Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of hypertension in chronic kidney disease

Key Points

  • Elevated blood pressure can occur as a result of, and be a potent risk factor for, chronic kidney disease (CKD) progression

  • CKD is associated with dysregulation of various blood pressure control systems, including the ability to excrete the daily sodium load, sympathetic activation, renin–angiotensin system activity, and endothelial function

  • Although controversial, the Joint National Committee recommends target blood pressure levels <140/90 mmHg in US patients with CKD until 70 years of age

  • Most guidelines for hypertension treatment in CKD recommend administration of an agent that blocks the renin–angiotensin system, with follow-up testing of kidney function and serum potassium concentrations

  • Home and ambulatory blood pressure monitoring can improve the assessment of overall blood pressure control in patients with CKD, as compared to office measurements alone

  • Device-based methods for blood pressure reduction, such as renal denervation and baroreceptor activation therapy, suggest safety in CKD; unequivocal efficacy remains to be shown in sham-controlled studies

Abstract

Hypertension is a common comorbidity in patients with impaired kidney function. The kidney exerts a marked degree of control over blood pressure through various mechanisms, such as by regulating sodium balance and hormone secretion through the activity of the renin–angiotensin system. The kidney is susceptible to injury, and if already damaged can be at risk of further loss of function as a consequence of elevated blood pressure. Once elevated blood pressure is identified, a combination of sensible lifestyle measures, such as sodium restriction and weight loss, with pharmacological intervention to reduce blood pressure will usually achieve blood pressure goals. In this Review, we outline the importance of blood pressure control for patients with chronic kidney disease (CKD), the mechanisms that affect blood pressure control, and the basis for non-drug and drug therapies. We further discuss the rationale for <140 mmHg systolic and <90 mmHg diastolic targets for blood pressure in patients with CKD, with consideration for tighter targets in the setting of proteinuria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integration of the processes and pathways that regulate blood pressure.

Similar content being viewed by others

References

  1. Stevens, P. E. & Levin, A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2013).

    Article  PubMed  Google Scholar 

  2. Muntner, P. et al. Hypertension awareness, treatment, and control in adults with chronic kidney disease: results from the Chronic Renal Insufficiency Cohort (CRIC) study. Am. J. Kidney Dis. 55, 441–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bakris, G. L. et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am. J. Kidney Dis. 36, 646–661 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Young, J. H. et al. Blood pressure and decline in kidney function: findings from the Systolic Hypertension in the Elderly Program (SHEP). J. Am. Soc. Nephrol. 13, 2776–2782 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Palmer, B. F. Hypertension management in patients with chronic kidney disease. Curr. Hypertens. Rep. 10, 367–373 (2008).

    Article  PubMed  Google Scholar 

  6. Rao, M. V., Qiu, Y., Wang, C. & Bakris, G. Hypertension and CKD: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES), 1999–2004. Am. J. Kidney Dis. 51 (Suppl. 2), S30–S37 (2008).

    Article  PubMed  Google Scholar 

  7. Matsushita K. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ren, Y. et al. Mechanism of impaired afferent arteriole myogenic response in Dahl salt-sensitive rats: role of 20-HETE. Am. J. Physiol. Renal Physiol. 307, F533–F538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rhaleb, N. E., Yang, X. P. & Carretero, O. A. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr. Physiol. 1, 971–993 (2011).

    PubMed  PubMed Central  Google Scholar 

  10. Elijovich, F. 20-HETE and salt-sensitivity of blood pressure a novel emerging concept. Am. J. Hypertens. 19, 1181–1182 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Sharma, J. N. & Narayanan, P. The kallikrein-kinin pathways in hypertension and diabetes. Prog. Drug Res. 69, 15–36 (2014).

    PubMed  Google Scholar 

  12. Ito, Y. et al. Norepinephrine responsiveness in patients with borderline hypertension under three different sodium balances. Clin. Exp. Hypertens. A. 11 (Suppl 1), 363–370 (1989).

    PubMed  Google Scholar 

  13. Hovater, M. B. & Sanders, P. W. Effect of dietary salt on regulation of TGF-beta in the kidney. Semin. Nephrol. 32, 269–276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koomans, H. A., Roos, J. C., Boer, P., Geyskes, G. G. & Mees, E. J. Salt sensitivity of blood pressure in chronic renal failure. Evidence for renal control of body fluid distribution in man. Hypertension 4, 190–197 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Esler, M. The 2009 Carl Ludwig Lecture: Pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J. Appl. Physiol. 108, 227–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Converse, R. L. et al. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 327, 1912–1918 (1992).

    Article  PubMed  Google Scholar 

  17. Klein, I. H., Ligtenberg, G., Neumann, J., Oey, P. L., Koomans, H. A. & Blankestijn, P. J. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J. Am. Soc. Nephrol. 14, 3239–3244 (2003).

    Article  PubMed  Google Scholar 

  18. DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kobori, H., Nangaku, M., Navar, L. G. & Nishiyama, A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol. Rev. 59, 251–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Conn, J. W. Primary aldosteronism, a new clinical syndrome. J. Lab. Clin. Med. 45, 3–17 (1955).

    CAS  PubMed  Google Scholar 

  21. Greene, E. L., Kren, S. & Hostetter, T. H. Role of aldosterone in the remnant kidney model in the rat. J. Clin. Invest. 98, 1063–1068 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deo, R. et al. Serum aldosterone and death, end-stage renal disease, and cardiovascular events in blacks and whites: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Hypertension 64, 103–110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Briet, M. & Schiffrin, E. L. Vascular actions of aldosterone. J. Vasc. Res. 50, 89–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Richter, C. M. Role of endothelin in chronic renal failure—developments in renal involvement. Rheumatology (Oxford) 45 (Suppl 3), iii36–iii38 (2006).

    CAS  Google Scholar 

  25. Araujo, M. & Wilcox, C. S. Oxidative stress in hypertension: role of the kidney. Antioxid. Redox Signal. 20, 74–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crowley, S. D. The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxid. Redox Signal. 20, 102–120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, J. Nitric oxide in the kidney: its physiological role and pathophysiological implications. Electrolyte Blood Press 6, 27–34 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. LeLorier, J. et al. Practical considerations for the use of nonsteroidal anti-inflammatory drugs and cyclo-oxygenase-2 inhibitors in hypertension and kidney disease. Can. J. Cardiol. 18, 1301–1308 (2002).

    CAS  PubMed  Google Scholar 

  29. Verdecchia, P. et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension 24, 793–801 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Shimada, K., Kawamoto, A., Matsubayashi, K. & Ozawa, T. Silent cerebrovascular disease in the elderly. Correlation with ambulatory pressure. Hypertension 16, 692–699 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Verdecchia, P., Angeli, F. & Cavallini, C. Ambulatory blood pressure for cardiovascular risk stratification. Circulation 115, 2091–2093 (2007).

    Article  PubMed  Google Scholar 

  32. Kario, K. et al. Sleep pulse pressure and awake mean pressure as independent predictors for stroke in older hypertensive patients. Am. J. Hypertens. 17, 439–445 (2004).

    Article  PubMed  Google Scholar 

  33. Cohen, D. L., Huan, Y. & Townsend, R. R. Home blood pressure monitoring in CKD. Am. J. Kidney Dis. 63, 835–842 (2014).

    Article  PubMed  Google Scholar 

  34. Minutolo, R. et al. Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease. Arch. Intern. Med. 171, 1090–1098 (2011).

    Article  PubMed  Google Scholar 

  35. Agarwal, R. & Andersen, M. J. Blood pressure recordings within and outside the clinic and cardiovascular events in chronic kidney disease. Am. J. Nephrol. 26, 503–510 (2006).

    Article  PubMed  Google Scholar 

  36. Myers, M. G., Godwin, M., Dawes, M., Kiss, A., Tobe, S. W. & Kaczorowski, J. Measurement of blood pressure in the office: recognizing the problem and proposing the solution. Hypertension 55, 195–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Stergiou, G. S., Parati, G., Asmar, R. & O'Brien, E. Requirements for professional office blood pressure monitors. J. Hypertens. 30, 537–542 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Graves, J. W., Nash, C., Burger, K., Bailey, K. & Sheps, S. G. Clinical decision-making in hypertension using an automated (BpTRU) measurement device. J. Hum. Hypertens. 17, 823–827 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Myers, M. G., Valdivieso, M., Kiss, A. & Tobe, S. W. Comparison of two automated sphygmomanometers for use in the office setting. Blood Press. Monit. 14, 45–47 (2009).

    Article  PubMed  Google Scholar 

  40. Myers, M. G. & Godwin, M. Automated office blood pressure. Can. J. Cardiol. 28, 341–346 (2012).

    Article  PubMed  Google Scholar 

  41. Wolk, R., Shamsuzzaman, A. S. & Somers, V. K. Obesity, sleep apnea, and hypertension. Hypertension 42, 1067–1074 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Dolan, E. et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension 46, 156–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Pogue, V. et al. Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease. Hypertension 53, 20–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kanno, A. et al. Night-time blood pressure is associated with the development of chronic kidney disease in a general population: the Ohasama Study. J. Hypertens. 31, 2410–2417 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kimura, G. Kidney and circadian blood pressure rhythm. Hypertension 51, 827–828 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Brunelli, S. M. et al. Association between long-term blood pressure variability and mortality among incident hemodialysis patients. Am. J. Kidney Dis. 52, 716–726 (2008).

    Article  PubMed  Google Scholar 

  47. Ciobanu, A. O. et al. The impact of blood pressure variability on subclinical ventricular, renal and vascular dysfunction, in patients with hypertension and diabetes. Maedica (Buchar.) 8, 129–136 (2013).

    Google Scholar 

  48. Muntner, P. et al. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension 57, 160–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Mancia, G. Prognostic value of long-term blood pressure variability: the evidence is growing. Hypertension 57, 141–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Parati, G. & Valentini, M. Prognostic relevance of blood pressure variability. Hypertension 47, 137–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Rave, K., Bender, R., Heise, T. & Sawicki, P. T. Value of blood pressure self-monitoring as a predictor of progression of diabetic nephropathy. J. Hypertens. 17, 597–601 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Agarwal, R. & Andersen, M. J. Blood pressure recordings within and outside the clinic and cardiovascular events in chronic kidney disease. Am. J. Nephrol. 26, 503–510 (2006).

    Article  PubMed  Google Scholar 

  53. Pickering, T. G. et al. Call to action on use and reimbursement for home blood pressure monitoring: executive summary: a joint scientific statement from the American Heart Association, American Society of Hypertension, and Preventive Cardiovascular Nurses Association. Hypertension 52, 1–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Alborzi, P., Patel, N. & Agarwal, R. Home blood pressures are of greater prognostic value than hemodialysis unit recordings. Clin. J. Am. Soc. Nephrol. 2, 1228–1234 (2007).

    Article  PubMed  Google Scholar 

  55. Agarwal, R. et al. Assessment and management of hypertension in patients on dialysis. J. Am. Soc. Nephrol. 25, 1630–1646 (2014).

    Article  Google Scholar 

  56. Cappuccio, F. P., Kerry, S. M., Forbes, L. & Donald, A. Blood pressure control by home monitoring: meta-analysis of randomised trials. BMJ 329, 145 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lash, J. P. et al. Chronic Renal Insufficiency Cohort (CRIC) Study: baseline characteristics and associations with kidney function. Clin. J. Am. Soc. Nephrol. 4, 1302–1311 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shulman, N. B. et al. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension 13, I80–I93 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. McCullough, P. A. et al. Cardiovascular disease in chronic kidney disease: data from the Kidney Early Evaluation Program (KEEP). Curr. Diab. Rep. 11, 47–55 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Whaley-Connell, A., Nistala, R. & Chaudhary, K. The importance of early identification of chronic kidney disease. Mo. Med. 108, 25–28 (2011).

    PubMed  PubMed Central  Google Scholar 

  62. Whaley-Connell, A. T. et al. CKD in the United States: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am. J. Kidney Dis. 51, S13–S20 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Loutzenhiser, R., Bidani, A. K. & Wang, X. Systolic pressure and the myogenic response of the renal afferent arteriole. Acta Physiol. Scand. 181, 407–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Bidani, A. K., Polichnowski, A. J., Loutzenhiser, R. & Griffin, K. A. Renal microvascular dysfunction, hypertension and CKD progression. Curr. Opin. Nephrol. Hypertens. 22, 1–9 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Anderson, S. & Brenner, B. M. Therapeutic benefit of converting-enzyme inhibition in progressive renal disease. Am. J. Hypertens. 1, 380S–383S (1988).

    Article  CAS  PubMed  Google Scholar 

  66. Anderson, S., Brenner, B. M. Progressive renal disease: a disorder of adaptation. Q. J. Med. 70, 185–189 (1989).

    CAS  PubMed  Google Scholar 

  67. Klahr, S. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 330, 877–884 (1994).

    Article  Google Scholar 

  68. Wright, J. T. Jr et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA 288, 2421–2431 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Ruggenenti, P. et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet 365, 939–946 (2005).

    Article  PubMed  Google Scholar 

  70. Upadhyay, A., Earley, A., Haynes, S. M. & Uhlig, K. Systematic review: blood pressure target in chronic kidney disease and proteinuria as an effect modifier. Ann. Intern. Med. 154, 541–548 (2011).

    Article  PubMed  Google Scholar 

  71. Jafar, T. H. et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann. Intern. Med. 139, 244–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kovesdy, C. P. et al. Blood pressure and mortality in US veterans with chronic kidney disease: a cohort study. Ann. Intern. Med. 159, 233–242 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet 358, 1033–1041 (2001).

  74. Cushman, W. C. et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1575–1585 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Kovesdy, C. P. et al. Observational modeling of strict vs conventional blood pressure control in patients with chronic kidney disease. JAMA Intern. Med. 174, 1442–1449 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. KDIGO Panel. KDIGO Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. Suppl. 2, 343–387 (2012).

  77. American Diabetes Association. Standards of medical care in diabetes—2013. Diabetes Care 36 (Suppl 1), S11–S66 (2013).

  78. Daskalopoulou, S. S., Rabi, D.M., Zarnke, K.B. & Dasgupta, K. et al. for the Canadian Hypertension Education Program. The 2015 Canadian hypertension education program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can. J. Cardiol. 31, 549–568 (2015).

    Article  PubMed  Google Scholar 

  79. Mancia, G. et al. ESH/ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 31, 1281–1357 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. National Institute for Care Excellence. Hypertension: Clinical management of primary hypertension in adults [online], (2011).

  81. Carville, S., Wonderling, D. & Stevens, P. Early identification and management of chronic kidney disease in adults: summary of updated NICE guidance. BMJ 349, g4507 (2014).

    Article  PubMed  Google Scholar 

  82. Sakhuja, A., Textor, S. C. & Taler, S. J. Uncontrolled hypertension by the evidence-based guideline: results from NHANES 2011–2012. J. Hypertens. 644–651 (2015).

  83. Ajani, U. A. et al. Sodium intake among people with normal and high blood pressure. Am. J. Prev. Med. 29 (Suppl. 1), 63–67 (2005).

    Article  PubMed  Google Scholar 

  84. Laragh, J. H. et al. The renin axis and vasoconstriction volume analysis for understanding and treating renovascular and renal hypertension. Am. J. Med. 58, 4–13 (1975).

    Article  CAS  PubMed  Google Scholar 

  85. Davis, J. O. & Freeman, R. H. Mechanisms regulating renin release. Physiol. Rev. 56, 1–56 (1976).

    Article  CAS  PubMed  Google Scholar 

  86. Mehta, P. K. & Griendling, K. K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82–C97 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. McEniery, C. M. et al. Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension 53, 524–531 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Townsend, R. R. & Tomiyama, H. Arterial stiffness, kidney function and chronic kidney disease progression. Pulse 1, 123–130 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mimran, A. & Du, C. G. Dietary sodium: the dark horse amongst cardiovascular and renal risk factors. Nephrol. Dial. Transplant. 23, 2138–2141 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Vogt, L., Waanders, F., Boomsma, F., de Zeeuw, D. & Navis, G. Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J. Am. Soc. Nephrol. 19, 999–1007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. James, P. A. et al. Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC8). JAMA 311, 507–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Holtkamp, F. A. et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 80, 282–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Hricik, D. E. et al. Captopril-induced functional renal insufficiency in patients with bilateral renal-artery stenoses or renal-artery stenosis in a solitary kidney. N. Engl. J. Med. 308, 373–376 (1983).

    Article  CAS  PubMed  Google Scholar 

  94. Yusuf, S. et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 358, 1547–1559 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 369, 1892–1903 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Pfeffer, M. A. et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362, 759–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Pitt, B. et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370, 1383–1392 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Krum, H. et al. Clinical benefit of eplerenone in patients with mild symptoms of systolic heart failure already receiving optimal best practice background drug therapy: analysis of the EMPHASIS–HF study. Circ. Heart Fail. 6, 711–718 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Bomback, A. S. et al. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am. J. Kidney Dis. 51, 199–211 (2008).

    Article  PubMed  Google Scholar 

  101. Sica, D. A. The kidney and hypertension: causes and treatment. J. Clin. Hypertens. (Greenwich) 10, 541–548 (2008).

    Article  CAS  Google Scholar 

  102. Ecder, T. et al. Diuretics versus angiotensin-converting enzyme inhibitors in autosomal dominant polycystic kidney disease. Am. J. Nephrol. 21, 98–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Torres, V. E. et al. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371, 2267–2276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Uzu, T. & Kimura, G. Diuretics shift circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 100, 1635–1638 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Bakris, G. L. et al. Differential effects of calcium antagonist subclasses on markers of nephropathy progression. Kidney Int. 65, 1991–2002 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Ruggenenti, P., Perna, A., Benini, R. & Remuzzi, G. Effects of dihydropyridine calcium channel blockers, angiotensin-converting enzyme inhibition, and blood pressure control on chronic, nondiabetic nephropathies. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). J. Am. Soc. Nephrol. 9, 2096–2101 (1998).

    CAS  PubMed  Google Scholar 

  107. Bakris, G. L. et al. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. Lancet 375, 1173–1181 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Weir, M. R. et al. Renal outcomes in hypertensive Black patients at high cardiovascular risk. Kidney Int. 81, 568–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Prichard, B. N., Cruickshank, J. M. & Graham, B. R. Beta-adrenergic blocking drugs in the treatment of hypertension. Blood Press. 10, 366–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Taler, S. J., Textor, S. C. & Augustine, J. E. Resistant hypertension: comparing hemodynamic management to specialist care. Hypertension 39, 982–988 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Karadsheh, F. & Weir, M. R. Thiazide and thiazide-like diuretics: an opportunity to reduce blood pressure in patients with advanced kidney disease. Curr. Hypertens. Rep. 14, 416–420 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Hou, F. F. et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med. 354, 131–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Yasuda, T. et al. Effects of valsartan on progression of kidney disease in Japanese hypertensive patients with advanced, predialysis, chronic kidney disease: Kanagawa Valsartan Trial (KVT). Hypertens. Res. 36, 240–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281 (2009).

    Article  PubMed  Google Scholar 

  115. Esler, M. D. et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376, 1903–1909 (2010).

    Article  PubMed  Google Scholar 

  116. Bhatt, D. L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Hering, D. et al. Renal denervation in moderate to severe CKD. J. Am. Soc. Nephrol. 23, 1250–1257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gassler, J. P. & Bisognano, J. D. Baroreflex activation therapy in hypertension. J. Hum. Hypertens. 28, 469–474 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Heusser, K. et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55, 619–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Scheffers, I. J. et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J. Am. Coll. Cardiol. 56, 1254–1258 (2010).

    Article  PubMed  Google Scholar 

  121. Bisognano, J. D. et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J. Am. Coll. Cardiol. 58, 765–773 (2011).

    Article  PubMed  Google Scholar 

  122. Wallbach, M. et al. Impact of baroreflex activation therapy on renal function—a pilot study. Am. J. Nephrol. 40, 371–380 (2014).

    Article  PubMed  Google Scholar 

  123. Weber, M. A. et al. Clinical practice guidelines for the management of hypertension in the community a statement by the American Society of Hypertension and the International Society of Hypertension. J. Hypertens. 32, 3–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Flack, J. M. et al. Management of high blood pressure in Blacks: an update of the International Society on Hypertension in Blacks consensus statement. Hypertension 56, 780–800 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. National Institute for Care Excellence. Chronic kidney disease: early identification and management of chronic kidney disease in adults in primary and secondary care [online], (2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, provided substantial contributions to discussion of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Raymond R. Townsend.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Townsend, R., Taler, S. Management of hypertension in chronic kidney disease. Nat Rev Nephrol 11, 555–563 (2015). https://doi.org/10.1038/nrneph.2015.114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing