. A. et al. Disease severity correlates with thrombotic capacity in experimental nephrotic syndrome. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014111097.

  99. Loscalzo, J. Venous thrombosis in the nephrotic syndrome. N. Engl. J. Med. 368, 956–958 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Glassock, R. J. Prophylactic anticoagulation in nephrotic syndrome: a clinical conundrum. J. Am. Soc. Nephrol. 18, 2221–2225 (2007).

    Article  PubMed  Google Scholar 

  101. Lee, T. et al. Personalized prophylactic anticoagulation decision analysis in patients with membranous nephropathy. Kidney Int. 85, 1412–1420 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Gambaro, G. & van der Woude, F. J. Glycosaminoglycans: use in treatment of diabetic nephropathy. J. Am. Soc. Nephrol. 11, 359–368 (2000).

    CAS  PubMed  Google Scholar 

  103. Lewis, E. J. & Xu, X. Abnormal glomerular permeability characteristics in diabetic nephropathy: implications for the therapeutic use of low-molecular weight heparin. Diabetes Care 31, S202–S207 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Li, J., Wu, H. M., Zhang, L., Zhu, B. & Dong, B. R. Heparin and related substances for preventing diabetic kidney disease. Cochrane Database Syst. Rev. CD005631 (2010).

  105. Suzuki, M. et al. Rationale and design of the efficacy of rivaroxaban on renal function in patients with non-valvular atrial fibrillation and chronic kidney disease: the X-NOAC study. Int. J. Cardiol. 188, 52–53 (2015).

    Article  PubMed  Google Scholar 

  106. Floege, J., Eng, E., Young, B. A., Couser, W. G. & Johnson, R. J. Heparin suppresses mesangial cell proliferation and matrix expansion in experimental mesangioproliferative glomerulonephritis. Kidney Int. 43, 369–380 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. van der Pijl, J. W. et al. Danaparoid sodium lowers proteinuria in diabetic nephropathy. J. Am. Soc. Nephrol. 8, 456–462 (1997).

    CAS  PubMed  Google Scholar 

  108. Ikeguchi, H. et al. Effects of human soluble thrombomodulin on experimental glomerulonephritis. Kidney Int. 61, 490–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Matsuyama, M. et al. Tissue factor antisense oligonucleotides prevent renal ischemia-reperfusion injury. Transplantation 76, 786–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Gupta, A. et al. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. Am. J. Physiol. Renal Physiol. 293, F245–F254 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Ozaki, T. et al. Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure. Nephrol. Dial. Transplant. 23, 110–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Sharfuddin, A. A. et al. Soluble thrombomodulin protects ischemic kidneys. J. Am. Soc. Nephrol. 20, 524–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thuillier, R. et al. Thrombin inhibition during kidney ischemia-reperfusion reduces chronic graft inflammation and tubular atrophy. Transplantation 90, 612–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Abdel-Bakky, M. S., Hammad, M. A., Walker, L. A. & Ashfaq, M. K. Silencing of tissue factor by antisense deoxyoligonucleotide prevents monocrotaline/LPS renal injury in mice. Arch. Toxicol. 85, 1245–1256 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Rajashekhar, G. et al. Soluble thrombomodulin reduces inflammation and prevents microalbuminuria induced by chronic endothelial activation in transgenic mice. Am. J. Physiol. Renal Physiol. 302, F703–F712 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Ryan, M. et al. Warfarin-related nephropathy is the tip of the iceberg: direct thrombin inhibitor dabigatran induces glomerular hemorrhage with acute kidney injury in rats. Nephrol. Dial. Transplant. 29, 2228–2234 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. van Blijderveen, J. C. et al. Overanticoagulation is associated with renal function decline. J. Nephrol. 26, 691–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Brodsky, S. V. et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney Int. 80, 181–189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arachiche, A., de la Fuente, M. & Nieman, M. T. Platelet specific promoters are insufficient to express protease activated receptor 1 (PAR1) transgene in mouse platelets. PLoS ONE 9, e97724 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, H. et al. Low but sustained coagulation activation ameliorates glucose-induced podocyte apoptosis: protective effect of factor V Leiden in diabetic nephropathy. Blood 117, 5231–5242 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Borensztajn, K. & Spek, C. A. Blood coagulation factor Xa as an emerging drug target. Expert Opin. Ther. Targets 15, 341–349 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Ruf, W. FXa takes center stage in vascular inflammation. Blood 123, 1630–1631 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Sparkenbaugh, E. M. et al. Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease. Blood 123, 1747–1756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Furugohri, T. et al. Different antithrombotic properties of factor Xa inhibitor and thrombin inhibitor in rat thrombosis models. Eur. J. Pharmacol. 514, 35–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Furugohri, T., Sugiyama, N., Morishima, Y. & Shibano, T. Antithrombin-independent thrombin inhibitors, but not direct factor Xa inhibitors, enhance thrombin generation in plasma through inhibition of thrombin-thrombomodulin-protein C system. Thromb. Haemost. 106, 1076–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Rana, S., Yang, L., Hassanian, S. M. & Rezaie, A. R. Determinants of the specificity of protease-activated receptors 1 and 2 signaling by factor Xa and thrombin. J. Cell. Biochem. 113, 977–984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Drew, A. F. et al. Crescentic glomerulonephritis is diminished in fibrinogen-deficient mice. Am. J. Physiol. Renal Physiol. 281, F1157–F1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Hariharan, S., Pollak, V. E., Kant, K. S., Weiss, M. A. & Wadhwa, N. K. Diffuse proliferative lupus nephritis: long-term observations in patients treated with ancrod. Clin. Nephrol. 34, 61–69 (1990).

    CAS  PubMed  Google Scholar 

  129. Craciun, F. L. et al. Pharmacological and genetic depletion of fibrinogen protects from kidney fibrosis. Am. J. Physiol. Renal Physiol. 307, F471–F484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kitching, A. R. et al. Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J. Exp. Med. 185, 963–968 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Arai, K. I. et al. Cytokines: coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59, 783–836 (1990).

    Article  CAS  PubMed  Google Scholar 

  132. Wilson, H. M., Haites, N. E., Reid, F. J. & Booth, N. A. Interleukin-1β up-regulates the plasminogen activator/plasmin system in human mesangial cells. Kidney Int. 49, 1097–1104 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Sedor, J. R., Nakazato, Y. & Konieczkowski, M. Interleukin-1 and the mesangial cell. Kidney Int. 41, 595–599 (1992).

    Article  CAS  PubMed  Google Scholar 

  134. Kitching, A. R. et al. Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 14, 1487–1495 (2003).

    Article  PubMed  Google Scholar 

  135. Muto, Y., Suzuki, K., Iida, H. & Ishii, H. EF6265, a novel plasma carboxypeptidase B inhibitor, protects against renal dysfunction in rat thrombotic glomerulonephritis through enhancing fibrinolysis. Nephron Exp. Nephrol. 106, e113–e121 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Erlich, J. H. et al. Renal expression of tissue factor pathway inhibitor and evidence for a role in crescentic glomerulonephritis in rabbits. J. Clin. Invest. 98, 325–335 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cunningham, M. A. et al. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J. Exp. Med. 191, 455–462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tanaka, M. et al. Role of coagulation factor Xa and protease-activated receptor 2 in human mesangial cell proliferation. Kidney Int. 67, 2123–2133 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Moussa, L., Apostolopoulos, J., Davenport, P., Tchongue, J. & Tipping, P. G. Protease-activated receptor-2 augments experimental crescentic glomerulonephritis. Am. J. Pathol. 171, 800–808 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Redecha, P. et al. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110, 2423–2431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ritis, K. et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 177, 4794–4802 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Amara, U. et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 185, 5628–5636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Langer, F. et al. Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase. Blood 121, 2324–2335 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Conway, E. M. Thrombomodulin and its role in inflammation. Semin. Immunopathol. 34, 107–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Delvaeye, M. et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 345–357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Weiler, H. & Isermann, B. H. Thrombomodulin. J. Thromb. Haemost. 1, 1515–1524 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Zoja, C. et al. Lack of the lectin-like domain of thrombomodulin worsens Shiga toxin-associated hemolytic uremic syndrome in mice. J. Immunol. 189, 3661–3668 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Fogo, A. B. The role of angiotensin II and plasminogen activator inhibitor-1 in progressive glomerulosclerosis. Am. J. Kidney Dis. 35, 179–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Brown, N. J. et al. Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo. Kidney Int. 58, 1219–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Ma, J. et al. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 69, 1064–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Soh, U. J., Dores, M. R., Chen, B. & Trejo, J. Signal transduction by protease-activated receptors. Br. J. Pharmacol. 160, 191–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kuliopulos, A. et al. Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 38, 4572–4585 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Baroni, E. A., Costa, R. S., da Silva, C. G. & Coimbra, T. M. Heparin treatment reduces glomerular injury in rats with adriamycin-induced nephropathy but does not modify tubulointerstitial damage or the renal production of transforming growth factor-β. Nephron 84, 248–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Benchetrit, S. et al. Low molecular weight heparin reduces proteinuria and modulates glomerular TNF-α production in the early phase of adriamycin nephropathy. Nephron 87, 155–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Diamond, J. R. & Karnovsky, M. J. Nonanticoagulant protective effect of heparin in chronic aminonucleoside nephrosis. Ren. Physiol. 9, 366–374 (1986).

    CAS  PubMed  Google Scholar 

  156. Yamashita, J. et al. Protective effects of antithrombin on puromycin aminonucleoside nephrosis in rats. Eur. J. Pharmacol. 589, 239–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Harris, J. J. et al. Active proteases in nephrotic plasma lead to a podocin-dependent phosphorylation of VASP in podocytes via protease activated receptor-1. J. Pathol. 229, 660–671 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Ajay, A. K., Saikumar, J., Bijol, V. & Vaidya, V. S. Heterozygosity for fibrinogen results in efficient resolution of kidney ischemia reperfusion injury. PLoS ONE 7, e45628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Devarajan, P. Update on mechanisms of ischemic acute kidney injury. J. Am. Soc. Nephrol. 17, 1503–1520 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Krishnamoorthy, A. et al. Fibrinogen β-derived Bβ15–42 peptide protects against kidney ischemia/reperfusion injury. Blood 118, 1934–1942 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Urbschat, A. et al. The small fibrinopeptide Bβ15–42 as renoprotective agent preserving the endothelial and vascular integrity in early ischemia reperfusion injury in the mouse kidney. PLoS ONE 9, e84432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hoffmann, D. et al. Fibrinogen excretion in the urine and immunoreactivity in the kidney serves as a translational biomarker for acute kidney injury. Am. J. Pathol. 181, 818–828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Svenningsen, P. et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J. Am. Soc. Nephrol. 20, 299–310 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tudpor, K. et al. Urinary plasmin inhibits TRPV5 in nephrotic-range proteinuria. J. Am. Soc. Nephrol. 23, 1824–1834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Grandaliano, G. et al. Regenerative and proinflammatory effects of thrombin on human proximal tubular cells. J. Am. Soc. Nephrol. 11, 1016–1025 (2000).

    CAS  PubMed  Google Scholar 

  166. Matsuo, S. et al. Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int. 67, 2221–2238 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Zaferani, A. et al. Heparin/heparan sulphate interactions with complement—a possible target for reduction of renal function loss? Nephrol. Dial. Transplant. 29, 515–522 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Wiggins, J. E. et al. NFκB promotes inflammation, coagulation, and fibrosis in the aging glomerulus. J. Am. Soc. Nephrol. 21, 587–597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pawlak, K., Ulazka, B., Mysliwiec, M. & Pawlak, D. Vascular endothelial growth factor and uPA/suPAR system in early and advanced chronic kidney disease patients: a new link between angiogenesis and hyperfibrinolysis? Transl. Res. 160, 346–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Ito, T., Niwa, T. & Matsui, E. Fibrinolytic activity in renal disease. Clin. Chim. Acta 36, 145–151 (1972).

    Article  CAS  PubMed  Google Scholar 

  171. Mezzano, D. et al. Hemostatic disorder of uremia: the platelet defect, main determinant of the prolonged bleeding time, is correlated with indices of activation of coagulation and fibrinolysis. Thromb. Haemost. 76, 312–321 (1996).

    Article  CAS  PubMed  Google Scholar 

  172. Farquhar, A., MacDonald, M. K. & Ireland, J. T. The role of fibrin deposition in diabetic glomerulosclerosis: a light, electron and immunofluorescence microscopy study. J. Clin. Pathol. 25, 657–667 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nakagawa, T. et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol. 18, 539–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Yamabe, H. et al. Thrombin stimulates production of transforming growth factor-β by cultured human mesangial cells. Nephrol. Dial. Transplant. 12, 438–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  175. Ito, Y. et al. Kinetics of connective tissue growth factor expression during experimental proliferative glomerulonephritis. J. Am. Soc. Nephrol. 12, 472–484 (2001).

    CAS  PubMed  Google Scholar 

  176. Mormile, A. et al. Physiological inhibitors of blood coagulation and prothrombin fragment F 1 + 2 in type 2 diabetic patients with normoalbuminuria and incipient nephropathy. Acta Diabetol. 33, 241–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Matsumoto, K. et al. Inverse correlation between activated protein C generation and carotid atherosclerosis in Type 2 diabetic patients. Diabet. Med. 24, 1322–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Gil-Bernabe, P. et al. Exogenous activated protein C inhibits the progression of diabetic nephropathy. J. Thromb. Haemost. 10, 337–346 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Bock, F. et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc. Natl Acad. Sci. USA 110, 648–653 (2013).

    Article  PubMed  Google Scholar 

  180. Bock, F., Shahzad, K., Vergnolle, N. & Isermann, B. Activated protein C based therapeutic strategies in chronic diseases. Thromb. Haemost. 111, 610–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Fu, J., Lee, K., Chuang, P. Y., Liu, Z. & He, J. C. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am. J. Physiol. Renal Physiol. 308, F287–F297 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Kerlin, B. A. et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 102, 3085–3092 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Peter, A. et al. Lower plasma creatinine and urine albumin in individuals at increased risk of type 2 diabetes with factor v leiden mutation. ISRN Endocrinol. 2014, 530830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pugliese, F., Mene, P. & Cinotti, G. A. Glomerular polyanion and control of cell function. Am. J. Nephrol. 10, S14–S18 (1990).

    Article  Google Scholar 

  185. Gambaro, G. & Kong, N. C. Glycosaminoglycan treatment in glomerulonephritis? An interesting option to investigate. J. Nephrol. 23, 244–252 (2010).

    PubMed  Google Scholar 

  186. Hagiwara, H. et al. Expression of type-1 plasminogen activator inhibitor in the kidney of diabetic rat models. Thromb. Res. 111, 301–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Lassila, M. et al. Plasminogen activator inhibitor-1 production is pathogenetic in experimental murine diabetic renal disease. Diabetologia 50, 1315–1326 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Nicholas, S. B. et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 67, 1297–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Kenichi, M. et al. Renal synthesis of urokinase type-plasminogen activator, its receptor, and plasminogen activator inhibitor-1 in diabetic nephropathy in rats: modulation by angiotensin-converting-enzyme inhibitor. J. Lab. Clin. Med. 144, 69–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Cheng, H., Chen, C. & Wang, S. Effects of uPA on mesangial matrix changes in the kidney of diabetic rats. Ren. Fail. 36, 1322–1327 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Wang, H. et al. The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb. Haemost. 108, 1141–1153 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Malyszko, J., Malyszko, J. S., Hryszko, T. & Mysliwiec, M. Thrombin activatable fibrinolysis inhibitor (TAFI) and markers of endothelial cell injury in dialyzed patients with diabetic nephropathy. Thromb. Haemost. 91, 480–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Atkinson, J. M., Pullen, N. & Johnson, T. S. An inhibitor of thrombin activated fibrinolysis inhibitor (TAFI) can reduce extracellular matrix accumulation in an in vitro model of glucose induced ECM expansion. Matrix Biol. 32, 277–287 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Atkinson, J. M., Pullen, N., Da Silva-Lodge, M., Williams, L. & Johnson, T. S. Inhibition of thrombin-activated fibrinolysis inhibitor increases survival in experimental kidney fibrosis. J. Am. Soc. Nephrol. 26, 1925–1937 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Bruno, N. E. et al. Immune complex-mediated glomerulonephritis is ameliorated by thrombin-activatable fibrinolysis inhibitor deficiency. Thromb. Haemost. 100, 90–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Grandaliano, G. et al. Protease-activated receptor-2 expression in IgA nephropathy: a potential role in the pathogenesis of interstitial fibrosis. J. Am. Soc. Nephrol. 14, 2072–2083 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Chung, H., Ramachandran, R., Hollenberg, M. D. & Muruve, D. A. Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-β receptor signaling pathways contributes to renal fibrosis. J. Biol. Chem. 288, 37319–37331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pontrelli, P. et al. Rapamycin inhibits PAI-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Transplantation 85, 125–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Grandaliano, G. et al. Protease-activated receptor 1 and plasminogen activator inhibitor 1 expression in chronic allograft nephropathy: the role of coagulation and fibrinolysis in renal graft fibrosis. Transplantation 72, 1437–1443 (2001).

    Article  CAS  PubMed  Google Scholar 

  200. Osterholm, C., Veress, B., Simanaitis, M., Hedner, U. & Ekberg, H. Differential expression of tissue factor (TF) in calcineurin inhibitor-induced nephrotoxicity and rejection—implications for development of a possible diagnostic marker. Transpl. Immunol. 15, 165–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Ramackers, W. et al. Recombinant human antithrombin prevents xenogenic activation of hemostasis in a model of pig-to-human kidney transplantation. Xenotransplantation 21, 367–375 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (IS 67/2-4, IS-67/5-2, SFB 854 to B.I.; TH 1789/1-1 to T.M.), the Stiftung Pathobiochemie und Molekulare Diagnostik (B.I. and T.M.) and from the National Institutes of Health (U54-DK083912-05S1 and L40-DK103299m to B.A.K.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, made substantial contributions to discussion of the content, wrote the text and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Berend Isermann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhusudhan, T., Kerlin, B. & Isermann, B. The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol 12, 94–109 (2016). https://doi.org/10.1038/nrneph.2015.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing