Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney–brain crosstalk in the acute and chronic setting

Key Points

  • The majority of patients with chronic kidney disease (CKD) incur neurological complications that might improve following renal transplantation

  • Proteinuria, decreased glomerular filtration rate (GFR), and increased cystatin C are risk factors for cerebrovascular disease, which is in turn a risk factor for ongoing kidney dysfunction

  • Stroke is a major complication of CKD in elderly patients undergoing dialysis; conventional ischaemic risk factors, as well as dialysis itself, can contribute to the development of stroke

  • Patients undergoing dialysis often develop delirium after dialysis sessions, as well as chronic dementia, with prominent deficits in executive function and memory that are independent of age

  • Systemic inflammation, oxidative stress, and dysregulation of sodium, potassium, and water channels in acute kidney injury can lead to brain injury, dysfunction, and oedema

Abstract

Patients with kidney disease often exhibit multiple organ dysfunction that is caused, in part, by marked connectivity between the kidney and other organs and tissues. Substantial crosstalk occurs between the kidney and the brain, as indicated by the frequent presentation of neurological disorders, such as cerebrovascular disease, cognitive impairment, and neuropathy during the natural history of chronic kidney disease. The underlying pathophysiology of such comorbid neurological disorders in kidney disease is governed by shared anatomic and vasoregulatory systems and humoral and non-humoral bidirectional pathways that affect both the kidney and the brain. During acute kidney injury, the brain and kidney might interact through the amplification of cytokine-induced damage, extravasation of leukocytes, oxidative stress, and dysregulation of sodium, potassium, and water channels. The advent of dialysis and renal transplantation programmes has led to a reduction in the rate of neurological complications associated with uraemia, but a new set of complications have arisen as a consequence of the effects of dialysis on the central nervous system over the short and long term. This Review discusses the clinical complications of acute and chronic renal failure from a neurologic perspective, and highlights current understanding of the underlying pathophysiologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRI showing subclinical brain lesions in patients with chronic kidney disease.
Figure 2: Mechanisms of kidney–brain crosstalk during chronic and acute kidney disease.
Figure 3: Inflammatory processes that contribute to acute kidney injury (AKI) and other co-morbidities.
Figure 4: Innate immune signalling pathways in acute kidney injury (AKI) leading to brain inflammation.

Similar content being viewed by others

References

  1. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, L. et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379, 815–822 (2012).

    Article  PubMed  Google Scholar 

  3. National Kidney Foundation. KIDOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39, S1–266 (2002).

  4. Krishnan, A. V., Pussell, B. A. & Kiernan, M. C. Neuromuscular disease in the dialysis patient: an update for the nephrologist. Semin. Dial. 22, 267–278 (2009).

    Article  PubMed  Google Scholar 

  5. Tilki, H. E., Akpolat, T., Cos¸kun, M. & Stålberg, E. Clinical and electrophysiologic findings in dialysis patients. J. Electromyogr. Kinesiol. 19, 500–508 (2009).

    Article  PubMed  Google Scholar 

  6. Kurella, M. et al. Chronic kidney disease and cognitive impairment in the elderly: the health, aging, and body composition study. J. Am. Soc. Nephrol. 16, 2127–2133 (2005).

    Article  PubMed  Google Scholar 

  7. Yaffe, K. et al. Chronic kidney disease and cognitive function in older adults: findings from the chronic renal insufficiency cohort cognitive study. J. Am. Geriatr. Soc. 58, 338–345 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seliger, S. L. et al. Moderate renal impairment and risk of dementia among older adults: the Cardiovascular Health Cognition Study. J. Am. Soc. Nephrol. 15, 1904–1911 (2004).

    Article  PubMed  Google Scholar 

  9. Davey, A. et al. Decline in renal functioning is associated with longitudinal decline in global cognitive functioning, abstract reasoning and verbal memory. Nephrol. Dial. Transplant. 28, 1810–1819 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Buchman, A. S. et al. Kidney function is associated with the rate of cognitive decline in the elderly. Neurology 73, 920–927 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. United States Renal Data System 2006 Annual Report. Morbidity & mortality. Neuroepidemiology: Incident & prevalent stroke [online] (2006).

  12. Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu, R. et al. Survey of acute kidney injury and related risk factors of mortality in hospitalized patients in a third-level urban hospital of Shanghai. Blood Purif. 38, 140–148 (2014).

    Article  PubMed  Google Scholar 

  14. Piccinni, P. et al. Prospective multicentre study on epidemiology of acute kidney injury in the ICU: a critical care nephrology Italian collaborative effort (NEFROINT). Minerva Anestesiol. 77, 1072–1083 (2011).

    CAS  PubMed  Google Scholar 

  15. Akcay, A., Nguyen, Q. & Edelstein, C. L. Mediators of inflammation in acute kidney injury. Mediators Inflamm. 2009, 137072 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Ko, G. J., Rabb, H. & Hassoun, H. T. Kidney-lung crosstalk in the critically ill patient. Blood Purif. 28, 75–83 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Benga, O. & Huber, V. J. Brain water channel proteins in health and disease. Mol. Aspects Med. 33, 562–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Murray, A. M. Cognitive impairment in the aging dialysis and chronic kidney disease populations: an occult burden. Adv. Chronic Kidney Dis. 15, 123–132 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee, M. et al. Low glomerular filtration rate and risk of stroke: meta-analysis. BMJ 341, c4249 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Umemura, T. et al. Microalbuminuria is independently associated with deep or infratentorial brain microbleeds in hypertensive adults. Am. J. Hypertens. 25, 430–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Seliger, S. L. & Longstreth, W. T. Jr. Lessons about brain vascular disease from another pulsating organ, the kidney. Stroke 39, 5–6 (2008).

    Article  PubMed  Google Scholar 

  22. Bukhari, F. J. et al. Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Nephrol. Dial. Transplant. 26, 2137–2144 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Wardlaw, J. M., Sandercock, P. A., Dennis, M. S. & Starr, J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34, 806–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Weiner, D. E. et al. The relationship between nontraditional risk factors and outcomes in individuals with stage 3 to 4 CKD. Am. J. Kidney Dis. 51, 212–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Debette, S. et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: The Framingham Offspring Study. Stroke 41, 600–606 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martinez-Vea, A. et al. Silent cerebral white matter lesions and their relationship with vascular risk factors in middle-aged predialysis patients with CKD. Am. J. Kidney Dis. 47, 241–225 (2006).

    Article  PubMed  Google Scholar 

  27. Weiner, D. E. et al. Albuminuria, cognitive functioning, and white matter hyperintensities in homebound elders. Am. J. Kidney Dis. 53, 438–447 (2009).

    Article  PubMed  Google Scholar 

  28. Ikram, M. A. et al. Kidney function is related to cerebral small vessel disease. Stroke. 39, 55–61 (2008).

    Article  PubMed  Google Scholar 

  29. Wada, M. et al. Cerebral small vessel disease and chronic kidney disease (CKD): results of a crosssectional study in community-based Japanese elderly. J. Neurol. Sci. 272, 36–42 (2008).

    Article  PubMed  Google Scholar 

  30. Abramson, J. et al. Chronic kidney disease, anaemia, and incident stroke in a middle-aged, community-based population: The aric study. Kidney Int. 64, 610–615 (2003).

    Article  PubMed  Google Scholar 

  31. Ovbiagele, B. et al. Indices of kidney dysfunction and discharge outcomes in hospitalized stroke patients without known renal disease. Cerebrovasc. Dis. 28, 582–588 (2009).

    Article  PubMed  Google Scholar 

  32. Kumai, Y. et al. Proteinuria and clinical outcomes after ischemic stroke. Neurology 78, 1909–1915 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Chou, C. C. et al. Adults with late stage 3 chronic kidney disease are at high risk for prevalent silent brain infarction. a population-based study. Stroke 42, 2120–2125 (2011).

    Article  PubMed  Google Scholar 

  34. Shima, H. et al. Decreased kidney function is a significant factor associated with silent cerebral infarction and periventricular hyperintensities. Kidney Blood Press. Res. 34, 430–438 (2011).

    Article  PubMed  Google Scholar 

  35. Kobayashi, M. et al. Relationship between silent brain infarction and chronic kidney disease. Nephrol. Dial. Transplant. 24, 201–207 (2009).

    Article  PubMed  Google Scholar 

  36. Seliger. S. L. et al. Cystatin C and subclinical brain infarction. J. Am. Soc. Nephrol. 16, 3721–3727 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi, M. et al. Silent brain infarction and rapid decline of kidney function in patients with CKD: a prospective cohort study. Am. J. Kidney Dis. 56, 468–476 (2010).

    Article  PubMed  Google Scholar 

  38. Ovbiagele, B. et al. Association of chronic kidney disease with cerebral microbleeds in patients with primary intracerebral haemorrhage. Stroke 44, 2409–2413 (2013).

    Article  PubMed  Google Scholar 

  39. Seliger, S. L. et al. Risk factors for incident stroke among patients with end-stage renal disease. J. Am. Soc. Nephrol. 14, 2623–2631 (2003).

    Article  PubMed  Google Scholar 

  40. Wetmore, J. B. et al. Atrial fibrillation and risk of stroke in dialysis patients. Ann. Epidemiol. 23, 112–118 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murray, A. M., Seliger, S., Lakshminarayan, K., Herzog, C. A. & Solid, C. A. Incidence of stroke before and after dialysis initiation in older patients. J. Am. Soc. Nephrol. 24, 1166–1173 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen, Y. et al. 24-h residual urine volume at haemodialysis initiation: a possible predictor for acute ischemic stroke incurrence in haemodialysis patients. Clin. Neurol. Neurosurg. 115, 557–561 (2013).

    Article  PubMed  Google Scholar 

  43. Anan, F. et al. Hyperhomocysteinaemia is a significant risk factor for silent cerebral infarction in patients with chronic renal failure undergoing haemodialysis. Metabolism 55, 656–661 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. JAMA 288, 2015–2022 (2002).

    Article  Google Scholar 

  45. Lee, M., Hong, K. S., Chang, S. C. & Saver, J. L. Efficacy of homocysteine-lowering therapy with folic acid in stroke prevention: a meta-analysis. Stroke 41, 1205–1212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martin-Malo, A. et al. Effects of intravenous iron on mononuclear cells during the haemodialysis session. Nephrol. Dial. Transplant. 27, 2465–2471 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Kshirsagar, A. V. et al. Intravenous iron supplementation practices and short-term risk of cardiovascular events in haemodialysis patients. PLoS ONE 8, e78930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, H. H. et al. Risk of stroke in long-term dialysis patients compared with the general population. Am. J. Kidney Dis. 63, 604–611 (2014).

    Article  PubMed  Google Scholar 

  49. Foley, R. N., Gilbertson, D. T., Murray, T. & Collins, A.J. Long interdialytic interval and mortality among patients receiving haemodialysis. N. Engl. J. Med. 365, 1099–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Herzog, C. A. et al. Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80, 572–586 (2011).

    Article  PubMed  Google Scholar 

  51. Power, A., Chan, K., Singh, S. K., Taube, D. & Duncan, N. Appraising stroke risk in maintenance haemodialysis patients: a large single-centre cohort study. Am. J. Kidney Dis. 59, 249–257 (2012).

    Article  PubMed  Google Scholar 

  52. Toyoda, K. et al. Stroke in patients on maintenance haemodialysis: a 22-year single- centre study. Am. J. Kidney Dis. 45, 1058–1066 (2005).

    Article  PubMed  Google Scholar 

  53. Iseki, K. Stroke feature and management in dialysis patients. Contrib. Nephrol. 179, 100–109 (2013).

    Article  PubMed  Google Scholar 

  54. Strippoli, G. F. et al. Effects of the dose of erythropoiesis stimulating agents on cardiovascular events, quality of life, and health-related costs in haemodialysis patients: the clinical evaluation of the dose of erythropoietins (C. E. DOSE) trial protocol. Trials 9, 70 (2010).

    Article  CAS  Google Scholar 

  55. Davies, S., Lally, F., Satchithananda, D., Kadam, U. & Roffe, C. Extending the role of peritoneal dialysis: can we win hearts and minds? Nephrol. Dial. Transplant. 29, 1648–1654 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Godino Mdel, C. et al. Amelioration of ischemic brain damage by peritoneal dialysis. J. Clin. Invest. 123, 4359–4363 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Kurella, M. & Yaffe, K. Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies. Kidney Int. 79, 14–22 (2011).

    Article  Google Scholar 

  58. Murea, M. et al. Structural and functional assessment of the brain in European Americans with mild-to-moderate kidney disease: Diabetes Heart Study-MIND. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfv030.

  59. Lee, J. J. et al. Impaired frontal executive function and predialytic chronic kidney disease. J. Am. Geriatr. Soc. 59, 1628–1635 (2011).

    Article  PubMed  Google Scholar 

  60. Miwa, K. et al. Chronic kidney disease is associated with dementia independent of cerebral small-vessel disease. Neurology 82, 1051–1057 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Brouns, R. & De Deyn, P. P. Neurological complications in renal failure: a review. Clin. Neurol. Neurosurg. 107, 1–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Kurella, M., Luan, J., Yaffe, K. & Chertow, G. M. Validation of the Kidney Disease Quality of Life (KDQOL) Cognitive Function subscale. Kidney Int. 66, 2361–2367 (2004).

    Article  PubMed  Google Scholar 

  63. Folstein, M. F., Folstein, S. E. & McHugh, P. R. 'Mini-mental state'. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    Article  CAS  PubMed  Google Scholar 

  64. Teng, E. L. & Chui, H. C. The Modified Mini-Mental State (3MS) examination. J. Clin. Psychiatry. 48, 314–318 (1987).

    CAS  PubMed  Google Scholar 

  65. Callahan, C. M. et al. Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med. Care 40, 771–781 (2002).

    Article  PubMed  Google Scholar 

  66. Tariq, S. H. et al. Comparison of the Saint Louis University mental status examination and the mini-mental state examination for detecting dementia and mild neurocognitive disorder—a pilot study. Am. J. Geriatr. Psychiatry. 14, 900–910 (2006).

    Article  PubMed  Google Scholar 

  67. Nasreddine, Z. S. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005).

    Article  PubMed  Google Scholar 

  68. Holsinger, T., Deveau, J., Boustani, M. & Williams, J. W. Jr. Does this patient have dementia? JAMA 297, 2391–2404 (2007).

    Article  PubMed  Google Scholar 

  69. Koga, H. et al. Cognitive consequences of multiple lacunes and leukoaraiosis as vascular cognitive impairment in community-dwelling elderly individuals. J. Stroke Cerebrovasc. Dis. 18, 32–37 (2009).

    Article  PubMed  Google Scholar 

  70. Kurella, M., Yaffe, K., Shlipak, M. G., Wenger, N. K. & Chertow, G. M. Chronic kidney disease and cognitive impairment in menopausal women. Am. J. Kidney Dis. 45, 66–76 (2005).

    Article  PubMed  Google Scholar 

  71. Umemura, T. et al. Association of chronic kidney disease and cerebral small vessel disease with cognitive impairment in elderly patients with type 2 diabetes. Dement. Geriatr. Cogn. Dis. Extra 3, 212–222 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kurella Tamura, M. et al. Vascular risk factors and cognitive impairment in chronic kidney disease: the Chronic Renal Insufficiency Cohort (CRIC) study. Clin. J. Am. Soc. Nephrol. 6, 248–256 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Perna, A. F. et al. Hyperhomocysteinaemia in uraemia--a red flag in a disrupted circuit. Semin. Dial. 22, 351–356 (2009).

    Article  PubMed  Google Scholar 

  74. Fassbender, K. et al. Homocysteine in cerebral macroangiography and microangiopathy. Lancet 353, 1586–1587 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Wright, C. B. et al. Total homocysteine is associated with white matter hyperintensity volume: The Northern Manhattan Study. Stroke 36, 1207–1211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lipton, S. A. et al. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-Daspartate receptor. Proc. Natl. Acad. Sci. USA 94, 5923–5928 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Bernstein, H. G., Bogerts, B. & Keilhoff, G. The many faces of nitric oxide in schizophrenia. A review. Schizophr. Res. 78, 69–86 (2005).

    Article  PubMed  Google Scholar 

  78. Fujisaki, K. et al. Cerebral oxidative stress induces spatial working memory dysfunction in uraemic mice: neuroprotective effect of tempol. Nephrol. Dial. Transplant. 29, 529–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Hailpern, S. M., Melamed, M. L., Cohen, H. W. & Hostetter, T. H. Moderate chronic kidney disease and cognitive function in adults 20 to 59 years of age: Third National Health and Nutrition Examination Survey (NHANES III). J. Am. Soc. Nephrol. 18, 2205–2213 (2007).

    Article  PubMed  Google Scholar 

  80. Sajjad, I., Grodstein, F., Kang, J. H., Curhan, G. C. & Lin, J. Kidney dysfunction and cognitive decline in women. Clin. J. Am. Soc. Nephrol. 7, 437–443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chronic Kidney Disease Prognosis Consortium et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

  82. Kurella, M., Mapes, D. L., Port, F. K. & Chertow, G.M. Correlates and outcomes of dementia among dialysis patients: the Dialysis Outcomes and Practice Patterns Study. Nephrol. Dial. Transplant. 21, 2543–2548 (2006).

    Article  PubMed  Google Scholar 

  83. Drew, D. A. et al. FGF-23 and cognitive performance in haemodialysis patients. Haemodial. Int. 18, 78–86 (2014).

    Article  Google Scholar 

  84. Shaffi, K. et al. Low 25-hydroxyvitamin D levels and cognitive impairment in haemodialysis patients. Clin. J. Am. Soc. Nephrol. 8, 979–986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grimm, G., et al. Improvement of brain function in haemodialysis patients treated with erythropoietin. Kidney Int. 38, 480–486 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Kurella Tamura, M. et al. Effect of more frequent haemodialysis on cognitive function in the Frequent Haemodialysis Network trials. Am. J. Kidney Dis. 61, 228–237 (2013).

    Article  PubMed  Google Scholar 

  87. Murray, A. M. et al. Cognitive impairment in haemodialysis patients is common. Neurology. 67, 216–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Jassal, S. V., Devins, G. M., Chan, C. T., Bozanovic, R. & Rourke, S. Improvements in cognition in patients converting from thrice weekly haemodialysis to nocturnal haemodialysis: a longitudinal pilot study. Kidney Int. 70, 956–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Evans, J. D., Wagner, C. D. & Welch, J. L. Cognitive status in haemodialysis as a function of fluid adherence. Ren. Fail. 26, 575–581 (2004).

    Article  PubMed  Google Scholar 

  90. Liu, S. & Quarles, L. D. How fibroblast growth factor 23 works. J. Am. Soc. Nephrol. 18, 1637–1647 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Madero, M., Gul, A. & Sarnak, M. J. Cognitive function in chronic kidney disease. Semin. Dial. 21, 29–37 (2008).

    Article  PubMed  Google Scholar 

  92. Paramjit, K. et al. Cognitive impairment in peritoneal dialysis patients. Am. J. Kidney Dis. 57, 612–620 (2011).

    Article  Google Scholar 

  93. Sehgal, A. R., Grey, S. F., DeOreo, P. B. & Whitehouse, P.J. Prevalence, recognition, and implications of mental impairment among haemodialysis patients. Am. J. Kidney Dis. 30, 41–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Claesson, L., Linden, T., Skoog, I. & Blomstrand, C. Cognitive impairment after stroke-impact on activities of daily living and costs of care for elderly people. The Göteborg 70+ Stroke Study. Cerebrovasc. Dis. 19, 102–109 (2005).

    Article  PubMed  Google Scholar 

  95. Collins, A. J. et al. Excerpts from the United States Renal Data System 2004 annual data report: atlas of end-stage renal disease in the United States. Am. J. Kidney Dis. 45, A5–A7, S1–S280 (2005).

    Article  PubMed  Google Scholar 

  96. Wolfgram, D., Szabo, A., Murray, A. M. & Whittle, J. Risk of dementia in peritoneal dialysis patients compared with hemodialysis patients. Perit. Dial. Int. 35, 189–198 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Teschan, P. E. Electroencephalographic and other neurophysiological abnormalities in uraemia. Kidney Int. Suppl. 2, 210–216 (1975).

    Google Scholar 

  98. Haemodialysis Adequacy 2006 Work Group. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am. J. Kidney Dis. 48, S2–90 (2006).

  99. Peritoneal Dialysis Adequacy 2006 Work Group. Clinical practice guidelines for peritoneal dialysis adequacy. Am. J. Kidney Dis. 48, S98–129 (2006).

  100. Murray, A. M. et al. Acute variation in cognitive function in haemodialysis patients: a cohort study with repeated measures. Am. J. Kidney Dis. 50, 270–278 (2007).

    Article  PubMed  Google Scholar 

  101. Gottlieb, D., Mildworf, B., Rubinger, D. & Melamed, E. The regional cerebral blood flow in patients under chronic haemodialytic treatment. J. Cereb. Blood Flow Metab. 7, 659–661 (1987).

    Article  CAS  PubMed  Google Scholar 

  102. Postiglione, A. et al. Changes in middle cerebral artery blood velocity in uremic patients after haemodialysis. Stroke 22, 1508–1511 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Hata, R. et al. Effects of hemodialysis on cerebral circulation evaluated by transcranial Doppler ultrasonography. Stroke 25, 408–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Ishida, I. et al. Hemodialysis causes severe orthostatic reduction in cerebral blood flow velocity in diabetic patients. Am. J. Kidney Dis. 34, 1096–1104 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Dogukan, A. et al. The effect of strict volume control on cognitive functions in chronic haemodialysis patients. Ren. Fail. 31, 641–646 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Freyberger, H. & Bauditz, W. Psychosyndrome and somatic reactions in chronic kidney patients undergoing hemodialysis [German]. Verh. Dtsch. Ges. Inn. Med. 75, 971–977 (1969).

    CAS  PubMed  Google Scholar 

  107. Rozas, V. V., Port, F. K. & Easterling, R. E. An outbreak of dialysis dementia due to aluminium in the dialysate. J. Dial. 2, 459–470 (1978).

    Article  CAS  PubMed  Google Scholar 

  108. Jack, R., Rabin, P. L. & McKinney, T. D. Dialysis encephalopathy: a review. Int. J. Psychiatry Med. 13, 309–326 (1984).

    Article  CAS  Google Scholar 

  109. Kennedy, A. C., Linton, A. L. & Eaton, J. C. Urea levels in cerebrospinal fluid after haemodialysis. Lancet 1, 410–411 (1962).

    Article  CAS  PubMed  Google Scholar 

  110. Rodrigo, F. et al. Osmolality changes during haemodialysis. Natural history, clinical correlations, and influence of dialysate glucose and intravenous mannitol. Ann. Intern. Med. 86, 554–561 (1977).

    Article  CAS  PubMed  Google Scholar 

  111. Chen, C. L. et al. A preliminary report of brain edema in patients with uremia at first hemodialysis: evaluation by diffusion-weighted MR Imaging. Am. J. Neuroradiol. 28, 68–71 (2007).

    CAS  PubMed  Google Scholar 

  112. Arieff, A. I., Massry, S. G., Barrientos, A. & Kleeman, C. R. Brain water and electrolyte metabolism in uraemia: effects of slow and rapid hemodialysis. Kidney Int. 4, 177–187 (1973).

    Article  CAS  PubMed  Google Scholar 

  113. Trinh-Trang-Tan, M. M., Cartron, J. P. & Bankir, L. Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol. Dial. Transplant. 20, 1984–1988 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Griva, K. et al. Acute neuropsychological changes in hemodialysis and peritoneal dialysis patients. Health Psychol. 22, 570–578 (2003).

    Article  PubMed  Google Scholar 

  115. Williams, M. A., Sklar, A. H., Burright, R. G. & Donovick, P. J. Temporal effects of dialysis on cognitive functioning in patients with ESRD. Am. J. Kidney Dis. 43, 705–711 (2004).

    Article  PubMed  Google Scholar 

  116. Lewis, E. G., O'Neill, W. M., Dustman, R. E. & Beck, E.C. Temporal effects of hemodialysis on measures of neural efficiency. Kidney Int. 17, 357–363 (1980).

    Article  CAS  PubMed  Google Scholar 

  117. Pliskin, N. H., Yurk, H. M., Ho, L. T. & Umans, J. G. Neurocognitive function in chronic chronic haemodialysis patients. Kidney Int. 49, 1435–1440 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. English, A., Savage, R. D., Britton, P. G., Ward, M. K. & Kerr, D. N. Intellectual impairment in chronic renal failure. BMJ 1, 888–890 (1978).

    Article  CAS  PubMed  Google Scholar 

  119. Ratner, D. P., Adams, K. M., Levin, N. W. & Rourke, B. P. Effects of haemodialysis on the cognitive and sensory-motor functioning of the adult chronic haemodialysis patient. J. Behav. Med. 6, 291–311 (1983).

    Article  CAS  PubMed  Google Scholar 

  120. Smirnov, A. V. et al. Quality of life and cognitive functions in patients with end-stage renal failure on haemodialysis using a succinate-containing dialysing solution [Russian]. Ter. Arkh. 86, 11–17 (2014).

    CAS  PubMed  Google Scholar 

  121. Drew, D. A. et al. Cognitive performance before and during haemodialysis: a randomized cross-over trial. Nephron Clin. Pract. 124, 151–158 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. van Eijk, M. M. et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet 376, 1829–1837 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Bergen, D. C., Ristanovic, R., Gorelick, P. B. & Kathpalia, S. Seizures and renal failures. Int. J. Artif. Organs 17, 247–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Duranton, F. et al. Normal and pathologic concentrations of uraemic toxins. J. Am. Soc. Nephrol. 23, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. De Deyn, P. P., Vanholder, R., Eloot, S. & Glorieux, G. Guanidino compounds as uremic (neuro) toxins. Semin. Dial. 22, 340–345 (2009).

    Article  PubMed  Google Scholar 

  126. Kielstein, J. T. et al. ADMA increases arterial stiffness and decreases cerebral blood flow in humans. Stroke 37, 2024–2029 (2006).

    Article  PubMed  Google Scholar 

  127. De Deyn, P. P., D'Hooge, R., Van Bogaert, P. P. & Marescau, B. Endogenous guanidino compounds as uraemic neurotoxins. Kidney Int. 78, S77–S83 (2001).

    Article  CAS  Google Scholar 

  128. Liu, M. et al. Acute kidney injury leads to inflammation and functional changes in the brain. J. Am. Soc. Nephrol. 19, 1360–1370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Aguilera, A., Sánchez-Tomero, J. A. & Selgas, R. Brain activation in uraemic anorexia. J. Ren. Nutr. 17, 57–61 (2007).

    Article  PubMed  Google Scholar 

  130. Aguilera, A. et al. Eating behaviour disorders in uremia: a question of balance in appetite regulation. Semin. Dial. 17, 44–52 (2004).

    Article  PubMed  Google Scholar 

  131. Smogorzewski, M. et al. Chronic parathyroid hormone excess in vivo increases resting levels of cytosolic calcium in brain synaptosomes: studies in the presence and absence of chronic renal failure. J. Am. Soc. Nephrol. 1, 1162–1168 (1991).

    CAS  PubMed  Google Scholar 

  132. Smogorzewski, M. J. Central nervous dysfunction in uraemia. Am. J. Kidney Dis. 38, s122–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Griva, K. et al. Cognitive functioning pre- to post-kidney transplantation—a prospective study. Nephrol. Dial. Transplant. 21, 275–273 (2006).

    Article  Google Scholar 

  134. Harciarek, M. et al. Cognitive performance before and after kidney transplantation: a prospective controlled study of adequately dialysed patients with end-stage renal disease. J. Int. Neuropsychol. Soc. 15, 684–694 (2009).

    Article  PubMed  Google Scholar 

  135. Radic´, J. et al. Kidney transplantation improves cognitive and psychomotor functions in adult haemodialysis patients. Am. J. Nephrol. 34, 399–406 (2011).

    Article  PubMed  Google Scholar 

  136. Yap, S. C. & Lee, H. T. Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anaesthesiology 116, 1139–1148 (2012).

    Article  Google Scholar 

  137. Edelstein, C. L. & Schrier, R. W. in Diseases of the Kidney and Urinary Tract 8th edn Vol. 2 Ch. 36 (ed. Schrier, R. W.) 930–961 (Lippincott Williams & Wilkins, 2007).

    Google Scholar 

  138. Li, X., Hassoun, H. T., Santora, R. & Rabb, H. Organ crosstalk: the role of the kidney. Curr. Opin. Crit. Care 15, 481–487 (2009).

    Article  PubMed  Google Scholar 

  139. Shrestha, R., Millington, O., Brewer, J. & Bushell, T. Is central nervous system an immune-privileged site? Kathmandu Univ. Med. J. 11, 102–107 (2013).

    Article  CAS  Google Scholar 

  140. Ramesh, G., MacLean, A. G. & Philipp, M. T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. http://dx.doi.org/10.1155/2013/480739

  141. Adachi, N. et al. Uraemia suppresses central dopaminergic metabolism and impairs motor activity in rats. Intensive Care Med. 27, 1655–1660 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Salama, M. et al. Up-regulation of TLR-4 in the brain after ischemic kidney-induced encephalopathy in the rat CNS. Neurol. Disord. Drug Targets 12, 583–586 (2013).

    Article  CAS  Google Scholar 

  143. White, L. E. & Hassoun, H. T. Inflammatory mechanisms of organ crosstalk during ischemic acute kidney injury. Int. J. Nephrol. http://dx.doi.org/10.4061/2012/505197

  144. Wang, Y., Ge, P. & Zhu, Y. TLR2 and TLR4 in the brain injury caused by cerebral ischemia and reperfusion. Mediators Inflamm. 124, 614 (2013).

    Google Scholar 

  145. Umehara, H. et al. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol. Cell Biol. 79, 298–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Furuichi, K. et al. Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J. Immunol. http://dx.doi.org/10.1155/2013/124614

  147. Cockwell, P., Chakravorty, S. J., Girdlestone, J. and Savage, C. O. Fractalkine expression in human renal inflammation. J. Pathol. 196, 85–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Lu, L. H. et al. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. Pharmacol. Exp. Ther. 324, 111–117 (2008).

    Article  CAS  Google Scholar 

  149. Frangogiannis, N. G. Chemokines in ischemia and reperfusion. Thromb. Haemost. 97, 738–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Sonneville, R. et al. Understanding brain dysfunction in sepsis. Ann. Intensive Care 3, 3–15 (2013).

    Article  Google Scholar 

  151. Bedford, J. J., Leader, J. P. & Walker, R. J. Aquaporin expression in normal human kidney and in renal disease. J. Am. Soc. Nephrol. 14, 2581–2587 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Ribeiro Mde, C., Hirt, L., Bogousslavsky, J., Regli, L. & Badaut, J. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J. Neurosci. Res. 15, 1231–1240 (2006).

    Article  CAS  Google Scholar 

  153. Gu, Y., Dee, C. M. & Shen, J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front. Biosci. (Schol. Ed.) 3, 1216–1231 (2011).

    Article  Google Scholar 

  154. Haorah, J. et al. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J. Neurochem. 101, 566–576 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge that this Review was initiated during the international fellowship of R.L. at the Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy.

Author information

Authors and Affiliations

Authors

Contributions

C.R. and R.L. researched the data for this article. R.L. and M.H.R. provided substantial contribution to the discussion of content. C.R., R.L., M.C.K. and A.M. contributed to the writing. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Claudio Ronco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Kiernan, M., Murray, A. et al. Kidney–brain crosstalk in the acute and chronic setting. Nat Rev Nephrol 11, 707–719 (2015). https://doi.org/10.1038/nrneph.2015.131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing