Key Points
-
Hyperkalaemia is common in patients with chronic kidney disease (CKD), especially when CKD is accompanied by exacerbating factors
-
Hyperkalaemia is associated with adverse outcomes in patients with CKD, and can restrict the use of beneficial medications, such as renin–angiotensin–aldosterone-system (RAAS) inhibitors
-
Current therapeutic paradigms for hyperkalaemia emphasize intermittent acute interventions and the elimination of exacerbating factors (including RAAS inhibitors)
-
Proactive treatment strategies to prevent the development of hyperkalaemia could also benefit patients by enabling more liberal use of RAAS inhibitors
-
The emergence of new potassium binders may result in more widespread implementation of strategies for hyperkalaemia prevention
Abstract
Hyperkalaemia is common in patients with chronic kidney disease (CKD), in part because of the effects of kidney dysfunction on potassium homeostasis and in part because of the cluster of comorbidities (and their associated treatments) that occur in patients with CKD. Owing to its electrophysiological effects, severe hyperkalaemia represents a medical emergency that usually requires prompt intervention, whereas the prevention of hazardous hyperkalaemic episodes in at-risk patients requires measures aimed at the long-term normalization of potassium homeostasis. The options for effective and safe medical interventions to restore chronic potassium balance are few, and long-term management of hyperkalaemia is primarily limited to the correction of modifiable exacerbating factors. This situation can result in a difficult trade-off in patients with CKD, because drugs that are beneficial to these patients (for example, renin–angiotensin–aldosterone-system antagonists) are often the most prominent cause of their hyperkalaemia. Maintaining the use of these beneficial medications while implementing various strategies to control potassium balance is desirable; however, discontinuation rates remain high. The emergence of new medications that specifically target hyperkalaemia could lead to a therapeutic paradigm shift, emphasizing preventive management over ad hoc treatment of incidentally discovered elevations in serum potassium levels.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The Increased Clinical and Economic Burden of Hyperkalemia in Medicare Patients Admitted to Long-Term Care Settings
Advances in Therapy Open Access 18 January 2023
-
Hyperkalemia: Prevalence, Predictors and Emerging Treatments
Cardiology and Therapy Open Access 12 December 2022
-
A nomogram to predict hyperkalemia in patients with hemodialysis: a retrospective cohort study
BMC Nephrology Open Access 01 November 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Lowrie, E. G. & Lew, N. L. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am. J. Kidney Dis. 15, 458–482 (1990).
Iseki, K. et al. Impact of the initial levels of laboratory variables on survival in chronic dialysis patients. Am. J. Kidney Dis. 28, 541–548 (1996).
Hayes, J. et al. Association of hypo- and hyperkalemia with disease progression and mortality in males with chronic kidney disease: the role of race. Nephron Clin. Pract. 120, c8–c16 (2012).
Kovesdy, C. P. et al. Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2, 999–1007 (2007).
Gonick, H. C., Kleeman, C. R., Rubini, M. E. & Maxwell, M. H. Functional impairment in chronic renal disease. III. Studies of potassium excretion. Am. J. Med. Sci. 261, 281–290 (1971).
Hayes, C. P. Jr & Robinson, R. R. Fecal potassium excretion in patients on chronic intermittent hemodialysis. Trans. Am. Soc. Artif. Intern. Organs 11, 242–246 (1965).
Hayes, C. P. Jr, McLeod, M. E. & Robinson, R. R. An extrarenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans. Assoc. Am. Physicians 80, 207–216 (1967).
Kopple, J. D. & Coburn, J. W. Metabolic studies of low protein diets in uremia. I. Nitrogen and potassium. Medicine (Baltimore) 52, 583–595 (1973).
Schrier, R. W. & Regal, E. M. Influence of aldosterone on sodium, water and potassium metabolism in chronic renal disease. Kidney Int. 1, 156–168 (1972).
Bourgoignie, J. J., Kaplan, M., Pincus, J., Gavellas, G. & Rabinovitch, A. Renal handling of potassium in dogs with chronic renal insufficiency. Kidney Int. 20, 482–490 (1981).
Simmons, D. H. & Avedon, M. Acid-base alterations and plasma potassium concentration. Am. J. Physiol. 197, 319–326 (1959).
Adrogué, H. J. & Madias, N. E. Changes in plasma potassium concentration during acute acid-base disturbances. Am. J. Med. 71, 456–467 (1981).
Graber, M. A model of the hyperkalemia produced by metabolic acidosis. Am. J. Kidney Dis. 22, 436–444 (1993).
Magner, P. O., Robinson, L., Halperin, R. M., Zettle, R. & Halperin, M. L. The plasma potassium concentration in metabolic acidosis: a re-evaluation. Am. J. Kidney Dis. 11, 220–224 (1988).
Oster, J. R., Perez, G. O. & Vaamonde, C. A. Relationship between blood pH and potassium and phosphorus during acute metabolic acidosis. Am. J. Physiol. 235, F345–F351 (1978).
Michael, J. M., Dorner, I., Bruns, D., Ladenson, J. H. & Sherman, L. A. Potassium load in CPD-preserved whole blood and two types of packed red blood cells. Transfusion 15, 144–149 (1975).
Palmer, B. F. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N. Engl. J. Med. 351, 585–592 (2004).
Heering, P. J. et al. Aldosterone resistance in kidney transplantation is in part induced by a down-regulation of mineralocorticoid receptor expression. Clin. Transplant. 18, 186–192 (2004).
Laine, J. & Holmberg, C. Renal and adrenal mechanisms in cyclosporine-induced hyperkalaemia after renal transplantation. Eur. J. Clin. Invest. 25, 670–676 (1995).
DeFronzo, R. A., Sherwin, R. S., Felig, P. & Bia, M. Nonuremic diabetic hyperkalemia. Possible role of insulin deficiency. Arch. Intern. Med. 137, 842–843 (1977).
Glassock, R. J., Goldstein, D. A., Goldstone, R. & Hsueh, W. A. Diabetes mellitus, moderate renal insufficiency and hyperkalemia. Am. J. Nephrol. 3, 233–240 (1983).
Tuck, M. L., Sambhi, M. P. & Levin, L. Hyporeninemic hypoaldosteronism in diabetes mellitus. Studies of the autonomic nervous system's control of renin release. Diabetes 28, 237–241 (1979).
Arrizabalaga, P. et al. Increase in serum potassium caused by β-2 adrenergic blockade in terminal renal failure: absence of mediation by insulin or aldosterone. Proc. Eur. Dial. Transplant Assoc. 20, 572–576 (1983).
Edes, T. E. & Sunderrajan, E. V. Heparin-induced hyperkalemia. Arch. Intern. Med. 145, 1070–1072 (1985).
Bismuth, C., Gaultier, M., Conso, F. & Efthymiou, M. L. Hyperkalemia in acute digitalis poisoning: prognostic significance and therapeutic implications. Clin. Toxicol. 6, 153–162 (1973).
Bühler, F. R. et al. Antihypertensive β blocking action as related to renin and age: a pharmacologic tool to identify pathogenetic mechanisms in essential hypertension. Am. J. Cardiol. 36, 653–669 (1975).
Pedersen, E. B. & Kornerup, H. J. Relationship between plasma aldosterone concentration and plasma potassium in patients with essential hypertension during alprenolol treatment. Acta Med. Scand. 200, 263–267 (1976).
Bakris, G. L. et al. ACE inhibition or angiotensin receptor blockade: impact on potassium in renal failure. VAL-K Study Group. Kidney Int. 58, 2084–2092 (2000).
Weir, M. R. & Rolfe, M. Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. Clin. J. Am. Soc. Nephrol. 5, 531–548 (2010).
Molnar, M. Z. et al. Angiotensin-converting enzyme inhibitor and angiotensin receptor blocker use and mortality in patients with chronic kidney disease. J. Am. Coll. Cardiol. 63, 650–658 (2014).
Pun, P. H., Lehrich, R. W., Smith, S. R. & Middleton, J. P. Predictors of survival after cardiac arrest in outpatient hemodialysis clinics. Clin. J. Am. Soc. Nephrol. 2, 491–500 (2007).
Fleet, J. L. et al. Validity of the International Classification of Diseases 10th revision code for hyperkalaemia in elderly patients at presentation to an emergency department and at hospital admission. BMJ Open 2, e002011 (2012).
Einhorn, L. M. et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch. Intern. Med. 169, 1156–1162 (2009).
Drawz, P. E., Babineau, D. C. & Rahman, M. Metabolic complications in elderly adults with chronic kidney disease. J. Am. Geriatr. Soc. 60, 310–315 (2012).
Sarafidis, P. A. et al. Prevalence and factors associated with hyperkalemia in predialysis patients followed in a low-clearance clinic. Clin. J. Am. Soc. Nephrol. 7, 1234–1241 (2012).
Makani, H., Bangalore, S., Desouza, K. A., Shah, A. & Messerli, F. H. Efficacy and safety of dual blockade of the renin–angiotensin system: meta-analysis of randomised trials. BMJ 346, f360 (2013).
Susantitaphong, P. et al. Efficacy and safety of combined vs. single renin-angiotensin-aldosterone system blockade in chronic kidney disease: a meta-analysis. Am. J. Hypertens. 26, 424–441 (2013).
Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).
Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N. Engl. J. Med. 334, 939–945 (1996).
[No authors listed] Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet 349, 1857–1863 (1997).
Ruggenenti, P. et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet 365, 939–946 (2005).
Mann, J. F., Gerstein, H. C., Pogue, J., Bosch, J. & Yusuf, S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann. Intern. Med. 134, 629–636 (2001).
Weinberg, J. M. et al. Risk of hyperkalemia in nondiabetic patients with chronic kidney disease receiving antihypertensive therapy. Arch. Intern. Med. 169, 1587–1594 (2009).
Iino, Y. et al. Renoprotective effect of losartan in comparison to amlodipine in patients with chronic kidney disease and hypertension—a report of the Japanese Losartan Therapy Intended for the Global Renal Protection in Hypertensive Patients (JLIGHT) study. Hypertens. Res. 27, 21–30 (2004).
Miao, Y. et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia 54, 44–50 (2011).
Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J Med. 369, 1892–1903 (2013).
Sanofi Aventis US. Avapro© package insert [online], (2014).
Hou, F. F. et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med. 354, 131–140 (2006).
Bozkurt, B., Agoston, I. & Knowlton, A. A. Complications of inappropriate use of spironolactone in heart failure: when an old medicine spirals out of new guidelines. J. Am. Coll. Cardiol. 41, 211–214 (2003).
Shah, K. B., Rao, K., Sawyer, R. & Gottlieb, S. S. The adequacy of laboratory monitoring in patients treated with spironolactone for congestive heart failure. J. Am. Coll. Cardiol. 46, 845–849 (2005).
Juurlink, D. N. et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N. Engl. J. Med. 351, 543–551 (2004).
Knoll, G. A. et al. Renin–angiotensin system blockade and the risk of hyperkalemia in chronic hemodialysis patients. Am. J. Med. 112, 110–114 (2002).
Ito, Y. et al. Long-Term effects of spironolactone in peritoneal dialysis patients. J. Am. Soc. Nephrol. 25, 1094–1102 (2014).
Vazquez-Rangel, A. et al. Spironolactone to prevent peritoneal fibrosis in peritoneal dialysis patients: a randomized controlled trial. Am. J. Kidney Dis. 63, 1072–1074 (2014).
Matsumoto, Y. et al. Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J. Am. Coll. Cardiol. 63, 528–536 (2014).
Flevari, P. et al. Spironolactone improves endothelial and cardiac autonomic function in non heart failure hemodialysis patients. J. Hypertens. 31, 1239–1244 (2013).
Shavit, L., Neykin, D., Lifschitz, M. & Slotki, I. Effect of eplerenone on blood pressure and the renin-angiotensin-aldosterone system in oligo-anuric chronic hemodialysis patients—a pilot study. Clin. Nephrol. 76, 388–395 (2011).
Vukusich, A. et al. A randomized, double-blind, placebo-controlled trial of spironolactone on carotid intima–media thickness in nondiabetic hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5, 1380–1387 (2010).
Hammer, F. et al. Rationale and design of the Mineralocorticoid Receptor Antagonists in End-Stage Renal Disease Study (MiREnDa). Nephrol. Dial. Transplant. 29, 400–405 (2014).
Dittrich, K. L. & Walls, R. M. Hyperkalemia: ECG manifestations and clinical considerations. J. Emerg. Med. 4, 449–455 (1986).
Parham, W. A., Mehdirad, A. A., Biermann, K. M. & Fredman, C. S. Hyperkalemia revisited. Tex. Heart Inst. J. 33, 40–47 (2006).
Korgaonkar, S. et al. Serum potassium and outcomes in CKD: insights from the RRI-CKD cohort study. Clin. J. Am. Soc. Nephrol. 5, 762–769 (2010).
Pun, P. H., Lehrich, R. W., Honeycutt, E. F., Herzog, C. A. & Middleton, J. P. Modifiable risk factors associated with sudden cardiac arrest within hemodialysis clinics. Kidney Int. 79, 218–227 (2011).
Jadoul, M. et al. Modifiable practices associated with sudden death among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Clin. J. Am. Soc. Nephrol. 7, 765–774 (2012).
Xu, Q. et al. Serum potassium levels and its variability in incident peritoneal dialysis patients: associations with mortality. PLoS ONE 9, e86750 (2014).
Epstein, F. H. Signs and symptoms of electrolyte disorders. In Clinical disorders of fluid and electrolyte metabolism (eds Maxwell, M. H. & Kleeman, C. R.) 499–516 (McGraw-Hill, 1980).
Fisch, C. Electrolytes and the heart. In The Heart (ed. Hurst, J. W.) 1466–1479 (McGraw-Hill, 1986).
Kleeman, K. & Singh, B. N. Serum electrolytes and the heart. In Clinical disorders of fluid and electrolyte metabolism (eds Maxwell, M. H. & Kleeman, C. R.) 145–180 (McGraw-Hill, 1980).
Marques, J. S. & Diogo, A. N. Dead man walking: an extreme case of sinusoidal wave pattern in severe hyperkalemia. J. Am. Coll. Cardiol. 59, 2118 (2012).
Petrov, D. B. Images in clinical medicine. An electrocardiographic sine wave in hyperkalemia. N. Engl. J. Med. 366, 1824 (2012).
Siniorakis, E. et al. Hyperkalaemia, pseudohyperkalaemia and electrocardiographic correlates. Int. J. Cardiol. 148, 242–243 (2011).
Fordjour, K. N., Walton, T. & Doran, J. J. Management of hyperkalemia in hospitalized patients. Am. J. Med. Sci. 347, 93–100 (2014).
Montague, B. T., Ouellette, J. R. & Buller, G. K. Retrospective review of the frequency of ECG changes in hyperkalemia. Clin. J. Am. Soc. Nephrol. 3, 324–330 (2008).
Green, D., Green, H. D., New, D. I. & Kalra, P. A. The clinical significance of hyperkalaemia-associated repolarization abnormalities in end-stage renal disease. Nephrol. Dial. Transplant. 28, 99–105 (2013).
Welch, A., Maroz, N. & Wingo, C. S. Hyperkalemia: getting to the heart of the matter. Nephrol. Dial. Transplant. 28, 15–16 (2013).
Garcia-Palmieri, M. R. Reversal of hyperkalemic cardiotoxicity with hypertonic saline. Am. Heart. J. 64, 483–488 (1962).
Weisberg, L. S. Management of severe hyperkalemia. Crit. Care Med. 36, 3246–3251 (2008).
Beeler, G. W. Jr & Reuter, H. Membrane calcium current in ventricular myocardial fibres. J. Physiol. 207, 191–209 (1970).
Chen, C. M., Gettes, L. S. & Katzung, B. G. Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of (dV/dt)max in guinea pig ventricular myocardium. Circ. Res. 37, 20–29 (1975).
Winkler, A. W., Hoff, H. E. & Smith, P. K. Factors affecting the toxicity of potassium. Am. J. Physiol. 127, 430–436 (1939).
Eliakim, M., Rosenberg, S. Z. & Braun, K. Electrocardiographic changes following the administration of hypertonic saline to dogs. Am. Heart J. 58, 97–101 (1959).
Kaplan, J. L. et al. Hypertonic saline treatment of severe hyperkalemia in nonnephrectomized dogs. Acad. Emerg. Med. 7, 965–973 (2000).
Ballantyne, F. 3rd, Davis, L. D. & Reynolds, E. W. Jr. Cellular basis for reversal of hyperkalemic electrocardiographic changes by sodium. Am. J. Physiol. 229, 935–940 (1975).
Lens, X. M., Montoliu, J., Cases, A., Campistol, J. M. & Revert, L. Treatment of hyperkalaemia in renal failure: salbutamol v. insulin. Nephrol. Dial. Transplant 4, 228–232 (1989).
Alvestrand, A., Wahren, J., Smith, D. & DeFronzo, R. A. Insulin-mediated potassium uptake is normal in uremic and healthy subjects. Am. J. Physiol. 246, E174–E180 (1984).
Schwarz, K. C., Cohen, B. D., Lubash, G. D. & Rubin, A. L. Severe acidosis and hyperpotassemia treated with sodium bicarbonate infusion. Circulation 19, 215–220 (1959).
Allon, M. & Shanklin, N. Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am. J. Kidney Dis. 28, 508–514 (1996).
Mahoney, B. A. et al. Emergency interventions for hyperkalaemia. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD003235. http://dx.doi.org/10.1002/14651858.CD003235.pub2.
Scherr, L., Ogden, D. A., Mead, A. W., Spritz, N. & Rubin, A. L. Management of hyperkalemia with a cation-exchange resin. N. Engl. J. Med. 264, 115–119 (1961).
Flinn, R. B., Merrill, J. P. & Welzant, W. R. Treatment of the oliguric patient with a new sodium-exchange resin and sorbitol; a preliminary report. N. Engl. J. Med. 264, 111–115 (1961).
Emmett, M. et al. Effect of three laxatives and a cation exchange resin on fecal sodium and potassium excretion. Gastroenterology 108, 752–760 (1995).
Kamel, K. S. & Wei, C. Controversial issues in the treatment of hyperkalaemia. Nephrol. Dial. Transplant. 18, 2215–2218 (2003).
Kamel, K. S. & Schreiber, M. Asking the question again: are cation exchange resins effective for the treatment of hyperkalemia? Nephrol. Dial. Transplant. 27, 4294–4297 (2012).
Sterns, R. H., Rojas, M., Bernstein, P. & Chennupati, S. Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? J. Am. Soc. Nephrol. 21, 733–735 (2010).
Gruy-Kapral, C. et al. Effect of single dose resin-cathartic therapy on serum potassium concentration in patients with end-stage renal disease. J. Am. Soc. Nephrol. 9, 1924–1930 (1998).
Kayexalate® (sodium polystyrene sulfonate, USP cation-exchange resin) FDA Drug Label [online], (2009).
Chelcun, J. L., Sable, R. A. & Friedman, K. Colonic ulceration in a patient with renal disease and hyperkalemia. JAAPA 25, 34, 37–38 (2012).
Gorospe, E. C., Lewis, J. T. & Bruining, D. H. Kayexalate-induced esophageal ulcer in a patient with gastroparesis. Clin. Gastroenterol. Hepatol. 10, A28 (2012).
Joo, M., Bae, W. K., Kim, N. H. & Han, S. R. Colonic mucosal necrosis following administration of calcium polystryrene sulfonate (Kalimate) in a uremic patient. J. Korean Med. Sci. 24, 1207–1211 (2009).
Takeuchi, N. et al. Development of colonic perforation during calcium polystyrene sulfonate administration: a case report. Case Rep. Med. 2013, 102614 (2013).
Harel, Z. et al. Gastrointestinal adverse events with sodium polystyrene sulfonate (Kayexalate) use: a systematic review. Am. J. Med. 126, 264.e9–264.e24 (2013).
Gerstman, B. B., Kirkman, R. & Platt, R. Intestinal necrosis associated with postoperative orally administered sodium polystyrene sulfonate in sorbitol. Am. J. Kidney Dis. 20, 159–161 (1992).
Watson, M. A. et al. Association of prescription of oral sodium polystyrene sulfonate with sorbitol in an inpatient setting with colonic necrosis: a retrospective cohort study. Am. J. Kidney Dis. 60, 409–416 (2012).
Lillemoe, K. D. et al. Intestinal necrosis due to sodium polystyrene (Kayexalate) in sorbitol enemas: clinical and experimental support for the hypothesis. Surgery 101, 267–272 (1987).
US Food and Drug Administration. Kayexalate (sodium polystyrene sulfonate) powder. Safety labeling changes approved by FDA Center for Drug Evaluation and Research (CDER) [online], (2009).
Watson, M., Abbott, K. C. & Yuan, C. M. Damned if you do, damned if you don't: potassium binding resins in hyperkalemia. Clin. J. Am. Soc. Nephrol. 5, 1723–1726 (2010).
DeFronzo, R. A. Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int. 17, 118–134 (1980).
Pitt, B. et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur. Heart J. 34, 2453–2463 (2013).
US National Library of Medicine. ClinicalTrials.gov[online], (2014).
Chernin, G. et al. Secondary prevention of hyperkalemia with sodium polystyrene sulfonate in cardiac and kidney patients on renin-angiotensin-aldosterone system inhibition therapy. Clin. Cardiol. 35, 32–36 (2012).
Pitt, B. et al. Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur. Heart J. 32, 820–828 (2011).
Buysse, J. M., Huang, I. Z. & Pitt, B. PEARL-HF: prevention of hyperkalemia in patients with heart failure using a novel polymeric potassium binder, RLY5016. Future Cardiol. 8, 17–28 (2012).
Yang, A., Leon, A., Nuttall, M., Low, J. J., Rasmussen, H. S. In vitro ion exchange capacity and selectivity of ZS-9, a novel, selective cation trap for the treatment of hyperkalemia. Am. J. Kidney Dis. 63, B115 (2014).
Acknowledgements
C.P.K. is supported by grants RO1 DK096920 and UO1DK102163 from the US NIH-NIDDK. He is an employee of the US Department of Veterans Affairs. Opinions expressed in this paper are those of the author and do not necessarily represent those of the Department of Veterans Affairs.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Kovesdy, C. Management of hyperkalaemia in chronic kidney disease. Nat Rev Nephrol 10, 653–662 (2014). https://doi.org/10.1038/nrneph.2014.168
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneph.2014.168
This article is cited by
-
Hyperkalemia: Prevalence, Predictors and Emerging Treatments
Cardiology and Therapy (2023)
-
The Increased Clinical and Economic Burden of Hyperkalemia in Medicare Patients Admitted to Long-Term Care Settings
Advances in Therapy (2023)
-
A nomogram to predict hyperkalemia in patients with hemodialysis: a retrospective cohort study
BMC Nephrology (2022)
-
Association between hyperkalemia, RAASi non-adherence and outcomes in chronic kidney disease
Journal of Nephrology (2022)
-
Increased colonic K+ excretion through inhibition of the H,K-ATPase type 2 helps reduce plasma K+ level in a murine model of nephronic reduction
Scientific Reports (2021)