Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease

Key Points

  • Endoplasmic reticulum (ER) proteostasis is regulated by the adaptive unfolded protein response (UPR) pathway, which determines cell fate and maintains cell structure and function

  • Stress (hypoxia, inflammation and oxidative and glycative stress) disturbs ER proteostasis; cells subjected to long-term or severe ER stress are cleared via the apoptotic UPR pathway

  • In kidney cells, including glomerular cells, tubular cells and interstitial cells, derangement of ER proteostasis leads to development and progression of kidney diseases

  • Optimizing ER proteostasis using pharmacological approaches, such as small-molecule UPR modulators, might prove beneficial to prevent and treat kidney diseases

Abstract

Cells use an exquisite network of mechanisms to maintain the integrity and functionality of their protein components. In the endoplasmic reticulum (ER), these networks of protein homeostasis—referred to as proteostasis—regulate protein synthesis, folding and degradation via the unfolded protein response (UPR) pathway. The UPR pathway has two components: the adaptive UPR pathway, which predominantly maintains the ER function or ER proteostasis, and the apoptotic UPR pathway, which eliminates dysfunctional cells that have been subject to long-term or severe ER stress. Dysregulation of the UPR pathway often occurs in glomerular or tubulointerstitial cells under a pathogenic microenvironment, such as oxidative stress, glycative stress or hypoxia. A defective UPR is highly deleterious to renal cell function and viability and is thereby implicated in the pathophysiology of various kidney diseases. Accumulating evidence provides a link between the UPR pathway and mitochondrial structure and function, indicating the important role of ER proteostasis in the maintenance of mitochondrial homeostasis. Restoration of normal proteostasis, therefore, holds promise in protecting the kidney from pathogenic stresses as well as ageing. This Review is focused on the role of the ER stress and UPR pathway in the maintenance of ER proteostasis, and highlights the involvement of the derangement of ER proteostasis and ER stress in various pathogenic stress signals in the kidney.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UPR pathway in ER proteostasis.
Figure 2: Proteostasis networks in the ER.
Figure 3: ER proteostasis in kidney disease.

Similar content being viewed by others

References

  1. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    CAS  PubMed  Google Scholar 

  2. Powers, E. T. & Balch, W. E. Diversity in the origins of proteostasis networks—a driver for protein function in evolution. Nat. Rev. Mol. Cell Biol. 14, 237–248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pellegrino, M. W., Nargund, A. M. & Haynes, C. M. Signaling the mitochondrial unfolded protein response. Biochim. Biophys. Acta 1833, 410–416 (2013).

    CAS  PubMed  Google Scholar 

  4. Cook, C., Stetler, C. & Petrucelli, L. Disruption of protein quality control in Parkinson's disease. Cold Spring Harb. Perspect. Med. 2, a009423 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Selkoe, D. J. Alzheimer's disease. Cold Spring Harb. Perspect. Biol. 3, a004457 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Inagi, R. Endoplasmic reticulum stress as a progression factor for kidney injury. Curr. Opin. Pharmacol. 10, 156–165 (2010).

    CAS  PubMed  Google Scholar 

  7. Burton, G. J., Jauniaux, E. & Charnock-Jones, D. S. The influence of the intrauterine environment on human placental development. Int. J. Dev. Biol. 54, 303–312 (2010).

    CAS  PubMed  Google Scholar 

  8. Kimata, Y., Oikawa, D., Shimizu, Y., Ishiwata-Kimata, Y. & Kohno, K. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J. Cell Biol. 167, 445–456 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 18773–18784 (2005).

    CAS  PubMed  Google Scholar 

  11. Hom, J. R., Gewandter, J. S., Michael, L., Sheu, S. S. & Yoon, Y. Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J. Cell Physiol. 212, 498–508 (2007).

    CAS  PubMed  Google Scholar 

  12. Dickhout, J. G., Carlisle, R. E. & Austin, R. C. Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ. Res. 108, 629–642 (2011).

    CAS  PubMed  Google Scholar 

  13. Scheper, W., Nijholt, D. A. & Hoozemans, J. J. The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7, 910–911 (2011).

    PubMed  PubMed Central  Google Scholar 

  14. Resenberger, U. K. et al. The heat shock response is modulated by and interferes with toxic effects of scrapie prion protein and amyloid β. J. Biol. Chem. 287, 43765–43776 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ayala, P. et al. Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol. Exp. Mol. Pathol. 92, 97–104 (2012).

    CAS  PubMed  Google Scholar 

  16. Park, C. S., Cha, H., Kwon, E. J., Sreenivasaiah, P. K. & Kim, D. H. The chemical chaperone 4-phenylbutyric acid attenuates pressure-overload cardiac hypertrophy by alleviating endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 421, 578–584 (2012).

    CAS  PubMed  Google Scholar 

  17. Liu, Y. & Ye, Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res. 21, 867–883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Engin, F. & Hotamisligil, G. S. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes. Metab. 12 (Suppl. 2), 108–115 (2010).

    CAS  PubMed  Google Scholar 

  19. Tanaka, T. & Nangaku, M. The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1α in progression of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 43–50 (2010).

    CAS  PubMed  Google Scholar 

  20. Tanaka, T., Yamaguchi, J., Higashijima, Y. & Nangaku, M. Indoxyl sulfate signals for rapid mRNA stabilization of Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) and suppresses the expression of hypoxia-inducible genes in experimental CKD and uremia. FASEB J. 27, 4059–4075 (2013).

    CAS  PubMed  Google Scholar 

  21. Gaikwad, A. B., Gupta, J. & Tikoo, K. Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression under hyperglycaemic and hyperinsulinaemic conditions. Biochem. J. 432, 333–341 (2010).

    CAS  PubMed  Google Scholar 

  22. Villeneuve, L. M. & Natarajan, R. Epigenetic mechanisms. Contrib. Nephrol. 170, 57–65 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mimura, I. et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol. Cell Biol. 32, 3018–3032 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Muratsu-Ikeda, S. et al. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS ONE 7, e41462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, F. et al. Modulation of the unfolded protein response is the core of microRNA-122-involved sensitivity to chemotherapy in hepatocellular carcinoma. Neoplasia 13, 590–600 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nallamshetty, S., Chan, S. Y. & Loscalzo, J. Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic. Biol. Med. 64, 20–30 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Queisser, M. A. et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59, 670–678 (2010).

    CAS  PubMed  Google Scholar 

  28. Kumagai, T. et al. Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am. J. Physiol. Renal Physiol. 296, F912–F921 (2009).

    CAS  PubMed  Google Scholar 

  29. Ikeda, Y. et al. Glyoxalase I retards renal senescence. Am. J. Pathol. 179, 2810–2821 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Inagi, R. Inhibitors of advanced glycation and endoplasmic reticulum stress. Methods Enzymol. 491, 361–380 (2011).

    CAS  PubMed  Google Scholar 

  31. Piperi, C., Adamopoulos, C., Dalagiorgou, G., Diamanti-Kandarakis, E. & Papavassiliou, A. G. Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J. Clin. Endocrinol. Metab. 97, 2231–2242 (2012).

    CAS  PubMed  Google Scholar 

  32. Chen, Y. et al. Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am. J. Nephrol. 28, 1014–1022 (2008).

    CAS  PubMed  Google Scholar 

  33. Choudhury, D. & Levi, M. Kidney aging—inevitable or preventable? Nat. Rev. Nephrol. 7, 706–717 (2011).

    CAS  PubMed  Google Scholar 

  34. Vlassara, H. et al. Managing chronic inflammation in the aging diabetic patient with CKD by diet or sevelamer carbonate: a modern paradigm shift. J. Gerontol. A Biol. Sci. Med. Sci. 67, 1410–1416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, J. et al. Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell. Signal. 26, 110–121 (2013).

    PubMed  Google Scholar 

  36. Tsakiri, E. N. et al. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic. Biol. Med. 65, 1155–1163 (2013).

    CAS  PubMed  Google Scholar 

  37. Nakajima, S. et al. Pleiotropic potential of dehydroxymethylepoxyquinomicin for NF-κB suppression via reactive oxygen species and unfolded protein response. J. Immunol. 190, 6559–6569 (2013).

    CAS  PubMed  Google Scholar 

  38. Hayakawa, K. et al. ER stress depresses NF-κB activation in mesangial cells through preferential induction of C/EBP-β. J. Am. Soc. Nephrol. 21, 73–81 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fougeray, S. et al. Metabolic stress promotes renal tubular inflammation by triggering the unfolded protein response. Cell Death Dis. 2, e143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hale, A. N., Ledbetter, D. J., Gawriluk, T. R. & Rucker, E. B. Autophagy: regulation and role in development. Autophagy 9, 951–972 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cybulsky, A. V. The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 84, 25–33 (2013).

    CAS  PubMed  Google Scholar 

  42. Pallet, N. et al. Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 4, 783–791 (2008).

    CAS  PubMed  Google Scholar 

  43. Kawakami, T. et al. Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrol. Dial. Transplant. 24, 2665–2672 (2009).

    CAS  PubMed  Google Scholar 

  44. Yamahara, K. et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J. Am. Soc. Nephrol. 24, 1769–1781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ishihara, M. et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Renal Physiol. 305, F495–F509 (2013).

    CAS  PubMed  Google Scholar 

  46. de Brito, O. M. & Scorrano, L. An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 29, 2715–2723 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Vannuvel, K., Renard, P., Raes, M. & Arnould, T. Functional and morphological impact of ER stress on mitochondria. J. Cell. Physiol. 228, 1802–1818 (2013).

    CAS  PubMed  Google Scholar 

  48. Iwasawa, R., Mahul-Mellier, A. L., Datler, C., Pazarentzos, E. & Grimm, S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30, 556–568 (2011).

    CAS  PubMed  Google Scholar 

  49. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    PubMed  Google Scholar 

  50. Muñoz, J. P. et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32, 2348–2361 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Jin, S. M. & Youle, R. J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125, 795–799 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lim, J. H., Lee, H. J., Ho Jung, M. & Song, J. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell Signal. 21, 169–177 (2009).

    CAS  PubMed  Google Scholar 

  53. Rieusset, J. Mitochondria and endoplasmic reticulum: mitochondria-endoplasmic reticulum interplay in type 2 diabetes pathophysiology. Int. J. Biochem. Cell Biol. 43, 1257–1262 (2011).

    CAS  PubMed  Google Scholar 

  54. Inagi, R. et al. Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 19, 915–922 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiang, C. K. & Inagi, R. Glomerular diseases: genetic causes and future therapeutics. Nat. Rev. Nephrol. 6, 539–554 (2010).

    CAS  PubMed  Google Scholar 

  56. Cybulsky, A. V. et al. Glomerular epithelial cell injury associated with mutant α-actinin-4. Am. J. Physiol. Renal Physiol. 297, F987–F995 (2009).

    CAS  PubMed  Google Scholar 

  57. He, F. et al. Regulation of CD2-associated protein influences podocyte endoplasmic reticulum stress-mediated apoptosis induced by albumin overload. Gene 484, 18–25 (2011).

    CAS  PubMed  Google Scholar 

  58. Chen, Y. M. et al. Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. J. Am. Soc. Nephrol. 24, 1223–1233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sieber, J. et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal Physiol. 299, F821–F829 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cybulsky, A. V. Membranous nephropathy. Contrib. Nephrol. 169, 107–125 (2011).

    CAS  PubMed  Google Scholar 

  62. Inagi, R. et al. Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int. 68, 2639–2650 (2005).

    CAS  PubMed  Google Scholar 

  63. Inagi, R. in An Update on Glomerulopathies–Etiology and Pathogenesis (ed. Prabhakar, S.) 247–266 (InTech, 2011).

    Google Scholar 

  64. Chen, S. et al. Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes. Cell Calcium. 50, 523–529 (2011).

    CAS  PubMed  Google Scholar 

  65. Ito, N. et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab. Invest. 91, 1584–1595 (2011).

    CAS  PubMed  Google Scholar 

  66. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Morse, E. et al. TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP 1. Am. J. Physiol. Renal Physiol. 299, F965–F972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ohse, T. et al. Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int. 70, 1447–1455 (2006).

    CAS  PubMed  Google Scholar 

  69. Lindenmeyer, M. T. et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J. Am. Soc. Nephrol. 19, 2225–2236 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. Kawakami, T. et al. Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. Am. J. Physiol. Renal Physiol. 299, F568–F576 (2010).

    CAS  PubMed  Google Scholar 

  71. Khan, M. A. et al. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. FASEB J. 27, 2946–2956 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Bando, Y. et al. ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death. FASEB J. 18, 1401–1403 (2004).

    CAS  PubMed  Google Scholar 

  73. Yu, W. et al. Berberine protects human renal proximal tubular cells from hypoxia/reoxygenation injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways. J. Transl. Med. 11, 24 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Takeda, N. et al. Altered unfolded protein response is implicated in the age-related exacerbation of proteinuria-induced proximal tubular cell damage. Am. J. Pathol. 183, 774–785 (2013).

    CAS  PubMed  Google Scholar 

  75. Ren, S. & Duffield, J. S. Pericytes in kidney fibrosis. Curr. Opin. Nephrol. Hypertens. 22, 471–480 (2013).

    CAS  PubMed  Google Scholar 

  76. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chiang, C. K. et al. Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol. Med. 17, 1295–1305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dihazi, H. et al. Secretion of ERP57 is important for extracellular matrix accumulation and progression of renal fibrosis, and is an early sign of disease onset. J. Cell Sci. 126, 3649–3663 (2013).

    CAS  PubMed  Google Scholar 

  81. Souma, T. et al. Plasticity of renal erythropoietin-producing cells governs fibrosis. J. Am. Soc. Nephrol. 24, 1599–1616 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. La Ferla, K., Reimann, C., Jelkmann, W. & Hellwig-Bürgel, T. Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA-2 and NF-κB. FASEB J. 16, 1811–1813 (2002).

    CAS  PubMed  Google Scholar 

  83. Chiang, C. K., Nangaku, M., Tanaka, T., Iwawaki, T. & Inagi, R. Endoplasmic reticulum stress signal impairs erythropoietin production: a role for ATF4. Am. J. Physiol. Cell Physiol. 304, C342–C353 (2013).

    CAS  PubMed  Google Scholar 

  84. Stetler, R. A. et al. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog. Neurobiol. 92, 184–211 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  Google Scholar 

  86. Kim, J. Y. et al. In vivo activating transcription factor 3 silencing ameliorates the AMPK compensatory effects for ER stress-mediated β cell dysfunction during the progression of type 2 diabetes. Cell. Signal. 25, 2348–2361 (2013).

    CAS  PubMed  Google Scholar 

  87. Taylor, R. C. & Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3, a004440 (2011).

    PubMed  PubMed Central  Google Scholar 

  88. Cao, S. S. & Kaufman, R. J. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin. Ther. Targets 17, 437–448 (2013).

    CAS  PubMed  Google Scholar 

  89. Liu, X. L. et al. Defective trafficking of nephrin missense mutants rescued by a chemical chaperone. J. Am. Soc. Nephrol. 15, 1731–1738 (2004).

    CAS  PubMed  Google Scholar 

  90. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Han, J. et al. ER stress induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    CAS  PubMed  Google Scholar 

  94. Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788 (2010).

    CAS  PubMed  Google Scholar 

  95. Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3, a004374 (2011).

    PubMed  PubMed Central  Google Scholar 

  96. Lindquist, S. L. & Kelly, J. W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol. 3, a004507 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    PubMed  PubMed Central  Google Scholar 

  98. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009).

    CAS  PubMed  Google Scholar 

  99. Luo, Z. F. et al. Effects of 4 phenylbutyric acid on the process and development of diabetic nephropathy induced in rats by streptozotocin: regulation of endoplasmic reticulum stress-oxidative activation. Toxicol. Appl. Pharmacol. 246, 49–57 (2010).

    CAS  PubMed  Google Scholar 

  100. Albuquerque, J. A., Lamers, M. L., Castiblanco-Valencia, M. M., Dos Santos, M. & Isaac, L. Chemical chaperones curcumin and 4 phenylbutyric acid improve secretion of mutant factor H R127H by fibroblasts from a factor H deficient patient. J. Immunol. 189, 3242–3248 (2012).

    CAS  PubMed  Google Scholar 

  101. Wang, J. Q. et al. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice. Toxicol. Appl. Pharmacol. 266, 307–316 (2013).

    CAS  PubMed  Google Scholar 

  102. Omura, T. et al. Sodium tauroursodeoxycholate prevents paraquat-induced cell death by suppressing endoplasmic reticulum stress responses in human lung epithelial A549 cells. Biochem. Biophys. Res. Commun. 432, 689–694 (2013).

    CAS  PubMed  Google Scholar 

  103. Kudo, T. et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 15, 364–375 (2008).

    CAS  PubMed  Google Scholar 

  104. Prachasilchai, W. et al. The protective effect of a newly developed molecular chaperone-inducer against mouse ischemic acute kidney injury. J. Pharmacol. Sci. 109, 311–314 (2009).

    CAS  PubMed  Google Scholar 

  105. Benjamin, E. R. et al. The pharmacological chaperone 1 deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines. J. Inherit. Metab. Dis. 32, 424–440 (2009).

    CAS  PubMed  Google Scholar 

  106. Germain, D. P. et al. Safety and pharmacodynamic effects of a pharmacological chaperone on α galactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J. Rare Dis. 7, 91 (2012).

    PubMed  PubMed Central  Google Scholar 

  107. Giugliani, R. et al. A Phase 2 study of migalastat hydrochloride in females with Fabry disease: selection of population, safety and pharmacodynamic effects. Mol. Genet. Metab. 109, 86–92 (2013).

    CAS  PubMed  Google Scholar 

  108. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).

    PubMed  Google Scholar 

  109. Fang, L. et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE 8, e60546 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pallet, N. et al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am. J. Transplant. 8, 2283–2296 (2008).

    CAS  PubMed  Google Scholar 

  111. Bouvier, N. et al. Cyclosporine triggers endoplasmic reticulum stress in endothelial cells: a role for endothelial phenotypic changes and death. Am. J. Physiol. Renal Physiol. 296, F160–F169 (2009).

    CAS  PubMed  Google Scholar 

  112. Holmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. Guanabenz. A review of its pharmacodynamic properties and therapeutic efficacy in hypertension. Drugs 26, 212–229 (1983).

    CAS  PubMed  Google Scholar 

  113. Tsaytler, P., Harding, H. P., Ron, D. & Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011).

    CAS  PubMed  Google Scholar 

  114. Boots, A. W., Haenen, G. R. & Bast, A. Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol. 585, 325–337 (2008).

    CAS  PubMed  Google Scholar 

  115. Liu, C. M., Zheng, G. H., Ming, Q. L., Sun, J. M. & Cheng, C. Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway. Free Radic. Res. 47, 192–201 (2013).

    CAS  PubMed  Google Scholar 

  116. Shoskes, D. A. Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents. Transplantation 66, 147–152 (1998).

    CAS  PubMed  Google Scholar 

  117. Meyer-Schwesinger, C. et al. A new role for the neuronal ubiquitin C terminal hydrolase L1 (UCH L1) in podocyte process formation and podocyte injury in human glomerulopathies. J. Pathol. 217, 452–464 (2009).

    CAS  PubMed  Google Scholar 

  118. Duensing, S. & Duensing, A. Bortezomib: killing two birds with one stone in gastrointestinal stromal tumors. Oncotarget 1, 6–8 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. Zangari, M., Terpos, E., Zhan, F. & Tricot, G. Impact of bortezomib on bone health in myeloma: a review of current evidence. Cancer Treat. Rev. 38, 968–980 (2012).

    CAS  PubMed  Google Scholar 

  120. Sureshkumar, K. K. et al. Proteasome inhibition with bortezomib: an effective therapy for severe antibody mediated rejection after renal transplantation. Clin. Nephrol. 77, 246–253 (2012).

    CAS  PubMed  Google Scholar 

  121. Tzvetanov, I. et al. The use of bortezomib as a rescue treatment for acute antibody-mediated rejection: report of three cases and review of literature. Transplant. Proc. 44, 2971–2975 (2012).

    CAS  PubMed  Google Scholar 

  122. Danilov, S. M. et al. Angiotensin I converting enzyme Gln1069Arg mutation impairs trafficking to the cell surface resulting in selective denaturation of the C domain. PLoS ONE 5, e10438 (2010).

    PubMed  PubMed Central  Google Scholar 

  123. Zang, Y. et al. The next generation proteasome inhibitors carfilzomib and oprozomib activate prosurvival autophagy via induction of the unfolded protein response and ATF4. Autophagy 8, 1873–1874 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, Y. et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 25, 1664–1679 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jung, T. W., Lee, K. T., Lee, M. W. & Ka, K. H. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150. Biochem. Biophys. Res. Commun. 422, 229–232 (2012).

    CAS  PubMed  Google Scholar 

  126. Wang, F. M., Chen, Y. J. & Ouyang, H. J. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem. J. 433, 245–252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research work is supported by Grants-in-Aid for Scientific Research No. 25461207 (to R.I.) and 24390213 (to M.N.) from the Japan Society for the Promotion of Science, by the Japanese Association of Dialysis Physicians (JADP Grant 2012-05 to R.I.) and by Kyowa Hakko Kirin Pharmaceutical Company in Japan (to R.I.).

Author information

Authors and Affiliations

Authors

Contributions

R.I. and Y.I. researched the data for the article and wrote the manuscript. All authors contributed to the discussion of the article's content and edited the manuscript before submission.

Corresponding author

Correspondence to Reiko Inagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inagi, R., Ishimoto, Y. & Nangaku, M. Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease. Nat Rev Nephrol 10, 369–378 (2014). https://doi.org/10.1038/nrneph.2014.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing