Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypertension pharmacogenomics: in search of personalized treatment approaches

Key Points

  • Hypertension is an important, modifiable risk factor for cardiovascular and kidney disease

  • Rates of blood pressure control are substantially below the desired levels globally, with many factors contributing to poor blood pressure control

  • Pharmacogenomics and other 'omics' approaches could help to identify useful biomarkers for a more personalized or precision approach to antihypertensive treatment strategies

  • Validating and replicating antihypertensive pharmacogenomics signals will require large sample sizes and will probably not yield a single signal with a large effect size, but rather multiple signals with small effect sizes

  • As technology continues to evolve and genetic and other 'omics' data become available from collaborative studies, identification of biomarkers of blood pressure response might be possible

Abstract

Cardiovascular and renal diseases are associated with many risk factors, of which hypertension is one of the most prevalent. Worldwide, blood pressure control is only achieved in 50% of those treated for hypertension, despite the availability of a considerable number of antihypertensive drugs from different pharmacological classes. Although many reasons exist for poor blood pressure control, a likely contributor is the inability to predict to which antihypertensive drug an individual is most likely to respond. Hypertension pharmacogenomics and other 'omics' technologies have the potential to identify genetic signals that are predictive of response or adverse outcome to particular drugs, and guide selection of hypertension treatment for a given individual. Continued research in this field will enhance our understanding of how to maximally deploy the various antihypertensive drug classes to optimize blood pressure response at the individual level. This Review summarizes the available literature on the most convincing genetic signals associated with antihypertensive drug responses and adverse cardiovascular outcomes. Future research in this area will be facilitated by enhancing collaboration between research groups through consortia such as the International Consortium for Antihypertensives Pharmacogenomics Studies, with the goal of translating replicated findings into clinical implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of ADRB1 haplotype on treatment response in patients with hypertension.
Figure 2: The effect of PRKCA genotype on blood pressure response to hydrochlorothiazide in participants from five independent studies (PEAR, GERA, NORDIL, GENRES and MILAN).
Figure 3: Development of a genetic risk-score associated with treatment-related adverse cardiovascular outcomes on the basis of data from the INVEST and NORDIL trials.

Similar content being viewed by others

References

  1. Mozaffarian, D. et al. Heart disease and stroke statistics — 2015 update: a report from the American Heart Association. Circulation 131, e29–e322 (2015).

    PubMed  Google Scholar 

  2. Egan, B. M., Zhao, Y. & Axon, R. N. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA 303, 2043–2050 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    Article  PubMed  Google Scholar 

  4. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. WHO Press Release. Adherence to long-term therapies: evidence for action [online].

  6. Sundstrom, J. et al. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann. Intern. Med. 162, 184–191 (2014).

  7. Sundstrom, J. et al. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet 384, 591–598 (2014).

    Article  Google Scholar 

  8. Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Lancet 356, 1955–1964 (2000).

  9. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. JAMA 265, 3255–3264 (1991).

  10. Beckett, N. S. et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 358, 1887–1898 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Lewington, S., Clarke, R., Qizilbash, N., Peto, R. & Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    Article  PubMed  Google Scholar 

  12. Hsu, C. Y., McCulloch, C. E., Darbinian, J., Go, A. S. & Iribarren, C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch. Intern. Med. 165, 923–928 (2005).

    Article  PubMed  Google Scholar 

  13. Lawes, C. M., Vander Hoorn, S. & Rodgers, A. Global burden of blood-pressure-related disease, 2001. Lancet 371, 1513–1518 (2008).

    Article  PubMed  Google Scholar 

  14. Gu, Q., Burt, V. L., Dillon, C. F. & Yoon, S. Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the National Health And Nutrition Examination Survey, 2001 to 2010. Circulation 126, 2105–2114 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Hajjar, I. & Kotchen, T. A. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA 290, 199–206 (2003).

    Article  PubMed  Google Scholar 

  16. James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Chobanian, A. V. et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. JAMA 289, 2560–2572 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Mancia, G. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 34, 2159–2219 (2013).

    Article  PubMed  Google Scholar 

  19. American Diabetes Association. Standards of medical care in diabetes — 2014. Diabetes Care 37, S14–S80 (2014).

  20. Materson, B. J. et al. Single-drug therapy for hypertension in men — a comparison of six antihypertensive agents with placebo. N. Engl. J. Med. 328, 914–921 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Mahmud, A. & Feely, J. Choice of first antihypertensive: simple as ABCD? Am. J. Hypertens. 20, 923–927 (2007).

    Article  PubMed  Google Scholar 

  22. Johnson, J. A. et al. Hydrochlorothiazide and atenolol combination antihypertensive therapy: effects of drug initiation order. Clin. Pharmacol. Ther. 86, 533–539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwartz, G. L., Bailey, K., Chapman, A. B., Boerwinkle, E. & Turner, S. T. The role of plasma renin activity, age, and race in selecting effective initial drug therapy for hypertension. Am. J. Hypertens. 26, 957–964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laragh, J. H. et al. Renin, angiotensin and aldosterone system in pathogenesis and management of hypertensive vascular disease. Am. J. Med. 52, 633–652 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Turner, S. T. et al. Plasma renin activity predicts blood pressure responses to β-blocker and thiazide diuretic as monotherapy and add-on therapy for hypertension. Am. J. Hypertens. 23, 1014–1022 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Relling, M. V. & Klein, T. E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenetics Research Network. PharmGKB [online]

  27. Scott, S. A. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 94, 317–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson, J. A. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 90, 625–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramsey, L. B. et al. The Clinical Pharmacogenetics Implementation Consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin. Pharmacol. Ther. 96, 423–428 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Owusu-Obeng, A. et al. Emerging roles for pharmacists in clinical implementation of pharmacogenomics. Pharmacotherapy 34, 1102–1112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weitzel, K. W. et al. Clinical pharmacogenetics implementation: approaches, successes, and challenges. Am. J. Med. Genet. C Semin. Med. Genet. 166, 56–67 (2014).

  32. El Rouby, N. & Cooper-DeHoff, R. M. Genetics of resistant hypertension: a novel pharmacogenomics phenotype. Curr. Hypertens. Rep. 17, 583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rizzo, F. & Staub, O. NEDD4-2 and salt-sensitive hypertension. Curr. Opin. Nephrol. Hypertens. 24, 111–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ronzaud, C. et al. Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. J. Clin. Invest. 123, 657–665 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Russo, C. J. et al. Association of NEDD4L ubiquitin ligase with essential hypertension. Hypertension 46, 488–491 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Luo, F. et al. A functional variant of NEDD4L is associated with hypertension, antihypertensive response, and orthostatic hypotension. Hypertension 54, 796–801 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Dahlberg, J., Sjögren, M., Hedblad, B., Engström, G. & Melander, O. Genetic variation in NEDD4L, an epithelial sodium channel regulator, is associated with cardiovascular disease and cardiovascular death. J. Hypertens. 32, 294–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Dahlberg, J., Nilsson, L. O., von Wowern, F. & Melander, O. Polymorphism in NEDD4L is associated with increased salt sensitivity, reduced levels of P-renin and increased levels of Nt-proANP. PLoS ONE 2, e432 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Svensson-Farbom, P. et al. A functional variant of the NEDD4L gene is associated with beneficial treatment response with β-blockers and diuretics in hypertensive patients. J. Hypertens. 29, 388–395 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. McDonough, C. W. et al. Association of variants in NEDD4L with blood pressure response and adverse cardiovascular outcomes in hypertensive patients treated with thiazide diuretics. J. Hypertens. 31, 698–704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnson, J. A. & Liggett, S. B. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin. Pharmacol. Ther. 89, 366–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, F. & Steinberg, S. F. S49G and R389G polymorphisms of the β1-adrenergic receptor influence signaling via the cAMP-PKA and ERK pathways. Physiol. Genom. 45, 1186–1192 (2013).

    Article  CAS  Google Scholar 

  43. Johnson, A. D. et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension 57, 903–910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wain, L. V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 43, 1005–1011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ganesh, S. K. et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum. Mol. Genet. 22, 1663–1678 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson, J. A. et al. β1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin. Pharmacol. Ther. 74, 44–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, J. et al. β1-adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin. Pharmacol. Ther. 80, 23–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, D. et al. Associations between ADRB1 and CYP2D6 gene polymorphisms and the response to β-blocker therapy in hypertension. J. Int. Med. Res. 43, 424–434 (2015).

  49. Si, D. et al. Association of common polymorphisms in β1-adrenergic receptor with antihypertensive response to carvedilol. J. Cardiovasc. Pharmacol. 64, 306–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. O'Shaughnessy, K. M., Fu, B., Dickerson, C., Thurston, D. & Brown, M. J. The gain-of-function G389R variant of the β1-adrenoceptor does not influence blood pressure or heart rate response to β-blockade in hypertensive subjects. Clin. Sci. (Lond.) 99, 233–238 (2000).

    Article  CAS  Google Scholar 

  51. Karlsson, J. et al. β1-adrenergic receptor gene polymorphisms and response to β 1-adrenergic receptor blockade in patients with essential hypertension. Clin. Cardiol. 27, 347–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Pacanowski, M. A. et al. β-adrenergic receptor gene polymorphisms and β-blocker treatment outcomes in hypertension. Clin. Pharmacol. Ther. 84, 715–721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lemaitre, R. N. et al. β1- and β2-adrenergic receptor gene variation, β-blocker use and risk of myocardial infarction and stroke. Am. J. Hypertens. 21, 290–296 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Aleong, R. G. et al. Prevention of atrial fibrillation by bucindolol is dependent on the β1389 Arg/Gly adrenergic receptor polymorphism. JACC Heart Fail. 1, 338–344 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Aleong, R. G., Sauer, W. H., Robertson, A. D., Liggett, S. B. & Bristow, M. R. Adrenergic receptor polymorphisms and prevention of ventricular arrhythmias with bucindolol in patients with chronic heart failure. Circ. Arrhythm. Electrophysiol. 6, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Liggett, S. B. et al. A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure. Proc. Natl Acad. Sci. USA 103, 11288–11293 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Turner, S. T. et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension 52, 359–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duarte, J. D. et al. Association of chromosome 12 locus with antihypertensive response to hydrochlorothiazide may involve differential YEATS4 expression. Pharmacogenom. J. 13, 257–263 (2013).

    Article  CAS  Google Scholar 

  59. Turner, S. T. et al. Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide. Hypertension 62, 391–397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chittani, M. et al. TET2 and CSMD1 genes affect SBP response to hydrochlorothiazide in never-treated essential hypertensives. J. Hypertens. 33, 1301–1309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schunkert, H., Hense, H. W., Döring, A., Riegger, G. A. & Siffert, W. Association between a polymorphism in the G protein β3 subunit gene and lower renin and elevated diastolic blood pressure levels. Hypertension 32, 510–513 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Turner, S. T., Schwartz, G. L., Chapman, A. B. & Boerwinkle, E. C825T polymorphism of the G protein β3-subunit and antihypertensive response to a thiazide diuretic. Hypertension 37, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Schelleman, H. et al. Interactions between five candidate genes and antihypertensive drug therapy on blood pressure. Pharmacogenom. J. 6, 22–26 (2006).

    Article  CAS  Google Scholar 

  64. Matayoshi, T. et al. The thiazide-sensitive Na+-Cl cotransporter gene, C1784T, and adrenergic receptor-β3 gene, T727C, may be gene polymorphisms susceptible to the antihypertensive effect of thiazide diuretics. Hypertens. Res. 27, 821–833 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Rigat, B. et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Choi, H. D. et al. Effects of ACE and ADD1 gene polymorphisms on blood pressure response to hydrochlorothiazide: a meta-analysis. Int. J. Clin. Pharmacol. Ther. 51, 718–724 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Vormfelde, S. V. et al. Hydrochlorothiazide efficacy and polymorphisms in ACE, ADD1 and GNB3 in healthy, male volunteers. Eur. J. Clin. Pharmacol. 62, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Cusi, D. et al. Polymorphisms of α-adducin and salt sensitivity in patients with essential hypertension. Lancet 349, 1353–1357 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Glorioso, N. et al. α-adducin 460Trp allele is associated with erythrocyte Na transport rate in North Sardinian primary hypertensives. Hypertension 39, 357–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Glorioso, N. et al. The role of α-adducin polymorphism in blood pressure and sodium handling regulation may not be excluded by a negative association study. Hypertension 34, 649–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Sciarrone, M. T. et al. ACE and α-adducin polymorphism as markers of individual response to diuretic therapy. Hypertension 41, 398–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Turner, S. T., Chapman, A. B., Schwartz, G. L. & Boerwinkle, E. Effects of endothelial nitric oxide synthase, α-adducin, and other candidate gene polymorphisms on blood pressure response to hydrochlorothiazide. Am. J. Hypertens. 16, 834–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Schelleman, H. et al. The influence of the α-adducin G460W polymorphism and angiotensinogen M235T polymorphism on antihypertensive medication and blood pressure. Eur. J. Hum. Genet. 14, 860–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Bhatnagar, V. et al. G-protein-coupled receptor kinase 4 polymorphisms and blood pressure response to metoprolol among African Americans: sex-specificity and interactions. Am. J. Hypertens. 22, 332–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vandell, A. G. et al. G protein receptor kinase 4 polymorphisms: β-blocker pharmacogenetics and treatment-related outcomes in hypertension. Hypertension 60, 957–964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Muskalla, A. M. et al. G-protein receptor kinase 4 polymorphism and response to antihypertensive therapy. Clin. Chem. 60, 1543–1548 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Sanada, H. et al. Common variants of the G protein-coupled receptor type 4 are associated with human essential hypertension and predict the blood pressure response to angiotensin receptor blockade. Pharmacogenom. J. http://dx.doi.org/10.1038/tpj.2015.6.

  78. Hiltunen, T. P. et al. Pharmacogenomics of hypertension: a genome-wide, placebo-controlled cross-over study, using four classes of antihypertensive drugs. J. Am. Heart Assoc. 4, e001521 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, H. et al. A core promoter variant of angiotensinogen gene and interindividual variation in response to angiotensin-converting enzyme inhibitors. J. Renin Angiotensin Aldosterone Syst. 15, 540–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Kurland, L. et al. Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. Am. J. Hypertens. 17, 8–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Jeunemaitre, X. et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 71, 169–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Srivastava, K., Chandra, S., Bhatia, J., Narang, R. & Saluja, D. Association of angiotensinogen (M235T) gene polymorphism with blood pressure lowering response to angiotensin converting enzyme inhibitor (Enalapril). J. Pharm. Pharm. Sci. 15, 399–406 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Mondorf, U. F. et al. Contribution of angiotensin I converting enzyme gene polymorphism and angiotensinogen gene polymorphism to blood pressure regulation in essential hypertension. Am. J. Hypertens. 11, 174–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Hannila-Handelberg, T. et al. Common genetic variations of the renin–angiotensin–aldosterone system and response to acute angiotensin I-converting enzyme inhibition in essential hypertension. J. Hypertens. 28, 771–779 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. McDonough, C. W. et al. Pharmacogenomic association of nonsynonymous SNPs in SIGLEC12, A1BG, and the selectin region and cardiovascular outcomes. Hypertension 62, 48–54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ehret, G. B., O'Connor, A. A., Weder, A., Cooper, R. S. & Chakravarti, A. Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur. J. Hum. Genet. 17, 1650–1657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beitelshees, A. L. et al. KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST). Pharmacogenet. Genom. 17, 719–729 (2007).

    Article  CAS  Google Scholar 

  88. Price, E. T. et al. Liver X receptor α gene polymorphisms and variable cardiovascular outcomes in patients treated with antihypertensive therapy: results from the INVEST-GENES study. Pharmacogenet. Genom. 21, 333–340 (2011).

    Article  CAS  Google Scholar 

  89. Tanner, R. M. et al. Pharmacogenetic associations of MMP9 and MMP12 variants with cardiovascular disease in patients with hypertension. PLoS ONE 6, e23609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, X. et al. Pharmacogenetic association of NOS3 variants with cardiovascular disease in patients with hypertension: the GenHAT study. PLoS ONE 7, e34217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lynch, A. I. et al. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA 299, 296–307 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Lynch, A. I. et al. Gene panels to help identify subgroups at high and low risk of coronary heart disease among those randomized to antihypertensive treatment: the GenHAT study. Pharmacogenet. Genom. 22, 355–366 (2012).

  93. Schelleman, H. et al. Interaction between polymorphisms in the renin–angiotensin-system and angiotensin-converting enzyme inhibitor or β-blocker use and the risk of myocardial infarction and stroke. Pharmacogenom. J. 8, 400–407 (2008).

    Article  CAS  Google Scholar 

  94. Maitland-van der Zee, A. H. et al. Genetic variation in the renin–angiotensin system, use of renin–angiotensin system inhibitors and the risk of myocardial infarction. J. Renin Angiotensin Aldosterone Syst. 12, 208–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Psaty, B. M. et al. Diuretic therapy, the α-adducin gene variant, and the risk of myocardial infarction or stroke in persons with treated hypertension. JAMA 287, 1680–1689 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Davis, B. R. et al. Antihypertensive therapy, the α-adducin polymorphism, and cardiovascular disease in high-risk hypertensive persons: the Genetics of Hypertension-Associated Treatment Study. Pharmacogenom. J. 7, 112–122 (2007).

    Article  CAS  Google Scholar 

  97. Gerhard, T. et al. α-adducin polymorphism associated with increased risk of adverse cardiovascular outcomes: results from GENEtic Substudy of the INternational VErapamil SR-trandolapril STudy (INVEST-GENES). Am. Heart J. 156, 397–404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nordestgaard, B. G. et al. Effect of ACE insertion/deletion and 12 other polymorphisms on clinical outcomes and response to treatment in the LIFE study. Pharmacogenet. Genom. 20, 77–85 (2010).

    Article  CAS  Google Scholar 

  99. van Wieren-de Wijer, D. B. et al. Interaction between the Gly460Trp α-adducin gene variant and diuretics on the risk of myocardial infarction. J. Hypertens. 27, 61–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Wikoff, W. R. et al. Pharmacometabolomics reveals racial differences in response to atenolol treatment. PLoS ONE 8, e57639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cooper-Dehoff, R. M. et al. Is diabetes mellitus-linked amino acid signature associated with β-blocker-induced impaired fasting glucose? Circ. Cardiovasc. Genet. 7, 199–205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. King's College London. Ancestry and biological Informative Markers for stratification of HYpertension: the AIM HY study. Research Councils UK [online], (2015).

  103. Barrie, E. S., Smith, R. M., Sanford, J. C. & Sadee, W. mRNA transcript diversity creates new opportunities for pharmacological intervention. Mol. Pharmacol. 81, 620–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rosendorff, C. et al. Treatment of hypertension in patients with coronary artery disease: a scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension. Circulation 60, 753–764 (2015).

    Google Scholar 

  105. Klein, T. E. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Lluis-Ganella, C. et al. Assessment of the value of a genetic risk score in improving the estimation of coronary risk. Atherosclerosis 222, 456–463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Havulinna, A. S. et al. A blood pressure genetic risk score is a significant predictor of incident cardiovascular events in 32,669 individuals. Hypertension 61, 987–994 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ganna, A. et al. Multilocus genetic risk scores for coronary heart disease prediction. Arterioscler. Thromb. Vasc. Biol. 33, 2267–2272 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Malik, R. et al. Multilocus genetic risk score associates with ischemic stroke in case-control and prospective cohort studies. Stroke 45, 394–402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tada, H. et al. Twelve-single nucleotide polymorphism genetic risk score identifies individuals at increased risk for future atrial fibrillation and stroke. Stroke 45, 2856–2862 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mabuchi, H. & Nohara, A. Therapy: PCSK9 inhibitors for treating familial hypercholesterolaemia. Nat. Rev. Endocrinol. 11, 8–9 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.M.C.-D. has received grant funding from NIH, NIGMS U01 GM074492 and U01 GM092586; and NIH, NHGRI U01 HG007269. J.A.J. has received grant funding from NIH, NIGMS U01 GM074492; NIH, NHGRI U01 HG007269, and NIH, NINDS R01 NS073346 and FDA U01 FD005235.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to planning the review, shared in the writing of the article and reviewed or edited the manuscript before and after submission.

Corresponding author

Correspondence to Julie A. Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper-DeHoff, R., Johnson, J. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol 12, 110–122 (2016). https://doi.org/10.1038/nrneph.2015.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing