Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of dietary interventions on incidence and progression of CKD

Key Points

  • Dietary sodium restriction reduces proteinuria and lowers blood pressure in patients with chronic kidney disease (CKD); however, an effect on hard clinical outcomes remains to be established

  • Dietary sodium restriction to <2.3 g daily is suggested for patients with CKD

  • Diets rich in certain fruits and vegetables should be considered to ameliorate metabolic abnormalities in patients with CKD and potentially delay its progression

  • Moderate alcohol consumption (≤2 beverages or <20 g daily) has no proven beneficial or adverse effects in patients with CKD

  • Daily fluid intake to generate a daily urine output of >3 l might be considered in patients with CKD, especially those with polycystic kidney disease or recurrent kidney stones

  • Randomized controlled trials are needed to ascertain the optimum dietary recommendations for patients with CKD

Abstract

Traditional strategies for management of patients with chronic kidney disease (CKD) have not resulted in any change in the growing prevalence of CKD worldwide. A historic belief that eating healthily might ameliorate kidney disease still holds credibility in the 21st century. Dietary sodium restriction to <2.3 g daily, a diet rich in fruits and vegetables and increased water consumption corresponding to a urine output of 3–4 l daily might slow the progression of early CKD, polycystic kidney disease or recurrent kidney stones. Current evidence suggests that a reduction in dietary net acid load could be beneficial in patients with CKD, but the supremacy of any particular diet has yet to be established. More trials of dietary interventions are needed, especially in diabetic nephropathy, before evidence-based recommendations can be made. In the meantime, nephrologists should discuss healthy dietary habits with their patients and provide individualized care aimed at maximizing the potential benefits of dietary intervention, reducing the incidence of CKD and delaying its progression to end-stage renal disease. Keeping in mind the lack of data on hard outcomes, dietary recommendations should take into account barriers to adherence and be tailored to different cultures, ethnicities and geographical locations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Menon, V. et al. Long-term outcomes in nondiabetic chronic kidney disease. Kidney Int. 73, 1310–1315 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Alves, T. P. et al. Rate of ESRD exceeds mortality among African Americans with hypertensive nephrosclerosis. J. Am. Soc. Nephrol. 21, 1361–1369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Kasiske, B. L. et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary. Kidney Int. 77, 299–311 (2010).

    Article  PubMed  Google Scholar 

  4. 4

    Curhan, G. C. & Mitch, W. E. in Brenner and Rector's The Kidney 8th edn Ch. 53 (eds Taal, M. W. et al.) 1817–1847 (Elsevier, 2006).

    Google Scholar 

  5. 5

    Goraya, N. & Wesson, D. E. Dietary management of chronic kidney disease: protein restriction and beyond. Curr. Opin. Nephrol. Hypertens. 21, 635–640 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Peterson, J. C. et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann. Intern. Med. 123, 754–762 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Obarzanek, E. et al. Individual blood pressure responses to changes in salt intake: results from the DASH-Sodium trial. Hypertension 42, 459–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Sacks, F. M. et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 344, 3–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Bakris, G. L. & Weir, M. R. Salt intake and reductions in arterial pressure and proteinuria. Is there a direct link? Am. J. Hypertens. 9, 200S–206S (1996).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Heeg, J. E., de Jong, P. E., van der Hem, G. K. & de Zeeuw, D. Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril. Kidney Int. 36, 272–279 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Weir, M. R. The influence of dietary salt on the antiproteinuric effect of calcium channel blockers. Am. J. Kidney. Dis. 29, 800–805 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Wheeler, D. C. & Becker, G. J. Summary of KDIGO guideline. What do we really know about management of blood pressure in patients with chronic kidney disease? Kidney Int. 83, 377–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Taler, S. J. et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am. J. Kidney Dis. 62, 201–213 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kidney Disease Outcomes Quality Initiative (K/DOQI). K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am. J. Kidney Dis. 43, S1–S290 (2004).

  15. 15

    Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. Suppl. 2, 337–414 (2012).

  16. 16

    U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans [online], (2010).

  17. 17

    Committee on the Consequences of Sodium Reduction in Populations (Eds) Sodium Intake in Populations: Assessment of Evidence (The National Academies Press, 2013).

  18. 18

    Vegter, S. et al. Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 23, 165–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Thomas, M. C. et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34, 861–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Dunkler, D. et al. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern. Med. 173, 1682–1692 (2013).

    CAS  PubMed  Google Scholar 

  21. 21

    Ohta, Y., Tsuchihashi, T., Kiyohara, K. & Oniki, H. High salt intake promotes a decline in renal function in hypertensive patients: a 10-year observational study. Hypertens. Res. 36, 172–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Cohen, H. W., Hailpern, S. M., Fang, J. & Alderman, M. H. Sodium intake and mortality in the NHANES II follow-up study. Am. J. Med. 119, 275.e7–275.e14 (2006).

    Article  Google Scholar 

  23. 23

    O'Donnell, M. J. et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA 306, 2229–2238 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Brunner, H. R. et al. Essential hypertension: renin and aldosterone, heart attack and stroke. N. Engl. J. Med. 286, 441–449 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Sever, P. S. et al. Is plasma renin activity a biomarker for the prediction of renal and cardiovascular outcomes in treated hypertensive patients? Observations from the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Eur. Heart J. 33, 2970–2979 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288, 2981–2997 (2002).

  27. 27

    Welch, J. L., Bennett, S. J., Delp, R. L. & Agarwal, R. Benefits of and barriers to dietary sodium adherence. West. J. Nurs. Res. 28, 162–180 (2006).

    Article  PubMed  Google Scholar 

  28. 28

    Pivert, K. The IOM on salt—is too little same as the too much? ASN Kidney News [online], (2013).

    Google Scholar 

  29. 29

    Maillot, M., Monsivais, P. & Drewnowski, A. Food pattern modeling shows that the 2010 dietary guidelines for sodium and potassium cannot be met simultaneously. Nutr. Res. 33, 188–194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    de Brito-Ashurst, I. et al. The role of salt intake and salt sensitivity in the management of hypertension in South Asian people with chronic kidney disease: a randomised controlled trial. Heart 99, 1256–1260 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Yu, W., Luying, S., Haiyan, W. & Xiaomei, L. Importance and benefits of dietary sodium restriction in the management of chronic kidney disease patients: experience from a single Chinese center. Int. Urol. Nephrol. 44, 549–556 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Slagman, M. C. et al. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ 343, d4366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    McMahon, E. J. et al. A randomized trial of dietary sodium restriction in CKD. J. Am. Soc. Nephrol. 24, 2096–2103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Bellizzi, V. et al. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int. 71, 245–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Barsotti, G. et al. A low-nitrogen low-phosphorus vegan diet for patients with chronic renal failure. Nephron 74, 390–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Dunford, E. et al. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction. CMAJ 184, 1023–1028 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Alderman, M. H. Reducing dietary sodium: the case for caution. JAMA 303, 448–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Gutierrez, O. M. Sodium- and phosphorus-based food additives: persistent but surmountable hurdles in the management of nutrition in chronic kidney disease. Adv. Chronic Kidney Dis. 20, 150–156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Anderson, C. A. et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J. Am. Diet. Assoc. 110, 736–745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    McMahon, E. J., Campbell, K. L., Mudge, D. W. & Bauer, J. D. Achieving salt restriction in chronic kidney disease. Int. J. Nephrol. 2012, 720429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Jacobson, M. F., Havas, S. & McCarter, R. Changes in sodium levels in processed and restaurant foods, 2005 to 2011. JAMA Intern. Med. 173, 1285–1291 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Hostetter, T. H., Meyer, T. W., Rennke, H. G. & Brenner, B. M. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int. 30, 509–517 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Tucker, S. M., Mason, R. L. & Beauchene, R. E. Influence of diet and feed restriction on kidney function of aging male rats. J. Geront. 31, 264–270 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    D'Amico, G. & Gentile, M. G. Effect of dietary manipulation on the lipid abnormalities and urinary protein loss in nephrotic patients. Miner. Electrolyte. Metab. 18, 203–206 (1992).

    CAS  PubMed  Google Scholar 

  45. 45

    D'Amico, G. et al. Effect of vegetarian soy diet on hyperlipidaemia in nephrotic syndrome. Lancet 339, 1131–1134 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Jibani, M. M., Bloodworth, L. L., Foden, E., Griffiths, K. D. & Galpin, O. P. Predominantly vegetarian diet in patients with incipient and early clinical diabetic nephropathy: effects on albumin excretion rate and nutritional status. Diabet. Med. 8, 949–953 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Kontessis, P. A. et al. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients. Diabetes Care 18, 1233 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Tovar-Palacio, C. et al. Proinflammatory gene expression and renal lipogenesis are modulated by dietary protein content in obese Zucker fa/fa rats. Am. J. Physiol. Renal Physiol. 300, F263–F271 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Remer, T. Influence of diet on acid-base balance. Semin. Dial. 13, 221–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Lennon, E. J., Lemann, J. Jr & Litzow, J. R. The effects of diet and stool composition on the net external acid balance of normal subjects. J. Clin. Invest. 45, 1601–1607 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Frassetto, L. A., Todd, K. M., Morris, R. C. Jr & Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr. 68, 576–583 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Nath, K. A., Hostetter, M. K. & Hostetter, T. H. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J. Clin. Invest. 76, 667–675 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Wesson, D. E., Simoni, J. & Prabhakar, S. Endothelin-induced increased nitric oxide mediates augmented distal nephron acidification as a result of dietary protein. J. Am. Soc. Nephrol. 17, 406–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Khanna, A., Simoni, J., Hacker, C., Duran, M. J. & Wesson, D. E. Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein. J. Am. Soc. Nephrol. 15, 2266–2275 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Wesson, D. E. Endogenous endothelins mediate increased distal tubule acidification induced by dietary acid in rats. J. Clin. Invest. 99, 2203–2211 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Wesson, D. E. Dietary bicarbonate reduces rat distal nephron acidification evaluated in situ. Am. J. Physiol. 258, F870–F876 (1990).

    CAS  PubMed  Google Scholar 

  57. 57

    Wesson, D. E. & Simoni, J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 78, 1128–1135 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Phisitkul, S. et al. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int. 77, 617–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Mahajan, A. et al. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 78, 303–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Chang, A. et al. Lifestyle-related factors, obesity, and incident microalbuminuria: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Am. J. Kidney Dis. 62, 267–275 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Nettleton, J. A., Steffen, L. M., Palmas, W., Burke, G. L. & Jacobs, D. R. Jr. Associations between microalbuminuria and animal foods, plant foods, and dietary patterns in the Multiethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 87, 1825–1836 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Lin, J., Fung, T. T., Hu, F. B. & Curhan, G. C. Association of dietary patterns with albuminuria and kidney function decline in older white women: a subgroup analysis from the Nurses' Health Study. Am. J. Kidney Dis. 57, 245–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Scialla, J. J. et al. Estimated net endogenous acid production and serum bicarbonate in African Americans with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 1526–1532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Diaz-Lopez, A. et al. Effects of Mediterranean diets on kidney function: a report from the PREDIMED trial. Am. J. Kidney Dis. 60, 380–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Jain, N. & Reilly, R. F. Risk factors: filling in the gap. Nat. Rev. Nephrol. 8, 562–563 (2012).

    Article  PubMed  Google Scholar 

  66. 66

    de Brito-Ashurst, I., Varagunam, M., Raftery, M. J. & Yaqoob, M. M. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 20, 2075–2084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Goraya, N., Simoni, J., Jo, C. & Wesson, D. E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 81, 86–93 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Goraya, N., Simoni, J., Jo, C. H. & Wesson, D. E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 8, 371–381 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Pearson, T. A. Alcohol and heart disease. Circulation 94, 3023–3025 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Krauss, R. M. et al. Dietary guidelines for healthy American adults. A statement for health professionals from the Nutrition Committee, American Heart Association. Circulation 94, 1795–1800 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Perneger, T. V., Whelton, P. K., Puddey, I. B. & Klag, M. J. Risk of end-stage renal disease associated with alcohol consumption. Am. J. Epidemiol. 150, 1275–1281 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Funakoshi, Y. et al. Association between frequency of drinking alcohol and chronic kidney disease in men. Environ. Health Prev. Med. 17, 199–204 (2012).

    Article  PubMed  Google Scholar 

  73. 73

    Hsu, Y. H., Pai, H. C., Chang, Y. M., Liu, W. H. & Hsu, C. C. Alcohol consumption is inversely associated with stage 3 chronic kidney disease in middle-aged Taiwanese men. BMC Nephrol. 14, 254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Shankar, A., Klein, R. & Klein, B. E. The association among smoking, heavy drinking, and chronic kidney disease. Am. J. Epidemiol. 164, 263–271 (2006).

    Article  PubMed  Google Scholar 

  75. 75

    Knight, E. L., Stampfer, M. J., Rimm, E. B., Hankinson, S. E. & Curhan, G. C. Moderate alcohol intake and renal function decline in women: a prospective study. Nephrol. Dial. Transplant. 18, 1549–1554 (2003).

    Article  PubMed  Google Scholar 

  76. 76

    White, S. L. et al. Alcohol consumption and 5-year onset of chronic kidney disease: the AusDiab study. Nephrol. Dial. Transplant. 24, 2464–2472 (2009).

    Article  PubMed  Google Scholar 

  77. 77

    Yamagata, K. et al. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int. 71, 159–166 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Wakasugi, M., Kazama, J. J., Yamamoto, S., Kawamura, K. & Narita, I. A combination of healthy lifestyle factors is associated with a decreased incidence of chronic kidney disease: a population-based cohort study. Hypertens. Res. 36, 328–333 (2013).

    Article  PubMed  Google Scholar 

  79. 79

    Schaeffner, E. S. et al. Alcohol consumption and the risk of renal dysfunction in apparently healthy men. Arch. Intern. Med. 165, 1048–1053 (2005).

    Article  PubMed  Google Scholar 

  80. 80

    Reynolds, K. et al. Alcohol consumption and the risk of end-stage renal disease among Chinese men. Kidney Int. 73, 870–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Nishank, J. & Susan Hedayati, S. Rise or fall of glomerular filtration rate: does it matter? Kidney Int. 83, 550–553 (2013).

    Article  PubMed  Google Scholar 

  82. 82

    Chung, F. M. et al. Effect of alcohol consumption on estimated glomerular filtration rate and creatinine clearance rate. Nephrol. Dial. Transplant. 20, 1610–1616 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Amore, A. et al. Experimental IgA nephropathy secondary to hepatocellular injury induced by dietary deficiencies and heavy alcohol intake. Lab. Invest. 70, 68–77 (1994).

    CAS  PubMed  Google Scholar 

  84. 84

    Bouby, N., Bachmann, S., Bichet, D. & Bankir, L. Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat. Am. J. Physiol. 258, F973–F979 (1990).

    CAS  PubMed  Google Scholar 

  85. 85

    Sugiura, T. et al. High water intake ameliorates tubulointerstitial injury in rats with subtotal nephrectomy: possible role of TGF-β. Kidney Int. 55, 1800–1810 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Anastasio, P. et al. Level of hydration and renal function in healthy humans. Kidney Int. 60, 748–756 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Hadj-Aissa, A. et al. Influence of the level of hydration on the renal response to a protein meal. Kidney Int. 42, 1207–1216 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Nagao, S. et al. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J. Am. Soc. Nephrol. 17, 2220–2227 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Borghi, L. et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 155, 839–843 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Clark, W. F. et al. Urine volume and change in estimated GFR in a community-based cohort study. Clin. J. Am. Soc. Nephrol. 6, 2634–2641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Strippoli, G. F. et al. Fluid and nutrient intake and risk of chronic kidney disease. Nephrology (Carlton) 16, 326–334 (2011).

    Article  Google Scholar 

  92. 92

    Hebert, L. A., Greene, T., Levey, A., Falkenhain, M. E. & Klahr, S. High urine volume and low urine osmolality are risk factors for faster progression of renal disease. Am. J. Kidney Dis. 41, 962–971 (2003).

    Article  PubMed  Google Scholar 

  93. 93

    Daudon, M., Hennequin, C., Boujelben, G., Lacour, B. & Jungers, P. Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney Int. 67, 1934–1943 (2005).

    Article  PubMed  Google Scholar 

  94. 94

    Embon, O. M., Rose, G. A. & Rosenbaum, T. Chronic dehydration stone disease. Br. J. Urol. 66, 357–362 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Hosking, D. H., Erickson, S. B., Van den Berg, C. J., Wilson, D. M. & Smith, L. H. The stone clinic effect in patients with idiopathic calcium urolithiasis. J. Urol. 130, 1115–1118 (1983).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Strauss, A. L., Coe, F. L., Deutsch, L. & Parks, J. H. Factors that predict relapse of calcium nephrolithiasis during treatment: a prospective study. Am. J. Med. 72, 17–24 (1982).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Sarica, K., Inal, Y., Erturhan, S. & Yagci, F. The effect of calcium channel blockers on stone regrowth and recurrence after shock wave lithotripsy. Urol. Res. 34, 184–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Curhan, G. C., Willett, W. C., Knight, E. L. & Stampfer, M. J. Dietary factors and the risk of incident kidney stones in younger women: Nurses' Health Study II. Arch. Intern. Med. 164, 885–891 (2004).

    Article  PubMed  Google Scholar 

  99. 99

    Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. Family history and risk of kidney stones. J. Am. Soc. Nephrol. 8, 1568–1573 (1997).

    CAS  PubMed  Google Scholar 

  100. 100

    Curhan, G. C., Willett, W. C., Speizer, F. E., Spiegelman, D. & Stampfer, M. J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 126, 497–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J. Am. Soc. Nephrol. 15, 3225–3232 (2004).

    Article  PubMed  Google Scholar 

  102. 102

    Rule, A. D. et al. Kidney stones and the risk for chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 804–811 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Magpantay, L., Ziai, F., Oberbauer, R. & Haas, M. The effect of fluid intake on chronic kidney transplant failure: a pilot study. J. Renal Nutr. 21, 499–505 (2011).

    Article  Google Scholar 

  104. 104

    Wang, C. J., Grantham, J. J. & Wetmore, J. B. The medicinal use of water in renal disease. Kidney Int. 84, 45–53 (2013).

    Article  PubMed  Google Scholar 

  105. 105

    Passfall, J., Pai, J., Spies, K. P., Haller, H. & Luft, F. C. Effect of water and bicarbonate loading in patients with chronic renal failure. Clin. Nephrol. 47, 92–98 (1997).

    CAS  PubMed  Google Scholar 

  106. 106

    Reif, G. A. et al. Tolvaptan inhibits ERK-dependent cell proliferation, Cl secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am. J. Physiol. Renal Physiol. 301, F1005–F1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Higashihara, E. et al. Tolvaptan in autosomal dominant polycystic kidney disease: three years' experience. Clin. J. Am. Soc. Nephrol. 6, 2499–2507 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Wang, C. J., Creed, C., Winklhofer, F. T. & Grantham, J. J. Water prescription in autosomal dominant polycystic kidney disease: a pilot study. Clin. J. Am. Soc. Nephrol. 6, 192–197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Barash, I., Ponda, M. P., Goldfarb, D. S. & Skolnik, E. Y. A pilot clinical study to evaluate changes in urine osmolality and urine cAMP in response to acute and chronic water loading in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 693–697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Campbell, M. et al. Framework for design and evaluation of complex interventions to improve health. BMJ 321, 694–696 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Bihan, H. et al. Sociodemographic factors and attitudes toward food affordability and health are associated with fruit and vegetable consumption in a low-income French population. J. Nutr. 140, 823–830 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Weinstein, E., Galindo, R. J., Fried, M., Rucker, L. & Davis, N. J. Impact of a focused nutrition educational intervention coupled with improved access to fresh produce on purchasing behavior and consumption of fruits and vegetables in overweight patients with diabetes mellitus. Diabetes Educ. 40, 100–106 (2014).

    Article  PubMed  Google Scholar 

  114. 114

    Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Dansinger, M. L., Gleason, J. A., Griffith, J. L., Selker, H. P. & Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 293, 43–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Kothe, E. J. & Mullan, B. A. Acceptability of a theory of planned behaviour e-mail-based nutrition intervention. Health Promot. Int. 29, 81–90 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. 117

    Ruffin, M. T. 4th et al. Effect of preventive messages tailored to family history on health behaviors: the Family Healthware Impact Trial. Ann. Fam. Med. 9, 3–11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Edwards, S. J., Braunholtz, D. A., Lilford, R. J. & Stevens, A. J. Ethical issues in the design and conduct of cluster randomised controlled trials. BMJ 318, 1407–1409 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to researching the data for the article, discussion of its content, writing the article and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Robert F. Reilly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Reilly, R. Effects of dietary interventions on incidence and progression of CKD. Nat Rev Nephrol 10, 712–724 (2014). https://doi.org/10.1038/nrneph.2014.192

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing