Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B cells with immune-regulating function in transplantation

Key Points

  • Various populations of B cells with immune-regulatory functions exist in mice and humans

  • Regulatory B (BREG) cells can control immune responses via diverse mechanisms, including cytokines, growth factors and cell–cell interactions

  • Immunosuppression-free renal transplant recipients have an altered B-cell compartment compared with patients on immunosuppression who have stable graft function, suggesting that B cells have a crucial role in immune-system regulation

  • BREG cells have therapeutic potential in animal models of transplantation

  • More investigation is required to elucidate the exact role of B cells in transplant tolerance and to develop strategies to expand BREG cell populations

Abstract

In transplantation, the contribution of B cells to the rejection or acceptance of the allograft is a topic of major interest. The presence of donor-specific antibodies in transplant recipients is often associated with decreased graft function and rejection, clearly indicating a pathogenetic role of B cells in transplantation. However, data from studies in humans and rodents suggest that under certain conditions, B cells have the capacity to control or regulate the immune response to a transplanted organ. Although a great deal of attention has been focused on B cells in human and murine models of autoimmunity, our understanding of the role of these cells in transplantation is limited at present. Indeed, results in this setting are controversial and seem to depend on the model system used or the clinical situation studied. Here, we review the current understanding of the various phenotypes and roles that have been associated with immune-regulating B cells. We also discuss the mechanisms employed by subsets of these regulatory B cells to control the immune response in transplant recipients and in animal models of transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cell development and tolerance within the bone marrow.
Figure 2: Phenotypes of BREG cells.
Figure 3: Mechanisms of action of BREG cells.

Similar content being viewed by others

References

  1. Jevnikar, A. M. & Mannon, R. B. Late kidney allograft loss: what we know about it, and what we can do about it. Clin. J. Am. Soc. Nephrol. 3 (Suppl. 2), S56–S67 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. Bosmans, J. L. & Verpooten, G. A. Malignancy after kidney transplantation: still a challenge. Kidney Int. 71, 1197–1199 (2007).

    PubMed  Google Scholar 

  3. Bottomley, M. J. & Harden, P. N. Update on the long-term complications of renal transplantation. Br. Med. Bull. 106, 117–134 (2013).

    CAS  PubMed  Google Scholar 

  4. Sherston, S. N., Carroll, R. P., Harden, P. N. & Wood, K. J. Predictors of cancer risk in the long-term solid-organ transplant recipient. Transplantation 97, 605–611 (2014).

    PubMed  Google Scholar 

  5. Wood, K. J., Bushell, A. & Hester, J. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 12, 417–430 (2012).

    CAS  PubMed  Google Scholar 

  6. Wood, K. J. & Goto, R. Mechanisms of rejection: current perspectives. Transplantation 93, 1–10 (2012).

    PubMed  Google Scholar 

  7. Everly, M. J. et al. Reducing de novo donor-specific antibody levels during acute rejection diminishes renal allograft loss. Am. J. Transplant. 9, 1063–1071 (2009).

    CAS  PubMed  Google Scholar 

  8. Mizoguchi, E., Mizoguchi, A., Preffer, F. I. & Bhan, A. K. Regulatory role of mature B cells in a murine model of inflammatory bowel disease. Int. Immunol. 12, 597–605 (2000).

    CAS  PubMed  Google Scholar 

  9. Tian, J. et al. Lipopolysaccharide-activated B cells down-regulate TH1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 1081–1089 (2001).

    CAS  PubMed  Google Scholar 

  10. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

    CAS  PubMed  Google Scholar 

  11. Cooper, M. D., Peterson, R. D. & Good, R. A. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 205, 143–146 (1965).

    CAS  PubMed  Google Scholar 

  12. Osmond, D. G. B cell development in the bone marrow. Semin. Immunol. 2, 173–180 (1990).

    CAS  PubMed  Google Scholar 

  13. Schatz, D. G. & Baltimore, D. Uncovering the V(D)J recombinase. Cell 116 (Suppl. 2), S103–S106 (2004).

    CAS  PubMed  Google Scholar 

  14. Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    CAS  PubMed  Google Scholar 

  15. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Merrell, K. T. et al. Identification of anergic B cells within a wild-type repertoire. Immunity 25, 953–962 (2006).

    CAS  PubMed  Google Scholar 

  17. Zouali, M. The epigenetic landscape of B lymphocyte tolerance to self. FEBS Lett. 587, 2067–2073 (2013).

    CAS  PubMed  Google Scholar 

  18. Mauri, C. & Bosma, A. Immune regulatory function of B cells. Annu. Rev. Immunol. 30, 221–241 (2012).

    CAS  PubMed  Google Scholar 

  19. Dalwadi, H. et al. B cell developmental requirement for the Gαi2 gene. J. Immunol. 170, 1707–1715 (2003).

    CAS  PubMed  Google Scholar 

  20. Lampropoulou, V. et al. TLR-activated B cells suppress T cell-mediated autoimmunity. J. Immunol. 180, 4763–4773 (2008).

    CAS  PubMed  Google Scholar 

  21. Yanaba, K., Bouaziz, J. D., Matsushita, T., Tsubata, T. & Tedder, T. F. The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 182, 7459–7472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, X. Regulatory functions of innate-like B cells. Cell. Mol. Immunol. 10, 113–121 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Garra, A. et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur. J. Immunol. 22, 711–717 (1992).

    CAS  PubMed  Google Scholar 

  24. Spencer, N. F. & Daynes, R. A. IL-12 directly stimulates expression of IL-10 by CD5+ B cells and IL-6 by both CD5+ and CD5 B cells: possible involvement in age-associated cytokine dysregulation. Int. Immunol. 9, 745–754 (1997).

    CAS  PubMed  Google Scholar 

  25. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    CAS  PubMed  Google Scholar 

  26. Lenert, P., Brummel, R., Field, E. H. & Ashman, R. F. TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J. Clin. Immunol. 25, 29–40 (2005).

    CAS  PubMed  Google Scholar 

  27. Mauri, C., Gray, D., Mushtaq, N. & Londei, M. Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med. 197, 489–501 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Evans, J. G. et al. Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 178, 7868–7878 (2007).

    CAS  PubMed  Google Scholar 

  29. Kalampokis, I., Yoshizaki, A. & Tedder, T. F. IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res. Ther. 15 (Suppl. 1), S1 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. Ding, Q. et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest. 121, 3645–3656 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rafei, M. et al. A granulocyte-macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat. Med. 15, 1038–1045 (2009).

    CAS  PubMed  Google Scholar 

  32. Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    CAS  PubMed  Google Scholar 

  33. Iwata, Y. et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–541 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lemoine, S., Morva, A., Youinou, P. & Jamin, C. Human T cells induce their own regulation through activation of B cells. J. Autoimmun. 36, 228–238 (2011).

    CAS  PubMed  Google Scholar 

  35. Neves, P. et al. Signaling via the MyD88 adaptor protein in B cells suppresses protective immunity during Salmonella typhimurium infection. Immunity 33, 777–790 (2010).

    CAS  PubMed  Google Scholar 

  36. Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639–650 (2008).

    CAS  PubMed  Google Scholar 

  37. Cohen-Sfady, M. et al. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J. Immunol. 175, 3594–3602 (2005).

    CAS  PubMed  Google Scholar 

  38. Deng, S. et al. Cutting edge: transplant tolerance induced by anti-CD45RB requires B lymphocytes. J. Immunol. 178, 6028–6032 (2007).

    CAS  PubMed  Google Scholar 

  39. Mann, M. K., Maresz, K., Shriver, L. P., Tan, Y. & Dittel, B. N. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J. Immunol. 178, 3447–3456 (2007).

    CAS  PubMed  Google Scholar 

  40. Gillan, V., Lawrence, R. A. & Devaney, E. B cells play a regulatory role in mice infected with the L3 of Brugia pahangi. Int. Immunol. 17, 373–382 (2005).

    CAS  PubMed  Google Scholar 

  41. Sato, S., Ono, N., Steeber, D. A., Pisetsky, D. S. & Tedder, T. F. CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J. Immunol. 157, 4371–4378 (1996).

    CAS  PubMed  Google Scholar 

  42. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12, 39–49 (2000).

    CAS  PubMed  Google Scholar 

  43. Matsumoto, M. et al. The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity 34, 703–714 (2011).

    CAS  PubMed  Google Scholar 

  44. Bhattacharyya, S. et al. NFATc1 affects mouse splenic B cell function by controlling the calcineurin--NFAT signaling network. J. Exp. Med. 208, 823–839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshizaki, A. et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491, 264–268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, M. et al. Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J. Immunol. 184, 3321–3325 (2010).

    CAS  PubMed  Google Scholar 

  47. Gray, M., Miles, K., Salter, D., Gray, D. & Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl Acad. Sci. USA 104, 14080–14085 (2007).

    CAS  PubMed  Google Scholar 

  48. Blair, P. A. et al. Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J. Immunol. 182, 3492–3502 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Carter, N. A. et al. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of TH1/TH17 but a decrease in regulatory T cells. J. Immunol. 186, 5569–5579 (2011).

    CAS  PubMed  Google Scholar 

  50. Matsushita, T., Yanaba, K., Bouaziz, J. D., Fujimoto, M. & Tedder, T. F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. 118, 3420–3430 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoehlig, K. et al. Activation of CD4+ Foxp3+ regulatory T cells proceeds normally in the absence of B cells during EAE. Eur. J. Immunol. 42, 1164–1173 (2012).

    CAS  PubMed  Google Scholar 

  52. Yang, M. et al. IL-10-producing regulatory B10 cells ameliorate collagen-induced arthritis via suppressing TH17 cell generation. Am. J. Pathol. 180, 2375–2385 (2012).

    CAS  PubMed  Google Scholar 

  53. Carter, N. A., Rosser, E. C. & Mauri, C. Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res. Ther. 14, R32 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moulin, V. et al. B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J. Exp. Med. 192, 475–482 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsushita, T., Horikawa, M., Iwata, Y. & Tedder, T. F. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J. Immunol. 185, 2240–2252 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181 (2010).

    CAS  PubMed  Google Scholar 

  57. Zhao, G. et al. An unexpected counter-regulatory role of IL-10 in B-lymphocyte-mediated transplantation tolerance. Am. J. Transplant. 10, 796–801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Parekh, V. V. et al. B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-β 1. J. Immunol. 170, 5897–5911 (2003).

    CAS  PubMed  Google Scholar 

  59. Natarajan, P. et al. Regulatory B cells from hilar lymph nodes of tolerant mice in a murine model of allergic airway disease are CD5+, express TGF-β, and co-localize with CD4+Foxp3+ T cells. Mucosal Immunol. 5, 691–701 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Anel, A. et al. Apo2L/TRAIL and immune regulation. Front. Biosci. 12, 2074–2084 (2007).

    CAS  PubMed  Google Scholar 

  62. Sharpe, A. H., Wherry, E. J., Ahmed, R. & Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

    CAS  PubMed  Google Scholar 

  63. Ray, A., Basu, S., Williams, C. B., Salzman, N. H. & Dittel, B. N. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J. Immunol. 188, 3188–3198 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Vas, J., Gronwall, C., Marshak-Rothstein, A. & Silverman, G. J. Natural antibody to apoptotic cell membranes inhibits the proinflammatory properties of lupus autoantibody immune complexes. Arthritis Rheum. 64, 3388–3398 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, Y. et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 183, 1346–1359 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of VA14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    CAS  PubMed  Google Scholar 

  67. Sonoda, K. H. & Stein-Streilein, J. CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. Eur. J. Immunol. 32, 848–857 (2002).

    CAS  PubMed  Google Scholar 

  68. Bialecki, E. et al. Role of marginal zone B lymphocytes in invariant NKT cell activation. J. Immunol. 182, 6105–6113 (2009).

    CAS  PubMed  Google Scholar 

  69. Croxford, J. L., Miyake, S., Huang, Y. Y., Shimamura, M. & Yamamura, T. Invariant Vα19i T cells regulate autoimmune inflammation. Nat. Immunol. 7, 987–994 (2006).

    CAS  PubMed  Google Scholar 

  70. Bosma, A., Abdel-Gadir, A., Isenberg, D. A., Jury, E. C. & Mauri, C. Lipid-antigen presentation by CD1d+ B cells is essential for the maintenance of invariant natural killer T cells. Immunity 36, 477–490 (2012).

    CAS  PubMed  Google Scholar 

  71. Gregori, S. et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood 116, 935–944 (2010).

    CAS  PubMed  Google Scholar 

  72. Yan, Y. et al. Postoperative administration of donor B cells induces rat kidney allograft acceptance: lack of association with TH2 cytokine expression in long-term accepted grafts. Transplantation 73, 1123–1130 (2002).

    CAS  PubMed  Google Scholar 

  73. Liu, C. et al. B lymphocyte-directed immunotherapy promotes long-term islet allograft survival in nonhuman primates. Nat. Med. 13, 1295–1298 (2007).

    CAS  PubMed  Google Scholar 

  74. Le Texier, L. et al. Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile. Am. J. Transplant. 11, 429–438 (2010).

    PubMed  Google Scholar 

  75. Fehr, T. et al. Alloreactive CD8 T cell tolerance requires recipient B cells, dendritic cells, and MHC class II. J. Immunol. 181, 165–173 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fehr, T. et al. Rapid deletional peripheral CD8 T cell tolerance induced by allogeneic bone marrow: role of donor class II MHC and B cells. J. Immunol. 181, 4371–4380 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, X. et al. Inhibition of ICAM-1/LFA-1 interactions prevents B-cell-dependent anti-CD45RB-induced transplantation tolerance. Transplantation 85, 675–680 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Xiao, S. et al. Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function. J. Exp. Med. 204, 1691–1702 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. DiLillo, D. J. et al. B lymphocytes differentially influence acute and chronic allograft rejection in mice. J. Immunol. 186, 2643–2654 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Newell, K. A. et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Invest. 120, 1836–1847 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sagoo, P. et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest. 120, 1848–1861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pallier, A. et al. Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int. 78, 503–513 (2010).

    CAS  PubMed  Google Scholar 

  83. Silva, H. M. et al. Preserving the B-cell compartment favors operational tolerance in human renal transplantation. Mol. Med. 18, 733–743 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chesneau, M. et al. Unique B cell differentiation profile in tolerant kidney transplant patients. Am. J. Transplant. 14, 144–155 (2014).

    CAS  PubMed  Google Scholar 

  85. Haneda, M. et al. Comparative analysis of drug action on B-cell proliferation and differentiation for mycophenolic acid, everolimus, and prednisolone. Transplantation 97, 405–412 (2014).

    CAS  PubMed  Google Scholar 

  86. Brouard, S. et al. The natural history of clinical operational tolerance after kidney transplantation through twenty-seven cases. Am. J. Transplant. 12, 3296–3307 (2012).

    CAS  PubMed  Google Scholar 

  87. Clatworthy, M. R. et al. B-cell-depleting induction therapy and acute cellular rejection. N. Engl. J. Med. 360, 2683–2685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Deng, J. & Galipeau, J. Reprogramming of B cells into regulatory cells with engineered fusokines. Infect. Disord. Drug Targets 12, 248–254 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Van de Velde, H., von Hoegen, I., Luo, W., Parnes, J. R. & Thielemans, K. The B-cell surface protein CD72/Lyb-2 is the ligand for CD5. Nature 351, 662–665 (1991).

    CAS  PubMed  Google Scholar 

  90. Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 274, 1906–1909 (1996).

    CAS  PubMed  Google Scholar 

  91. Depoil, D. et al. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat. Immunol. 9, 63–72 (2008).

    CAS  PubMed  Google Scholar 

  92. Henchoz-Lecoanet, S. et al. The Epstein–Barr virus-binding site on CD21 is involved in CD23 binding and interleukin-4-induced IgE and IgG4 production by human B cells. Immunology 88, 35–39 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tedder, T. F., Zhou, L. J. & Engel, P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today 15, 437–442 (1994).

    CAS  PubMed  Google Scholar 

  94. Spiegelberg, H. L. Fcε R2/CD23: its discovery and possible functions. Monogr. Allergy 29, 1–8 (1991).

    CAS  PubMed  Google Scholar 

  95. Liu, Y. et al. Heat-stable antigen is a costimulatory molecule for CD4 T cell growth. J. Exp. Med. 175, 437–445 (1992).

    CAS  PubMed  Google Scholar 

  96. Allman, D. M., Ferguson, S. E. & Cancro, M. P. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J. Immunol. 149, 2533–2540 (1992).

    CAS  PubMed  Google Scholar 

  97. Sims, G. P. et al. Identification and characterization of circulating human transitional B cells. Blood 105, 4390–4398 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work is funded by grants from the Wellcome Trust, UK Medical Research Council, British Heart Foundation and European Union through the ONE Study, Translating Research into Action for Diabetes (TRIAD) and Biomarker Driven Personal Immunosuppression (Bio-DRIM) projects, and the Immune Tolerance Network.

Author information

Authors and Affiliations

Authors

Contributions

J.S. researched the data for the article. J.S. and K.J.W. provided substantial contributions to discussions of the article content and wrote the manuscript. All authors undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Kathryn J. Wood.

Ethics declarations

Competing interests

J.S. and K.J.W. declare no competing interests. L.A.T. has a spouse employed by, and owns equity in, Novartis.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolp, J., Turka, L. & Wood, K. B cells with immune-regulating function in transplantation. Nat Rev Nephrol 10, 389–397 (2014). https://doi.org/10.1038/nrneph.2014.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing