Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease

Key Points

  • Chronic kidney disease (CKD) affects 50% of patients with type 2 diabetes mellitus (T2DM), and changes in the epidemiology of T2DM are driving changes in the epidemiology of T2DM-associated CKD

  • Demographic transition resulting in population ageing has contributed not only to an increased prevalence of T2DM but also to an increased prevalence of co-morbid CKD

  • Young and/or obese patients with T2DM have an increased risk of diabetic complications, including CKD

  • The greatest increase in T2DM prevalence has occurred in low-to-middle income countries where risk of CKD is also high; these regions are least able to manage the disease burden

  • Although the incidence of cardiovascular disease in patients with T2DM has improved, this effect has not been associated with any substantial reduction in T2DM-associated renal impairment

  • In the absence of new and effective renoprotective interventions, the increasing global prevalence of T2DM will inevitably be associated with an increase in the prevalence of CKD

Abstract

Chronic kidney disease (CKD) is a common comorbidity in patients with type 2 diabetes mellitus (T2DM) and both conditions are increasing in prevalence. CKD is estimated to affect 50% patients with T2DM globally, and its presence and severity markedly influences disease prognosis. CKD is more common in certain patient populations, including the elderly, those with youth-onset diabetes mellitus, those who are obese, certain ethnic groups, and disadvantaged populations. These same settings have also seen the greatest increase in the prevalence of T2DM, as exemplified by the increasing prevalence of T2DM in low-to- middle income countries. Patients from low-to-middle income countries are often the least able to deal with the burden of T2DM and CKD and the health-care facilities of these countries least able to deal with the demand for equitable access to renal replacement therapies. The increasing prevalence of younger individuals with T2DM, in whom an accelerated course of complications can be observed, further adds to the global burden of CKD. Paradoxically, improvements in cardiovascular survival in patients with T2DM have contributed to patients surviving longer, allowing sufficient time to develop renal impairment. This Review explores how the changing epidemiology of T2DM has influenced the prevalence and incidence of associated CKD across different populations and clinical settings.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Global incidence of type 2 diabetes mellitus (T2DM) and end-stage renal disease (ESRD).
Figure 2: High background prevalence of renal impairment in the general population, especially in elderly individuals.

References

  1. 1

    Zimmet, P. Z., Magliano, D. J., Herman, W. H. & Shaw, J. E. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2, 56–64 (2014).

    Article  PubMed  Google Scholar 

  2. 2

    Millennium Development Goals. UNDP [online], (2013).

  3. 3

    Prior, I. A. & Davidson, F. The epidemiology of diabetes in Polynesians and Europeans in New Zealand and the Pacific. N. Z. Med. J. 65, 375–383 (1966).

    CAS  PubMed  Google Scholar 

  4. 4

    Zimmet, P., Taft, P., Guinea, A., Guthrie, W. & Thoma, K. The high prevalence of diabetes mellitus on a Central Pacific Island. Diabetologia 13, 111–115 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Bennett, P. H., Burch, T. A. & Miller, M. Diabetes mellitus in American (Pima) Indians. Lancet 2, 125–128 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Magliano, D. J. et al. Explaining the increase of diabetes prevalence and plasma glucose in Mauritius. Diabetes Care 35, 87–91 (2012).

    Article  PubMed  Google Scholar 

  7. 7

    Anjana, R. M. et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia 54, 3022–3027 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Mbanya, J. C., Assah, F. K., Saji, J. & Atanga, E. N. Obesity and type 2 diabetes in Sub-Sahara Africa. Curr. Diab. Rep. 14, 501 (2014).

    Article  PubMed  Google Scholar 

  9. 9

    Li, R. et al. Increasing prevalence of type 2 diabetes in Chinese adults in Shanghai. Diabetes Care 35, 1028–1030 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Jia, W. P. et al. Epidemiological characteristics of diabetes mellitus and impaired glucose regulation in a Chinese adult population: the Shanghai Diabetes Studies, a cross-sectional 3-year follow-up study in Shanghai urban communities. Diabetologia 50, 286–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Lipscombe, L. L. & Hux, J. E. Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995–2005: a population-based study. Lancet 369, 750–756 (2007).

    Article  PubMed  Google Scholar 

  12. 12

    Satman, I. et al. Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur. J. Epidemiol. 28, 169–180 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    International Diabetes Federation. IDF Diabetes Atlas update poster, 6th edn. Brussels, Belgium: International Diabetes Federation (2014).

  14. 14

    Guariguata, L. et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103, 137–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels, Belgium: International Diabetes Federation [online], (2013).

  16. 16

    American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36, 1033–1046 (2013).

  17. 17

    Li, R. et al. Medical costs associated with type 2 diabetes complications and comorbidities. Am. J. Manag. Care 19, 421–430 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Slabaugh, S. L., Curtis, B. H., Clore, G., Fu, H. & Schuster, D. P. Factors associated with increased healthcare costs in Medicare Advantage patients with type 2 diabetes enrolled in a large representative health insurance plan in the US. J. Med. Econ. 18, 106–112 (2015).

    Article  PubMed  Google Scholar 

  19. 19

    Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  20. 20

    Ekundayo, O. J. et al. Multimorbidity due to diabetes mellitus and chronic kidney disease and outcomes in chronic heart failure. Am. J. Cardiol. 103, 88–92 (2009).

    Article  PubMed  Google Scholar 

  21. 21

    So, W. Y. et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care 29, 2046–2052 (2006).

    Article  PubMed  Google Scholar 

  22. 22

    McCullough, P. A. et al. Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality. Am. Heart J. 156, 277–283 (2008).

    Article  PubMed  Google Scholar 

  23. 23

    Thomas, M. C. et al. Diabetic kidney disease. Nat. Rev. Dis. Primers 1, 15018 (2015).

    Article  PubMed  Google Scholar 

  24. 24

    de Boer, I. H. et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305, 2532–2539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Thomas, M. C., Weekes, A. J., Broadley, O. J., Cooper, M. E. & Mathew, T. H. The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med. J. Aust. 185, 140–144 (2006).

    Article  PubMed  Google Scholar 

  26. 26

    Dwyer, J. P. et al. Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: results from the DEMAND study. Cardiorenal Med. 2, 1–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Parving, H. H. et al. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 69, 2057–2063 (2006).

    Article  PubMed  Google Scholar 

  28. 28

    Bailey, R. A., Wang, Y., Zhu, V. & Rupnow, M. F. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res. Notes 7, 415 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Metsarinne, K. et al. High prevalence of chronic kidney disease in Finnish patients with type 2 diabetes treated in primary care. Prim. Care Diabetes 9, 31–38 (2015).

    Article  PubMed  Google Scholar 

  30. 30

    Hill, C. J. et al. Obesity and kidney disease in type 1 and 2 diabetes: an analysis of the National Diabetes Audit. QJM 106, 933–942 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Low, S. K. et al. Prevalence of chronic kidney disease in adults with type 2 diabetes mellitus. Ann. Acad. Med. Singapore 45, 164–171 (2015).

    Google Scholar 

  32. 32

    Prasannakumar, M. et al. An observational, cross-sectional study to assess the prevalence of chronic kidney disease in type 2 diabetes patients in India (START -India). Indian J. Endocrinol. Metab. 19, 520–523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Retnakaran, R. et al. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 55, 1832–1839 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Afghahi, H. et al. Risk factors for the development of albuminuria and renal impairment in type 2 diabetes — the Swedish National Diabetes Register (NDR). Nephrol. Dial. Transplant. 26, 1236–1243 (2011).

    Article  PubMed  Google Scholar 

  35. 35

    Bruno, G. et al. Low incidence of end-stage renal disease and chronic renal failure in type 2 diabetes: a 10-year prospective study. Diabetes Care 26, 2353–2358 (2003).

    Article  PubMed  Google Scholar 

  36. 36

    Mogensen, C. E., Christensen, C. K. & Vittinghus, E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32, S64–S78 (1983).

    Article  Google Scholar 

  37. 37

    Thomas, M. C. et al. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (National Evaluation of the Frequency of Renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care 32, 1497–1502 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Perkins, B. A. et al. Regression of microalbuminuria in type 1 diabetes. N. Eng. J. Med. 348, 2285–2293 (2003).

    Article  CAS  Google Scholar 

  39. 39

    Pugliese, G. et al. Chronic kidney disease in type 2 diabetes: lessons from the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study. Nutr. Metab. Cardiovasc. Dis. 24, 815–822 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    MacIsaac, R. J. et al. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 27, 195–200 (2004).

    Article  PubMed  Google Scholar 

  42. 42

    Ekinci, E. I. et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care 36, 3620–3626 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Kramer, H. J., Nguyen, Q. D., Curhan, G. & Hsu, C. Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289, 3273–3277 (2003).

    Article  PubMed  Google Scholar 

  44. 44

    American Diabetes Association. Standards of medical care in diabetes — 2008. Diabetes Care 31, S12–S54 (2008).

  45. 45

    Canadian Diabetes Association. 2008 clinical practice guidelines for the prevention and management of diabetes in Canada. Can. J. Diab. 32, S126–S133 (2008).

  46. 46

    Kagoma, Y. K. et al. Impact of estimated GFR reporting on patients, clinicians, and health-care systems: a systematic review. Am. J. Kidney Dis. 57, 592–601 (2011).

    Article  PubMed  Google Scholar 

  47. 47

    Bruno, G. et al. Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: the Casale Monferrato study. Diabetologia 50, 941–948 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Glassock, R. J. & Winearls, C. The global burden of chronic kidney disease: how valid are the estimates? Nephron Clin. Pract. 110, c39–c46; discussion c47 (2008).

    Article  PubMed  Google Scholar 

  49. 49

    Glassock, R. J. Referrals for chronic kidney disease: real problem or nuisance? JAMA 303, 1201–1203 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Vickers, J. A. & Sturdivant, R. L. Automated reporting of estimated glomerular filtration rate alters referral patterns to a nephrology clinic. Am. J. Med. Sci. 342, 218–220 (2011).

    Article  PubMed  Google Scholar 

  51. 51

    Foote, C. et al. Impact of estimated GFR reporting on late referral rates and practice patterns for end-stage kidney disease patients: a multilevel logistic regression analysis using the Australia and New Zealand Dialysis and Transplant Registry (ANZDATA). Am. J. Kidney Dis. 64, 359–366 (2014).

    Article  PubMed  Google Scholar 

  52. 52

    Polkinghorne, K. Controversies in chronic kidney disease staging. Clin. Biochem. Rev. 32, 55–59 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. 53

    Grace, B. S., Clayton, P. & McDonald, S. P. Increases in renal replacement therapy in Australia and New Zealand: understanding trends in diabetic nephropathy. Nephrology 17, 76–84 (2012).

    Article  PubMed  Google Scholar 

  54. 54

    Yamagata, K. et al. Chronic kidney disease perspectives in Japan and the importance of urinalysis screening. Clin. Exp. Nephrol. 12, 1–8 (2008).

    Article  PubMed  Google Scholar 

  55. 55

    Atkins, R. C. & Zimmet, P. Diabetic kidney disease: act now or pay later. Kidney Int. 77, 375–377 (2010).

    Article  PubMed  Google Scholar 

  56. 56

    Forsblom, C. et al. Competing-risk analysis of ESRD and death among patients with type 1 diabetes and macroalbuminuria. J. Am. Soc. Nephrol. 22, 537–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Andresdottir, G. et al. Improved survival and renal prognosis of patients with type 2 diabetes and nephropathy with improved control of risk factors. Diabetes Care 37, 1660–1667 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Adler, A. I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63, 225–232 (2003).

    Article  PubMed  Google Scholar 

  59. 59

    Sakhuja, V. & Sud, K. End-stage renal disease in India and Pakistan: burden of disease and management issues. Kidney Int. 63, S115–S118 (2003).

    Article  Google Scholar 

  60. 60

    Sheen, Y. J. & Sheu, W. H. Risks of rapid decline renal function in patients with type 2 diabetes. World J. Diabetes 5, 835–846 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990–2010 N. Eng. J. Med. 370, 1514–1523 (2014).

    Article  CAS  Google Scholar 

  62. 62

    Sorensen, V. R., Hansen, P. M., Heaf, J. & Feldt-Rasmussen, B. Stabilized incidence of diabetic patients referred for renal replacement therapy in Denmark. Kidney Int. 70, 187–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Carstensen, B., Kristensen, J. K., Ottosen, P., Borch-Johnsen, K. & Steering Group of the National Diabetes Register. The Danish National Diabetes Register: trends in incidence, prevalence and mortality. Diabetologia 51, 2187–2196 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Williams, M. E. Diabetic CKD/ESRD 2010: a progress report? Sem. Dial. 23, 129–133 (2010).

    Article  Google Scholar 

  65. 65

    Comas, J. et al. Evolution of the incidence of chronic kidney disease Stage 5 requiring renal replacement therapy in the diabetic population of Catalonia. Nephrol. Dial. Transplant. 28, 1191–1198 (2013).

    Article  PubMed  Google Scholar 

  66. 66

    Harper, S. Economic and social implications of aging societies. Science 346, 587–591 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Jacobsen, L. A., Mather, M., Lee, M. & Kent, M. America's aging population. PRB [online], (2011).

    Google Scholar 

  68. 68

    United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables (United Nations, 2015).

  69. 69

    Boyle, J. P., Thompson, T. J., Gregg, E. W., Barker, L. E. & Williamson, D. F. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 8, 29 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    National Centre for Chronic Disease Prevention and Health Promotion. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States CDC [online], (2014).

  71. 71

    Formiga, F. et al. Inappropriate prescribing in elderly people with diabetes admitted to hospital. Diabet. Med. http:dx.doi.org/10.1111/dme.12894 (2015).

  72. 72

    Clase, C. M., Garg, A. X. & Kiberd, B. A. Prevalence of low glomerular filtration rate in nondiabetic Americans: Third National Health and Nutrition Examination Survey (NHANES III). J. Am. Soc. Nephrol. 13, 1338–1349 (2002).

    Article  PubMed  Google Scholar 

  73. 73

    D'Adamo, E. & Caprio, S. Type 2 diabetes in youth: epidemiology and pathophysiology. Diabetes Care 34, S161–S165 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Azzopardi, P. et al. Type 2 diabetes in young Indigenous Australians in rural and remote areas: diagnosis, screening, management and prevention. Med. J. Aust. 197, 32–36 (2012).

    Article  PubMed  Google Scholar 

  75. 75

    Kevat, D., Wilson, D. & Sinha, A. A 5-year-old girl with type 2 diabetes. Lancet 383, 1268 (2014).

    Article  PubMed  Google Scholar 

  76. 76

    Group, T. S. et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N. Eng. J. Med. 366, 2247–2256 (2012).

    Article  Google Scholar 

  77. 77

    Dart, A. B. et al. High burden of kidney disease in youth-onset type 2 diabetes. Diabetes Care 35, 1265–1271 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Pinhas-Hamiel, O. & Zeitler, P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet 369, 1823–1831 (2007).

    Article  PubMed  Google Scholar 

  79. 79

    Yokoyama, H. et al. Higher incidence of diabetic nephropathy in type 2 than in type 1 diabetes in early-onset diabetes in Japan. Kidney Int. 58, 302–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Nelson, R. G., Pavkov, M. E., Hanson, R. L. & Knowler, W. C. Changing course of diabetic nephropathy in the Pima Indians. Diabetes Res. Clin. Pract. 82, S10–S14 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Shanghai Diabetes Research Cooperative Group, Shanghai. Diabetes mellitus survey in Shanghai. Chin. Med. J. 93, 663–672 (1980).

  82. 82

    Xu, Y. et al. Prevalence and control of diabetes in Chinese adults. JAMA 310, 948–959 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Kenealy, T. et al. Increased prevalence of albuminuria among non-European peoples with type 2 diabetes. Nephrol. Dial. Transplant. 27, 1840–1846 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Chowdhury, T. A. & Lasker, S. S. Complications and cardiovascular risk factors in South Asians and Europeans with early-onset type 2 diabetes. QJM 95, 241–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Burden, A. C., McNally, P. G., Feehally, J. & Walls, J. Increased incidence of end-stage renal failure secondary to diabetes mellitus in Asian ethnic groups in the United Kingdom. Diabet. Med. 9, 641–645 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Chandie Shaw, P. K. et al. South-Asian type 2 diabetic patients have higher incidence and faster progression of renal disease compared with Dutch-European diabetic patients. Diabetes Care 29, 1383–1385 (2006).

    Article  PubMed  Google Scholar 

  87. 87

    Bruce, R., Williams, L. & Cundy, T. Rates of progression to end stage renal failure in nephropathy secondary to type 1 and type 2 diabetes mellitus. Aust. N. Z. J. Med. 24, 390–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Lanting, L. C., Joung, I. M., Mackenbach, J. P., Lamberts, S. W. & Bootsma, A. H. Ethnic differences in mortality, end-stage complications, and quality of care among diabetic patients: a review. Diabetes Care 28, 2280–2288 (2005).

    Article  PubMed  Google Scholar 

  89. 89

    Lear, S. A. et al. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am. J. Clin. Nutr. 86, 353–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Nelson, R. G., Morgenstern, H. & Bennett, P. H. Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes 47, 1489–1493 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Lemley, K. V. A basis for accelerated progression of diabetic nephropathy in Pima Indians. Kidney Int. 63, S38–S42 (2003).

    Article  Google Scholar 

  92. 92

    Nelson, R. G., Morgenstern, H. & Bennett, P. H. Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus. Am. J. Epidemiol. 148, 650–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Singh, G. R. & Hoy, W. E. Kidney volume, blood pressure, and albuminuria: findings in an Australian aboriginal community. Am. J. Kidney Dis. 43, 254–259 (2004).

    Article  PubMed  Google Scholar 

  94. 94

    Hoerger, T. J., Segel, J. E., Gregg, E. W. & Saaddine, J. B. Is glycemic control improving in U.S. adults? Diabetes Care 31, 81–86 (2008).

    Article  PubMed  Google Scholar 

  95. 95

    Imperatore, G. et al. Thirty-year trends in cardiovascular risk factor levels among US adults with diabetes: National Health and Nutrition Examination Surveys, 1971–2000. Am. J. Epidemiol. 160, 531–539 (2004).

    Article  PubMed  Google Scholar 

  96. 96

    Tseng, L. N. et al. Prevalence of hypertension and dyslipidemia and their associations with micro- and macrovascular diseases in patients with diabetes in Taiwan: an analysis of nationwide data for 2000–2009 J. Formos. Med. Assoc. 111, 625–636 (2012).

    Article  PubMed  Google Scholar 

  97. 97

    Emdin, C. A. et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA 313, 603–615 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Boussageon, R. et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 343, d4169 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Derby, L., Warram, J. H., Laffel, L. M. & Krolewski, A. S. Elevated blood pressure predicts the development of persistent proteinuria in the presence of poor glycemic control, in patients with type I diabetes. Diabete Metab. 15, 320–326 (1989).

    CAS  PubMed  Google Scholar 

  100. 100

    Schmitz, A., Vaeth, M. & Mogensen, C. E. Systolic blood pressure relates to the rate of progression of albuminuria in NIDDM. Diabetologia 37, 1251–1258 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Tanaka, Y. et al. Role of glycemic control and blood pressure in the development and progression of nephropathy in elderly Japanese NIDDM patients. Diabetes Care 21, 116–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. 102

    Tolonen, N. et al. Lipid abnormalities predict progression of renal disease in patients with type 1 diabetes. Diabetologia 52, 2522–2530 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Thomas, M. C. et al. Serum lipids and the progression of nephropathy in type 1 diabetes. Diabetes Care 29, 317–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Penno, G. et al. Hypertriglyceridemia is independently associated with renal, but not retinal complications in subjects with type 2 diabetes: a cross-sectional analysis of the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicenter Study. PLoS ONE 10, e0125512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Sacks, F. M. et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation 129, 999–1008 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Kaysen, G. A. Dyslipidemia in chronic kidney disease: causes and consequences. Kidney Int. 70, S55–S58 (2006).

    Article  CAS  Google Scholar 

  107. 107

    de Vries, A. P. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2, 417–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Jun, M. et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 60, 2061–2071 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Griffin, S. J. et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet 378, 156–167 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. 110

    Haynes, R. et al. Effects of lowering LDL cholesterol on progression of kidney disease. J. Am. Soc. Nephrol. 25, 1825–1833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    de Zeeuw, P. D. et al. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes Endocrinol. 3, 181–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Leibson, C. L. et al. Temporal trends in BMI among adults with diabetes. Diabetes Care 24, 1584–1589 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Sharma, K. The link between obesity and albuminuria: adiponectin and podocyte dysfunction. Kidney Int. 76, 145–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Tsuboi, N., Utsunomiya, Y. & Hosoya, T. Obesity-related glomerulopathy and the nephron complement. Nephrol. Dial. Transplant. 28, iv108–iv113 (2013).

    Article  PubMed  Google Scholar 

  115. 115

    Look, A. R. G. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2, 801–809 (2014).

    Article  Google Scholar 

  116. 116

    Carlsson, L. M. et al. The incidence of albuminuria after bariatric surgery and usual care in Swedish Obese Subjects (SOS): a prospective controlled intervention trial. Int. J. Obes. 39, 169–175 (2015).

    Article  CAS  Google Scholar 

  117. 117

    Ford, E. S. et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000 N. Engl. J. Med. 356, 2388–2398 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Yashkin, A. P., Picone, G. & Sloan, F. Causes of the change in the rates of mortality and severe complications of diabetes mellitus: 1992–2012. Med. Care 53, 268–275 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

  120. 120

    Schroeder, E. B. et al. Prevalence of chronic kidney disease among individuals with diabetes in the SUPREME-DM Project, 2005–2011. J. Diabetes Complications 29, 637–643 (2015).

    Article  PubMed  Google Scholar 

  121. 121

    Nelson, R. G. et al. Low incidence of fatal coronary heart disease in Pima Indians despite high prevalence of non-insulin-dependent diabetes. Circulation 81, 987–995 (1990).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Andresdottir, G. et al. Improved survival and renal prognosis of patients with type 2 diabetes and nephropathy with improved control of risk factors. Diabetes Care 37, 1660–1667 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Thomas, M. C. & Groop, P. H. New approaches to the treatment of nephropathy in diabetes. Expert Opin. Investig. Drugs 20, 1057–1071 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Anand, S., Bitton, A. & Gaziano, T. The gap between estimated incidence of end-stage renal disease and use of therapy. PLoS ONE 8, e72860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Chen, L., Magliano, D. J. & Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus — present and future perspectives. Nat. Rev. Endocrinol. 8, 228–236 (2012).

    Article  CAS  Google Scholar 

  126. 126

    Ejerblad, E. et al. Obesity and risk for chronic renal failure. J. Am. Soc. Nephrol. 17, 1695–1702 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Gress, T. W., Nieto, F. J., Shahar, E., Wofford, M. R. & Brancati, F. L. hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. N. Eng. J. Med. 342, 905–912 (2000).

    Article  CAS  Google Scholar 

  128. 128

    Lago, R. M., Singh, P. P. & Nesto, R. W. Diabetes and hypertension. Nat. Clin. Pract. Endocrinol. Metab. 3, 667 (2007).

    Article  PubMed  Google Scholar 

  129. 129

    Beckles, G. L. & Chou, C. F. Diabetes — United States, 2006 and 2010. CDC [online], (2013).

    Google Scholar 

  130. 130

    Hu, F. B. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34, 1249–1257 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Misra, A., Ramchandran, A., Jayawardena, R., Shrivastava, U. & Snehalatha, C. Diabetes in South Asians. Diabet. Med. 31, 1153–1162 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Derose, S. F. et al. Racial differences in estimated GFR decline, ESRD, and mortality in an integrated health system. Am J. Kidney Dis. 62, 236–244 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133

    Bryson, C. L., Ross, H. J., Boyko, E. J. & Young, B. A. Racial and ethnic variations in albuminuria in the US Third National Health and Nutrition Examination Survey (NHANES III) population: associations with diabetes and level of CKD. Am J. Kidney Dis. 48, 720–726 (2006).

    Article  PubMed  Google Scholar 

  134. 134

    Farag, Y. M., Kari, J. A. & Singh, A. K. Chronic kidney disease in the Arab world: a call for action. Nephron Clin. Pract. 121, c120–c123 (2012).

    PubMed  Google Scholar 

  135. 135

    Tarver-Carr, M. E. et al. Excess risk of chronic kidney disease among African-American versus white subjects in the United States: a population-based study of potential explanatory factors. J. Am. Soc. Nephrol. 13, 2363–2370 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.C.T. and M.E.C. are supported by NHMRC research fellowships. The Baker IDI is supported by infrastructure funding from the Victorian government, Australia.

Author information

Affiliations

Authors

Contributions

M.C.T. researched the data for the article. M.C.T. and P.Z. provided substantial contribution to discussions of the content and contributed equally to writing the article. All authors contributed equally to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Paul Zimmet.

Ethics declarations

Competing interests

M.C.T. has received honoraria for educational meetings conducted on behalf of Abbvie, Boehringer–Ingelheim, Eli-Lilly, Merck Sharpe and Dohme, Servier, Novartis, Takeda, Abbot, Allergan, and AstraZeneca. P.Z. has acted as an adviser and received honoraria for speaking on behalf of Eli-Lilly, Novo Nordisk, Haptocure (Israel), Janssen Cilag, and Sanofi Aventis. M.E.C. has received honoraria and consulting fees from Abbvie, Bayer, Boehringer–Ingelheim, Eli-Lilly, Merck, Servier, Takeda, Novo-Nordisk, and AstraZeneca as well as research grants from Novo-Nordisk and Abbvie.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, M., Cooper, M. & Zimmet, P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol 12, 73–81 (2016). https://doi.org/10.1038/nrneph.2015.173

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing