Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease

Key Points

  • During progression of chronic kidney disease, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix resulting in kidney fibrosis

  • Transforming growth factor β (TGF-β) is the main driving force in fibrotic development, but connective tissue growth factor (CTGF), epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) also induce fibrosis

  • CTGF, EGF and PDGF and their receptors constitute alternative therapeutic targets to TGF-β, especially if concerns regarding the risks associated with blocking the beneficial actions of TGF-β are valid

  • Considering the substantial interaction between growth factors, it seems that targeting multiple growth factors might represent the best strategy for treatment of kidney fibrosis

Abstract

Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin–angiotensin–aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions between CTGF, EGF, PDGF and the profibrotic TGF-β pathway.

Similar content being viewed by others

References

  1. Couser, W. G., Remuzzi, G., Mendis, S. & Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 80, 1258–1270 (2011).

    PubMed  Google Scholar 

  2. Schieppati, A. & Remuzzi, G. Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney Int. Suppl. 98, S7–S10 (2005).

    Google Scholar 

  3. Boor, P., Ostendorf, T. & Floege, J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 6, 643–656 (2010).

    PubMed  Google Scholar 

  4. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rüster, C. & Wolf, G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J. Am. Soc. Nephrol. 22, 1189–1199 (2011).

    PubMed  Google Scholar 

  6. Böttinger, E. P. & Bitzer, M. TGF-β signaling in renal disease. J. Am. Soc. Nephrol. 13, 2600–2610 (2002).

    PubMed  Google Scholar 

  7. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Perbal, B. CCN proteins: multifunctional signalling regulators. Lancet 363, 62–64 (2004).

    CAS  PubMed  Google Scholar 

  9. Falke, L. L., Goldschmeding, R. & Nguyen, T. Q. A perspective on anti-CCN2 therapy for chronic kidney disease. Nephrol. Dial. Transplant. 29 (Suppl. 1), i30–i37 (2014).

    CAS  PubMed  Google Scholar 

  10. Grotendorst, G. R., Okochi, H. & Hayashi, N. A novel transforming growth factor β response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ. 7, 469–480 (1996).

    CAS  PubMed  Google Scholar 

  11. Ito, Y. et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int. 53, 853–861 (1998).

    CAS  PubMed  Google Scholar 

  12. Sánchez-López, E. et al. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-κB. J. Am. Soc. Nephrol. 20, 1513–1526 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Liu, S. C., Hsu, C. J., Fong, Y. C., Chuang, S. M. & Tang, C. H. CTGF induces monocyte chemoattractant protein-1 expression to enhance monocyte migration in human synovial fibroblasts. Biochim. Biophys. Acta 1833, 1114–1124 (2013).

    CAS  PubMed  Google Scholar 

  14. Wang, Q. et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair 4, 4 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. Yokoi, H. et al. Role of connective tissue growth factor in profibrotic action of transforming growth factor-β: a potential target for preventing renal fibrosis. Am. J. Kidney Dis. 38, S134–S138 (2001).

    CAS  PubMed  Google Scholar 

  16. Abreu, J. G., Ketpura, N. I., Reversade, B. & De Robertis, E. M. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat. Cell Biol. 4, 599–604 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wahab, N. A., Weston, B. S. & Mason, R. M. Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J. Am. Soc. Nephrol. 16, 340–351 (2005).

    CAS  PubMed  Google Scholar 

  18. Rayego-Mateos, S. et al. Connective tissue growth factor is a new ligand of epidermal growth factor receptor. J. Mol. Cell Biol. 5, 323–335 (2013).

    CAS  PubMed  Google Scholar 

  19. Cheng, X. et al. Both ERK/MAPK and TGF-β/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J. Diabetes Res. 2013, 463740 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Mason, R. M. Fell-Muir lecture: Connective tissue growth factor (CCN2)—a pernicious and pleiotropic player in the development of kidney fibrosis. Int. J. Exp. Pathol. 94, 1–16 (2013).

    CAS  PubMed  Google Scholar 

  21. Rooney, B. et al. CTGF/CCN2 activates canonical Wnt signalling in mesangial cells through LRP6: implications for the pathogenesis of diabetic nephropathy. FEBS Lett. 585, 531–538 (2011).

    CAS  PubMed  Google Scholar 

  22. Lau, L. F. & Lam, S. C. The CCN family of angiogenic regulators: the integrin connection. Exp. Cell Res. 248, 44–57 (1999).

    CAS  PubMed  Google Scholar 

  23. Nguyen, T. Q. et al. CTGF inhibits BMP-7 signaling in diabetic nephropathy. J. Am. Soc. Nephrol. 19, 2098–2107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Boon, M. R. et al. Bone morphogenetic protein 7: a broad-spectrum growth factor with multiple target therapeutic potency. Cytokine Growth Factor Rev. 22, 221–229 (2011).

    CAS  PubMed  Google Scholar 

  25. Cheng, O. et al. Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis. Am. J. Transplant. 6, 2292–2306 (2006).

    CAS  PubMed  Google Scholar 

  26. Kanemoto, K. et al. Connective tissue growth factor participates in scar formation of crescentic glomerulonephritis. Lab. Invest. 83, 1615–1625 (2003).

    CAS  PubMed  Google Scholar 

  27. Ito, Y. et al. Involvement of connective tissue growth factor in human and experimental hypertensive nephrosclerosis. Nephron Exp. Nephrol. 117, e9–e20 (2011).

    CAS  PubMed  Google Scholar 

  28. Nguyen, T. Q. et al. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care 31, 1177–1182 (2008).

    PubMed  Google Scholar 

  29. Gerritsen, K. G. et al. Renal proximal tubular dysfunction is a major determinant of urinary connective tissue growth factor excretion. Am. J. Physiol. Renal Physiol. 298, F1457–F1464 (2010).

    CAS  PubMed  Google Scholar 

  30. Gerritsen, K. G. et al. Effect of GFR on plasma N-terminal connective tissue growth factor (CTGF) concentrations. Am. J. Kidney Dis. 59, 619–627 (2012).

    CAS  PubMed  Google Scholar 

  31. Nguyen, T. Q. et al. Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy. Diabetes Care 29, 83–88 (2006).

    CAS  PubMed  Google Scholar 

  32. Riser, B. L. et al. Urinary CCN2 (CTGF) as a possible predictor of diabetic nephropathy: preliminary report. Kidney Int. 64, 451–458 (2003).

    CAS  PubMed  Google Scholar 

  33. Tam, F. W. et al. Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy. Cytokine 47, 37–42 (2009).

    CAS  PubMed  Google Scholar 

  34. Metalidis, C. et al. Urinary connective tissue growth factor is associated with human renal allograft fibrogenesis. Transplantation 96, 494–500 (2013).

    CAS  PubMed  Google Scholar 

  35. Dendooven, A., Gerritsen, K. G., Nguyen, T. Q., Kok, R. J. & Goldschmeding, R. Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis. Biomarkers 16, 289–301 (2011).

    CAS  PubMed  Google Scholar 

  36. Wang, B. et al. Genetic variant in the promoter of connective tissue growth factor gene confers susceptibility to nephropathy in type 1 diabetes. J. Med. Genet. 47, 391–397 (2010).

    CAS  PubMed  Google Scholar 

  37. Fonseca, C. et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. N. Engl. J. Med. 357, 1210–1220 (2007).

    CAS  PubMed  Google Scholar 

  38. Dendooven, A. et al. The CTGF-945GC polymorphism is not associated with plasma CTGF and does not predict nephropathy or outcome in type 1 diabetes. J. Negat. Results Biomed. 10, 4 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Patel, S. K. et al. The CTGF gene-945 G/C polymorphism is not associated with cardiac or kidney complications in subjects with type 2 diabetes. Cardiovasc. Diabetol. 11, 42 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ivkovic, S. et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130, 2779–2791 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Baguma-Nibasheka, M. & Kablar, B. Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev. Dyn. 237, 485–493 (2008).

    CAS  PubMed  Google Scholar 

  42. Yokoi, H. et al. Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 15, 1430–1440 (2004).

    CAS  PubMed  Google Scholar 

  43. Luo, G. H. et al. Inhibition of connective tissue growth factor by small interfering RNA prevents renal fibrosis in rats undergoing chronic allograft nephropathy. Transplant. Proc. 40, 2365–2369 (2008).

    CAS  PubMed  Google Scholar 

  44. Guha, M., Xu, Z. G., Tung, D., Lanting, L. & Natarajan, R. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J. 21, 3355–3368 (2007).

    CAS  PubMed  Google Scholar 

  45. Falke, L. L. et al. Hemizygous deletion of CTGF/CCN2 does not suffice to prevent fibrosis of the severely injured kidney. Matrix Biol. 31, 421–431 (2012).

    CAS  PubMed  Google Scholar 

  46. Yokoi, H. et al. Overexpression of connective tissue growth factor in podocytes worsens diabetic nephropathy in mice. Kidney Int. 73, 446–455 (2008).

    CAS  PubMed  Google Scholar 

  47. Fragiadaki, M. et al. Interstitial fibrosis is associated with increased COL1A2 transcription in AA-injured renal tubular epithelial cells in vivo. Matrix Biol. 30, 396–403 (2011).

    CAS  PubMed  Google Scholar 

  48. Adler, S. G. et al. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin. J. Am. Soc. Nephrol. 5, 1420–1428 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Riser, B. L. et al. CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease. Am. J. Pathol. 174, 1725–1734 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. van Roeyen, C. R. et al. A novel, dual role of CCN3 in experimental glomerulonephritis: pro-angiogenic and antimesangioproliferative effects. Am. J. Pathol. 180, 1979–1990 (2012).

    CAS  PubMed  Google Scholar 

  51. Morales, M. G. et al. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum. Mol. Genet. 22, 4938–4951 (2013).

    CAS  PubMed  Google Scholar 

  52. Wang, X. et al. A novel single-chain-Fv antibody against connective tissue growth factor attenuates bleomycin-induced pulmonary fibrosis in mice. Respirology 16, 500–507 (2011).

    PubMed  Google Scholar 

  53. Lipson, K. E., Wong, C., Teng, Y. & Spong, S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5 (Suppl. 1), S24 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Aikawa, T., Gunn, J., Spong, S. M., Klaus, S. J. & Korc, M. Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol. Cancer Ther. 5, 1108–1116 (2006).

    CAS  PubMed  Google Scholar 

  55. Finger, E. C. et al. CTGF is a therapeutic target for metastatic melanoma. Oncogene 33, 1093–1100 (2014).

    CAS  PubMed  Google Scholar 

  56. Neesse, A. et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc. Natl Acad. Sci. USA 110, 12325–12330 (2013).

    CAS  PubMed  Google Scholar 

  57. Yoon, P. O. et al. The opposing effects of CCN2 and CCN5 on the development of cardiac hypertrophy and fibrosis. J. Mol. Cell. Cardiol. 49, 294–303 (2010).

    CAS  PubMed  Google Scholar 

  58. Panek, A. N. et al. Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PLoS ONE 4, e6743 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. Ahmed, M. S. et al. Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 300, H1291–H1302 (2011).

    CAS  PubMed  Google Scholar 

  60. Gravning, J. et al. Myocardial connective tissue growth factor (CCN2/CTGF) attenuates left ventricular remodeling after myocardial infarction. PLoS ONE 7, e52120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Leeuwis, J. W. et al. Connective tissue growth factor is associated with a stable atherosclerotic plaque phenotype and is involved in plaque stabilization after stroke. Stroke 41, 2979–2981 (2010).

    CAS  PubMed  Google Scholar 

  62. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    CAS  PubMed  Google Scholar 

  63. Holbro, T. & Hynes, N. E. ErbB receptors: directing key signaling networks throughout life. Annu. Rev. Pharmacol. Toxicol. 44, 195–217 (2004).

    CAS  PubMed  Google Scholar 

  64. Miettinen, P. J. et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376, 337–341 (1995).

    CAS  PubMed  Google Scholar 

  65. Sibilia, M. & Wagner, E. F. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269, 234–238 (1995).

    CAS  PubMed  Google Scholar 

  66. Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234 (1995).

    CAS  PubMed  Google Scholar 

  67. Chen, J., Chen, J. K. & Harris, R. C. Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney Int. 82, 45–52 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kennedy, W. A. 2nd et al. Epidermal growth factor suppresses renal tubular apoptosis following ureteral obstruction. Urology 49, 973–980 (1997).

    PubMed  Google Scholar 

  69. Huovila, A. P., Turner, A. J., Pelto-Huikko, M., Kärkkäinen, I. & Ortiz, R. M. Shedding light on ADAM metalloproteinases. Trends Biochem. Sci. 30, 413–422 (2005).

    CAS  PubMed  Google Scholar 

  70. Bollée, G. et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat. Med. 17, 1242–1250 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. Laouari, D. et al. TGF-α mediates genetic susceptibility to chronic kidney disease. J. Am. Soc. Nephrol. 22, 327–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lautrette, A. et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat. Med. 11, 867–874 (2005).

    CAS  PubMed  Google Scholar 

  73. Shah, B. H. & Catt, K. J. TACE-dependent EGF receptor activation in angiotensin-II-induced kidney disease. Trends Pharmacol. Sci. 27, 235–237 (2006).

    CAS  PubMed  Google Scholar 

  74. Melenhorst, W. B. et al. Epidermal growth factor receptor signaling in the kidney: key roles in physiology and disease. Hypertension 52, 987–993 (2008).

    CAS  PubMed  Google Scholar 

  75. Yoshioka, K. et al. Identification and localization of epidermal growth factor and its receptor in the human glomerulus. Lab. Invest. 63, 189–196 (1990).

    CAS  PubMed  Google Scholar 

  76. Tang, J., Liu, N. & Zhuang, S. Role of epidermal growth factor receptor in acute and chronic kidney injury. Kidney Int. 83, 804–810 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jørgensen, P. E. et al. Renal uptake and excretion of epidermal growth factor from plasma in the rat. Regul. Pept. 28, 273–281 (1990).

    PubMed  Google Scholar 

  78. Kwon, O. et al. Simultaneous monitoring of multiple urinary cytokines may predict renal and patient outcome in ischemic AKI. Ren. Fail. 32, 699–708 (2010).

    CAS  PubMed  Google Scholar 

  79. Ranieri, E., Gesualdo, L., Petrarulo, F. & Schena, F. P. Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int. 50, 1990–2001 (1996).

    CAS  PubMed  Google Scholar 

  80. Stangou, M. et al. Urinary levels of epidermal growth factor, interleukin-6 and monocyte chemoattractant protein-1 may act as predictor markers of renal function outcome in immunoglobulin A nephropathy. Nephrology (Carlton) 14, 613–620 (2009).

    CAS  Google Scholar 

  81. Grandaliano, G. et al. MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy. Kidney Int. 58, 182–192 (2000).

    CAS  PubMed  Google Scholar 

  82. Tsau, Y. & Chen, C. Urinary epidermal growth factor excretion in children with chronic renal failure. Am. J. Nephrol. 19, 400–404 (1999).

    CAS  PubMed  Google Scholar 

  83. Nakopoulou, L. et al. Immunohistochemical study of epidermal growth factor receptor (EGFR) in various types of renal injury. Nephrol. Dial. Transplant. 9, 764–769 (1994).

    CAS  PubMed  Google Scholar 

  84. Sis, B. et al. Epidermal growth factor receptor expression in human renal allograft biopsies: an immunohistochemical study. Transpl. Immunol. 13, 229–232 (2004).

    CAS  PubMed  Google Scholar 

  85. Gilbert, R. E. et al. Increased epidermal growth factor in experimental diabetes related kidney growth in rats. Diabetologia 40, 778–785 (1997).

    CAS  PubMed  Google Scholar 

  86. Guh, J. Y., Lai, Y. H., Shin, S. J., Chuang, L. Y. & Tsai, J. H. Epidermal growth factor in renal hypertrophy in streptozotocin-diabetic rats. Nephron 59, 641–647 (1991).

    CAS  PubMed  Google Scholar 

  87. Torres, V. E. et al. EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han:SPRD rats. Kidney Int. 64, 1573–1579 (2003).

    CAS  PubMed  Google Scholar 

  88. Benter, I. F., Canatan, H., Benboubetra, M., Yousif, M. H. & Akhtar, S. Global upregulation of gene expression associated with renal dysfunction in DOCA-salt-induced hypertensive rats occurs via signaling cascades involving epidermal growth factor receptor: a microarray analysis. Vascul. Pharmacol. 51, 101–109 (2009).

    CAS  PubMed  Google Scholar 

  89. Advani, A. et al. Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy. Nephrology (Carlton) 16, 573–581 (2011).

    Google Scholar 

  90. Paizis, K. et al. Heparin-binding epidermal growth factor-like growth factor is expressed in the adhesive lesions of experimental focal glomerular sclerosis. Kidney Int. 55, 2310–2321 (1999).

    CAS  PubMed  Google Scholar 

  91. Mishra, R., Leahy, P. & Simonson, M. S. Gene expression profiling reveals role for EGF-family ligands in mesangial cell proliferation. Am. J. Physiol. Renal Physiol. 283, F1151–F1159 (2002).

    PubMed  Google Scholar 

  92. Nemo, R., Murcia, N. & Dell, K. M. Transforming growth factor α (TGF-α) and other targets of tumor necrosis factor-α converting enzyme (TACE) in murine polycystic kidney disease. Pediatr. Res. 57, 732–737 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Waheed, S. et al. Transforming growth factor α (TGFα) is increased during hyperoxia and fibrosis. Exp. Lung Res. 28, 361–372 (2002).

    CAS  PubMed  Google Scholar 

  94. Terzi, F. et al. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J. Clin. Invest. 106, 225–234 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, J. et al. EGFR signaling promotes TGFβ-dependent renal fibrosis. J. Am. Soc. Nephrol. 23, 215–224 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Luetteke, N. C. et al. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev. 8, 399–413 (1994).

    CAS  PubMed  Google Scholar 

  97. Richards, W. G. et al. Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J. Clin. Invest. 101, 935–939 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, N. et al. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J. Am. Soc. Nephrol. 23, 854–867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tang, J. et al. Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. Am. J. Pathol. 183, 160–172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Roengvoraphoj, M., Tsongalis, G. J., Dragnev, K. H. & Rigas, J. R. Epidermal growth factor receptor tyrosine kinase inhibitors as initial therapy for non-small cell lung cancer: focus on epidermal growth factor receptor mutation testing and mutation-positive patients. Cancer Treat. Rev. 39, 839–850 (2013).

    CAS  PubMed  Google Scholar 

  101. Hoekstra, R. et al. Phase I and pharmacologic study of PKI166, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. Clin. Cancer Res. 11, 6908–6915 (2005).

    CAS  PubMed  Google Scholar 

  102. François, H. et al. Prevention of renal vascular and glomerular fibrosis by epidermal growth factor receptor inhibition. FASEB J. 18, 926–928 (2004).

    PubMed  Google Scholar 

  103. Wassef, L., Kelly, D. J. & Gilbert, R. E. Epidermal growth factor receptor inhibition attenuates early kidney enlargement in experimental diabetes. Kidney Int. 66, 1805–1814 (2004).

    CAS  PubMed  Google Scholar 

  104. Bou Matar, R. N., Klein, J. D. & Sands, J. M. Erlotinib preserves renal function and prevents salt retention in doxorubicin treated nephrotic rats. PLoS ONE 8, e54738 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. He, S., Liu, N., Bayliss, G. & Zhuang, S. EGFR activity is required for renal tubular cell dedifferentiation and proliferation in a murine model of folic acid-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 304, F356–F366 (2013).

    CAS  PubMed  Google Scholar 

  106. Wang, Z., Chen, J. K., Wang, S. W., Moeckel, G. & Harris, R. C. Importance of functional EGF receptors in recovery from acute nephrotoxic injury. J. Am. Soc. Nephrol. 14, 3147–3154 (2003).

    CAS  PubMed  Google Scholar 

  107. Mulder, G. M. et al. Heparin binding epidermal growth factor in renal ischaemia/reperfusion injury. J. Pathol. 221, 183–192 (2010).

    CAS  PubMed  Google Scholar 

  108. Samarakoon, R. et al. Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species. Cell. Signal. 25, 2198–2209 (2013).

    CAS  PubMed  Google Scholar 

  109. Masutani, K. et al. Tubulointerstitial nephritis and IgA nephropathy in a patient with advanced lung cancer treated with long-term gefitinib. Clin. Exp. Nephrol. 12, 398–402 (2008).

    CAS  PubMed  Google Scholar 

  110. Banappagari, S., Corti, M., Pincus, S. & Satyanarayanajois, S. Inhibition of protein-protein interaction of HER2-EGFR and HER2-HER3 by a rationally designed peptidomimetic. J. Biomol. Struct. Dyn. 30, 594–606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Vlacich, G. & Coffey, R. J. Resistance to EGFR-targeted therapy: a family affair. Cancer Cell 20, 423–425 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ross, R., Glomset, J., Kariya, B. & Harker, L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc. Natl Acad. Sci. USA 71, 1207–1210 (1974).

    CAS  PubMed  Google Scholar 

  113. Fredriksson, L., Li, H. & Eriksson, U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev. 15, 197–204 (2004).

    CAS  PubMed  Google Scholar 

  114. Alpers, C. E., Seifert, R. A., Hudkins, K. L., Johnson, R. J. & Bowen-Pope, D. F. Developmental patterns of PDGF B-chain, PDGF-receptor, and α-actin expression in human glomerulogenesis. Kidney Int. 42, 390–399 (1992).

    CAS  PubMed  Google Scholar 

  115. Boor, P., Ostendorf, T. & Floege, J. PDGF and the progression of renal disease. Nephrol. Dial. Transplant. 29 (Suppl. 1), i45–i54 (2014).

    CAS  PubMed  Google Scholar 

  116. Alpers, C. E., Seifert, R. A., Hudkins, K. L., Johnson, R. J. & Bowen-Pope, D. F. PDGF-receptor localizes to mesangial, parietal epithelial, and interstitial cells in human and primate kidneys. Kidney Int. 43, 286–294 (1993).

    CAS  PubMed  Google Scholar 

  117. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    CAS  PubMed  Google Scholar 

  118. Alpers, C. E., Hudkins, K. L., Ferguson, M., Johnson, R. J. & Rutledge, J. C. Platelet-derived growth factor A-chain expression in developing and mature human kidneys and in Wilms' tumor. Kidney Int. 48, 146–154 (1995).

    CAS  PubMed  Google Scholar 

  119. Boström, H. et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85, 863–873 (1996).

    PubMed  Google Scholar 

  120. Levéen, P. et al. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8, 1875–1887 (1994).

    PubMed  Google Scholar 

  121. Lindahl, P., Johansson, B. R., Levéen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    CAS  PubMed  Google Scholar 

  122. Chen, Y. T. et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 1170–1181 (2011).

    CAS  PubMed  Google Scholar 

  123. Chen, P. H., Chen, X. & He, X. Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim. Biophys. Acta 1834, 2176–2186 (2013).

    CAS  PubMed  Google Scholar 

  124. Reigstad, L. J., Varhaug, J. E. & Lillehaug, J. R. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. FEBS J. 272, 5723–5741 (2005).

    CAS  PubMed  Google Scholar 

  125. Wang, S. N. & Hirschberg, R. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis. Am. J. Physiol. Renal Physiol. 278, F554–F560 (2000).

    CAS  PubMed  Google Scholar 

  126. Liu, Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am. J. Physiol. Renal Physiol. 287, F7–F16 (2004).

    CAS  PubMed  Google Scholar 

  127. Hudkins, K. L. et al. Exogenous PDGF-D is a potent mesangial cell mitogen and causes a severe mesangial proliferative glomerulopathy. J. Am. Soc. Nephrol. 15, 286–298 (2004).

    CAS  PubMed  Google Scholar 

  128. Floege, J., van Roeyen, C., Boor, P. & Ostendorf, T. The role of PDGF-D in mesangioproliferative glomerulonephritis. Contrib. Nephrol. 157, 153–158 (2007).

    CAS  PubMed  Google Scholar 

  129. van Roeyen, C. R. et al. Induction of progressive glomerulonephritis by podocyte-specific overexpression of platelet-derived growth factor-D. Kidney Int. 80, 1292–1305 (2011).

    CAS  PubMed  Google Scholar 

  130. Iida, H. et al. Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc. Natl Acad. Sci. USA 88, 6560–6564 (1991).

    CAS  PubMed  Google Scholar 

  131. Matsuda, M. et al. Gene expression of PDGF and PDGF receptor in various forms of glomerulonephritis. Am. J. Nephrol. 17, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  132. Waldherr, R. et al. Expression of cytokines and growth factors in human glomerulonephritides. Pediatr. Nephrol. 7, 471–478 (1993).

    CAS  PubMed  Google Scholar 

  133. Gesualdo, L. et al. Expression of platelet-derived growth factor receptors in normal and diseased human kidney. An immunohistochemistry and in situ hybridization study. J. Clin. Invest. 94, 50–58 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Eitner, F. et al. PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J. Am. Soc. Nephrol. 14, 1145–1153 (2003).

    CAS  PubMed  Google Scholar 

  135. Liu, G. et al. Identification of platelet-derived growth factor D in human chronic allograft nephropathy. Hum. Pathol. 39, 393–402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Taneda, S. et al. Obstructive uropathy in mice and humans: potential role for PDGF-D in the progression of tubulointerstitial injury. J. Am. Soc. Nephrol. 14, 2544–2555 (2003).

    CAS  PubMed  Google Scholar 

  137. Boor, P. et al. Patients with IgA nephropathy exhibit high systemic PDGF-DD levels. Nephrol. Dial. Transplant. 24, 2755–2762 (2009).

    PubMed  Google Scholar 

  138. Har, R. et al. The effect of renal hyperfiltration on urinary inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Diabetologia 56, 1166–1173 (2013).

    CAS  PubMed  Google Scholar 

  139. Nakamura, H. et al. Electroporation-mediated PDGF receptor-IgG chimera gene transfer ameliorates experimental glomerulonephritis. Kidney Int. 59, 2134–2145 (2001).

    CAS  PubMed  Google Scholar 

  140. Ostendorf, T. et al. A fully human monoclonal antibody (CR002) identifies PDGF-D as a novel mediator of mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 14, 2237–2247 (2003).

    CAS  PubMed  Google Scholar 

  141. Boor, P. et al. PDGF-D inhibition by CR002 ameliorates tubulointerstitial fibrosis following experimental glomerulonephritis. Nephrol. Dial. Transplant. 22, 1323–1331 (2007).

    CAS  PubMed  Google Scholar 

  142. Ostendorf, T. et al. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. 12, 909–918 (2001).

    CAS  PubMed  Google Scholar 

  143. Ostendorf, T. et al. Antagonism of PDGF-D by human antibody CR002 prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. 17, 1054–1062 (2006).

    CAS  PubMed  Google Scholar 

  144. Suzuki, H. et al. Deletion of platelet-derived growth factor receptor-β improves diabetic nephropathy in Ca2+/calmodulin-dependent protein kinase IIα (Thr286Asp) transgenic mice. Diabetologia 54, 2953–2962 (2011).

    CAS  PubMed  Google Scholar 

  145. Ludewig, D., Kosmehl, H., Sommer, M., Böhmer, F. D. & Stein, G. PDGF receptor kinase blocker AG1295 attenuates interstitial fibrosis in rat kidney after unilateral obstruction. Cell Tissue Res. 299, 97–103 (2000).

    CAS  PubMed  Google Scholar 

  146. Boor, P. et al. PDGF-C mediates glomerular capillary repair. Am. J. Pathol. 177, 58–69 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Eitner, F. et al. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J. Am. Soc. Nephrol. 19, 281–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Martin, I. V. et al. Platelet-derived growth factor (PDGF)-C neutralization reveals differential roles of PDGF receptors in liver and kidney fibrosis. Am. J. Pathol. 182, 107–117 (2013).

    CAS  PubMed  Google Scholar 

  149. Iyoda, M., Shibata, T., Kawaguchi, M., Yamaoka, T. & Akizawa, T. Preventive and therapeutic effects of imatinib in Wistar-Kyoto rats with anti-glomerular basement membrane glomerulonephritis. Kidney Int. 75, 1060–1070 (2009).

    CAS  PubMed  Google Scholar 

  150. Iyoda, M. et al. Long- and short-term treatment with imatinib attenuates the development of chronic kidney disease in experimental anti-glomerular basement membrane nephritis. Nephrol. Dial. Transplant. 28, 576–584 (2013).

    CAS  PubMed  Google Scholar 

  151. Sadanaga, A. et al. Amelioration of autoimmune nephritis by imatinib in MRL/lpr mice. Arthritis Rheum. 52, 3987–3996 (2005).

    CAS  PubMed  Google Scholar 

  152. Zoja, C. et al. Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney Int. 70, 97–103 (2006).

    CAS  PubMed  Google Scholar 

  153. Iyoda, M. et al. Imatinib suppresses cryoglobulinemia and secondary membranoproliferative glomerulonephritis. J. Am. Soc. Nephrol. 20, 68–77 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lassila, M. et al. Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice. J. Am. Soc. Nephrol. 16, 363–373 (2005).

    CAS  PubMed  Google Scholar 

  155. Graciano, M. L. & Mitchell, K. D. Imatinib ameliorates renal morphological changes in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent malignant hypertension. Am. J. Physiol. Renal Physiol. 302, F60–F69 (2012).

    CAS  PubMed  Google Scholar 

  156. Schellings, M. W. et al. Imatinib attenuates end-organ damage in hypertensive homozygous TGR(mRen2)27 rats. Hypertension 47, 467–474 (2006).

    CAS  PubMed  Google Scholar 

  157. Savikko, J., Taskinen, E. & Von Willebrand, E. Chronic allograft nephropathy is prevented by inhibition of platelet-derived growth factor receptor: tyrosine kinase inhibitors as a potential therapy. Transplantation 75, 1147–1153 (2003).

    CAS  PubMed  Google Scholar 

  158. Wang, S., Wilkes, M. C., Leof, E. B. & Hirschberg, R. Imatinib mesylate blocks a non-Smad TGF-β pathway and reduces renal fibrogenesis in vivo. FASEB J. 19, 1–11 (2005).

    PubMed  Google Scholar 

  159. Avlan, D. et al. Effects of trapidil on renal ischemia-reperfusion injury. J. Pediatr. Surg. 41, 1686–1693 (2006).

    PubMed  Google Scholar 

  160. Büyükafs¸ar, K. et al. Effect of trapidil, an antiplatelet and vasodilator agent on gentamicin-induced nephrotoxicity in rats. Pharmacol. Res. 44, 321–328 (2001).

    Google Scholar 

  161. Futamura, A. et al. Effect of the platelet-derived growth factor antagonist trapidil on mesangial cell proliferation in rats. Nephron 81, 428–433 (1999).

    CAS  PubMed  Google Scholar 

  162. Razzaque, M. S., Cheng, M. & Taguchi, T. Suppression of mesangial-cell proliferation by trapidil in glomerulonephritis induced by anti-thymocyte serum in rats. J. Int. Med. Res. 23, 458–466 (1995).

    CAS  PubMed  Google Scholar 

  163. Shinkai, Y. & Cameron, J. S. Trial of platelet-derived growth factor antagonist, trapidil, in accelerated nephrotoxic nephritis in the rabbit. Br. J. Exp. Pathol. 68, 847–852 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Nakagawa, T. et al. Role of PDGF B-chain and PDGF receptors in rat tubular regeneration after acute injury. Am. J. Pathol. 155, 1689–1699 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen, J., Chen, J. K., Neilson, E. G. & Harris, R. C. Role of EGF receptor activation in angiotensin II-induced renal epithelial cell hypertrophy. J. Am. Soc. Nephrol. 17, 1615–1623 (2006).

    CAS  PubMed  Google Scholar 

  166. Urtasun, R. et al. Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology 54, 2149–2158 (2011).

    CAS  PubMed  Google Scholar 

  167. Andrianifahanana, M. et al. Profibrotic TGFβ responses require the cooperative action of PDGF and ErbB receptor tyrosine kinases. FASEB J. 27, 4444–4454 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nguyen, T. Q. & Goldschmeding, R. Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm. Res. 25, 2416–2426 (2008).

    CAS  PubMed  Google Scholar 

  169. Sweeney, W. E., Chen, Y., Nakanishi, K., Frost, P. & Avner, E. D. Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int. 57, 33–40 (2000).

    CAS  PubMed  Google Scholar 

  170. Hirai, T., Masaki, T., Kuratsune, M., Yorioka, N. & Kohno, N. PDGF receptor tyrosine kinase inhibitor suppresses mesangial cell proliferation involving STAT3 activation. Clin. Exp. Immunol. 144, 353–361 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang-Rosenke, Y. et al. Tyrosine kinases inhibition by Imatinib slows progression in chronic anti-thy1 glomerulosclerosis of the rat. BMC Nephrol. 14, 223 (2013).

    PubMed  PubMed Central  Google Scholar 

  172. Johnson, R. J. et al. Inhibition of mesangial cell proliferation and matrix expansion in glomerulonephritis in the rat by antibody to platelet-derived growth factor. J. Exp. Med. 175, 1413–1416 (1992).

    CAS  PubMed  Google Scholar 

  173. Takahashi, T. et al. Activation of STAT3/Smad1 is a key signaling pathway for progression to glomerulosclerosis in experimental glomerulonephritis. J. Biol. Chem. 280, 7100–7106 (2005).

    CAS  PubMed  Google Scholar 

  174. Floege, J. et al. Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am. J. Pathol. 154, 169–179 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Kishioka, H. et al. Effects of PDGF A-chain antisense oligodeoxynucleotides on growth of cardiovascular organs in stroke-prone spontaneously hypertensive rats. Am. J. Hypertens. 14, 439–445 (2001).

    CAS  PubMed  Google Scholar 

  176. Gravning, J., Ahmed, M. S., von Lueder, T. G., Edvardsen, T. & Attramadal, H. CCN2/CTGF attenuates myocardial hypertrophy and cardiac dysfunction upon chronic pressure-overload. Int. J. Cardiol. 168, 2049–2056 (2013).

    PubMed  Google Scholar 

  177. Quan, T., Shao, Y., He, T., Voorhees, J. J. & Fisher, G. J. Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J. Invest. Dermatol. 130, 415–424 (2010).

    CAS  PubMed  Google Scholar 

  178. Pastore, S., Lulli, D. & Girolomoni, G. Epidermal growth factor receptor signalling in keratinocyte biology: implications for skin toxicity of tyrosine kinase inhibitors. Arch. Toxicol. 88, 1189–1203 (2014).

    CAS  PubMed  Google Scholar 

  179. Hartmann, J. T., Haap, M., Kopp, H. G. & Lipp, H. P. Tyrosine kinase inhibitors—a review on pharmacology, metabolism and side effects. Curr. Drug Metab. 10, 470–481 (2009).

    CAS  PubMed  Google Scholar 

  180. Fallahi, P. et al. Thyroid dysfunctions induced by tyrosine kinase inhibitors. Expert Opin. Drug Saf. 13, 723–733 (2014).

    CAS  PubMed  Google Scholar 

  181. Korashy, H. M., Rahman, A. F. & Kassem, M. G. Dasatinib. Profiles Drug Subst. Excip. Relat. Methodol. 39, 205–237 (2014).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, contributed substantially to discussion of the content and wrote the article. R.G. and T.Q.N. reviewed and edited the manuscript before submission. H.M.K. and L.L.F contributed equally.

Corresponding author

Correspondence to Roel Goldschmeding.

Ethics declarations

Competing interests

R.G. has received research support from FibroGen. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kok, H., Falke, L., Goldschmeding, R. et al. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 10, 700–711 (2014). https://doi.org/10.1038/nrneph.2014.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing