Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cardiovascular complications in atypical haemolytic uraemic syndrome

Abstract

Haemolytic uraemic syndrome (HUS) is characterized by nonimmune haemolytic anaemia, thrombocytopenia and renal impairment—most incidents in childhood are caused by shiga toxin-producing bacteria. Atypical HUS (aHUS) accounts for 10% of cases and has a poor prognosis. About 60% of patients with aHUS have dysregulation of the alternative complement pathway (complement-mediated aHUS). The kidney is the main target organ, but other organs might also be affected. Cardiac complications occur in 3–10% of patients with complement-mediated aHUS, as a consequence of microangiopathic injury in the coronary microvasculature, and can cause sudden death. Emerging evidence also suggests that either thrombosis or stenosis of the medium and large arteries might complicate disease course, and such disorders occur even after renal function is lost. In this Perspectives article we discuss the impact of cardiovascular involvement in complement-mediated aHUS, the role of acute and chronic complement hyperactivation in such events and the implications for treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of complement activation and regulation.
Figure 2: Potential pathophysiological mechanisms of cardiovascular complications in aHUS.

Similar content being viewed by others

References

  1. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Remuzzi, G., Ruggenenti, P. & Bertani, T. in Renal Pathology: Vol. 2: with Clinical and Functional Correlations (eds Tisher, C. G. & Brenner, B. M.) 1154–1184 (J. B. Lippincott Company, 1994).

    Google Scholar 

  3. Loirat, C., Noris, M. & Fremeaux-Bacchi, V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr. Nephrol. 23, 1957–1972 (2008).

    Article  PubMed  Google Scholar 

  4. Noris, M. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 5, 1844–1859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galbusera, M., Noris, M. & Remuzzi, G. Thrombotic thrombocytopenic purpura—then and now. Semin. Thromb. Hemost. 32, 81–89 (2006).

    Article  PubMed  Google Scholar 

  6. Levy, G. G. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413, 488–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Furlan, M., Robles, R. & Lamie, B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 87, 4223–4234 (1996).

    CAS  PubMed  Google Scholar 

  8. Wahla, A. S. et al. Myocardial infarction in thrombotic thrombocytopenic purpura: a single-center experience and literature review. Eur. J. Haematol. 81, 311–316 (2008).

    Article  PubMed  Google Scholar 

  9. Sane, D. C., Streer, N. P. & Owen, J. Myocardial necrosis in patients with thrombotic thrombocytopenic purpura: pathophysiology and rationale for specific therapy. Eur. J. Haematol. 82, 83–92 (2009).

    Article  PubMed  Google Scholar 

  10. Sallee, M. et al. Myocardial infarction is a complication of factor H-associated atypical HUS. Nephrol. Dial. Transplant. 25, 2028–2032 (2010).

    Article  PubMed  Google Scholar 

  11. Venables, J. P. et al. Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med. 3, e431 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vilalta, R. et al. Long-term eculizumab improves clinical outcomes in atypical hemolytic uremic syndrome. Pediatr. Nephrol. 27, 2323–2326 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Malina, M. et al. Peripheral gangrene in children with atypical hemolytic uremic syndrome. Pediatrics 131, e331–e335 (2013).

    Article  PubMed  Google Scholar 

  14. Davin, J. C. et al. Maintenance of kidney function following treatment with eculizumab and discontinuation of plasma exchange after a third kidney transplant for atypical hemolytic uremic syndrome associated with a CFH mutation. Am. J. Kidney Dis. 55, 708–711 (2010).

    Article  PubMed  Google Scholar 

  15. Loirat, C. et al. Non-atheromatous arterial stenoses in atypical haemolytic uraemic syndrome associated with complement dysregulation. Nephrol. Dial. Transplant. 25, 3421–3425 (2010).

    Article  PubMed  Google Scholar 

  16. Neuhaus, T. J., Calonder, S. & Leumann, E. P. Heterogeneity of atypical haemolytic uraemic syndromes. Arch. Dis. Child. 76, 518–521 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dragon-Durey, M. A. et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J. Am. Soc. Nephrol. 21, 2180–2187 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lachmann, P. J. The amplification loop of the complement pathways. Adv. Immunol. 104, 115–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Woodruff, T. M., Nandakumar, K. S. & Tedesco, F. Inhibiting the C5-C5a receptor axis. Mol. Immunol. 48, 1631–1642 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Podack, E. R., Kolb, W. P. & Muller-Eberhard, H. J. The SC5b-7 complex: formation, isolation, properties, and subunit composition. J. Immunol. 119, 2024–2029 (1977).

    CAS  PubMed  Google Scholar 

  23. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Saunders, R. E. et al. The interactive factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and factor I mutations with structural models. Hum. Mutat. 28, 222–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. FH aHUS Mutation Database [online], (2007).

  26. Richards, A. et al. Factor H mutations in hemolytic uremic syndrome cluster in exons 18–20, a domain important for host cell recognition. Am. J. Hum. Genet. 68, 485–490 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caprioli, J. et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108, 1267–1279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Warwicker, P. et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int. 53, 836–844 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Manuelian, T. et al. Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J. Clin. Invest. 111, 1181–1190 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Francis, N. J. et al. A novel hybrid CFH/CFHR3 gene generated by a microhomology-mediated deletion in familial atypical hemolytic uremic syndrome. Blood 119, 591–601 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Eyler, S. J. et al. A novel hybrid CFHR1/CFH gene causes atypical hemolytic uremic syndrome. Pediatr. Nephrol. 28, 2221–2225 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dragon-Durey, M. A. et al. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol 16, 555–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hofer, J. et al. Complement factor H-related protein 1 deficiency and factor H antibodies in pediatric patients with atypical hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol. 8, 407–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Sinha, A. et al. Prompt plasma exchanges and immunosuppressive treatment improves the outcomes of anti-factor H autoantibody-associated hemolytic uremic syndrome in children. Kidney Int. http://dx.doi.org/10.1038/ki.2013.373

  35. Jozsi, M. et al. Anti factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood 110, 1516–1518 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Jozsi, M. et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood 111, 1512–1514 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Richards, A. et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc. Natl Acad. Sci. USA 100, 12966–12971 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Noris, M. et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362, 1542–1547 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Kavanagh, D. et al. Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. Mol. Immunol. 45, 95–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Goicoechea de Jorge, E. et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc. Natl Acad. Sci. USA 104, 240–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Fremeaux-Bacchi, V. et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112, 4948–4952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Delvaeye, M. et al. Mutations in thrombomodulin in hemolytic-uremic syndrome. N. Engl. J. Med. 361, 345–357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maga, T. K., Nishimura, C. J., Weaver, A. E., Frees, K. L. & Smith, R. J. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum. Mutat. 31, E1445–E1460 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Shulga, Y. V., Topham, M. K. & Epand, R. M. Regulation and functions of diacylglycerol kinases. Chem. Rev. 111, 6186–6208 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Lemaire, M. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 45, 531–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bresin, E. et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J. Am. Soc. Nephrol. 24, 475–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmidtko, J., Peine, S., El-Housseini, Y., Pascual, M. & Meier, P. Treatment of atypical hemolytic uremic syndrome and thrombotic microangiopathies: a focus on eculizumab. Am. J. Kidney Dis. 61, 289–299 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Rathbone, J. et al. A systematic review of eculizumab for atypical haemolytic uraemic syndrome (aHUS). BMJ Open 3, e003573 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sellier-Leclerc, A. L. et al. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 18, 2392–2400 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Patschan, D. et al. Acute myocardial infarction in thrombotic microangiopathies--clinical characteristics, risk factors and outcome. Nephrol. Dial. Transplant. 21, 1549–1554 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Abarrategui-Garrido, C., Martinez-Barricarte, R., Lopez-Trascasa, M., de Cordoba, S. R. & Sanchez-Corral, P. Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood 114, 4261–4271 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Roumenina, L. T. et al. A prevalent C3 mutation in aHUS patients causes a direct C3 convertase gain of function. Blood 119, 4182–4191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Le Quintrec, M. et al. Complement genes strongly predict recurrence and graft outcome in adult renal transplant recipients with atypical hemolytic and uremic syndrome. Am. J. Transplant. 13, 663–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Ozel, A., Caliskan, U. & Gucer, S. Peripheral gangrene complicating hemolytic uremic syndrome in a child. Pediatr. Nephrol. 18, 465–467 (2003).

    PubMed  Google Scholar 

  56. Kaplan, B. S. et al. Peripheral gangrene complicating idiopathic and recessive hemolytic uremic syndromes. Pediatr. Nephrol. 14, 985–989 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Singh, S., de Trafford, J. C., Goss, D. E., Baskerville, P. A. & Roberts, V. C. Ultrasound imaging of digital arteries. Clin. Phys. Physiol. Meas. 11, 313–317 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Hill, G. S., Heudes, D. & Bariety, J. Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int. 63, 1027–1036 (2003).

    Article  PubMed  Google Scholar 

  59. Remuzzi, G. et al. Bilateral nephrectomy stopped disease progression in plasma-resistant hemolytic uremic syndrome with neurological signs and coma. Kidney Int. 49, 282–286 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Vergouwen, M. D., Adriani, K. S., Roos, Y. B., Groothoff, J. W. & Majoie, C. B. Proximal cerebral artery stenosis in a patient with hemolytic uremic syndrome. AJNR 29, e34 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Bekassy, Z. D. et al. Eculizumab in an anephric patient with atypical haemolytic uraemic syndrome and advanced vascular lesions. Nephrol. Dial. Transplant. 28, 2899–2907 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Sawada, M. et al. Prevention of neointimal formation by a serine protease inhibitor, FUT-175, after carotid balloon injury in rats. Stroke 30, 644–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Tanaskovic, S., Isenovic, E. R. & Radak, D. Inflammation as a marker for the prediction of internal carotid artery restenosis following eversion endarterectomy—evidence from clinical studies. Angiology 62, 535–542 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Noris, M., Mescia, F. & Remuzzi, G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat. Rev. Nephrol. 8, 622–633 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Klos, A. et al. The role of the anaphylatoxins in health and disease. Mol. Immunol. 46, 2753–2766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yanamoto, H., Kataoka, H., Nakajo, Y. & Iihara, K. The role of the host defense system in the development of cerebral vasospasm: analogies between atherosclerosis and subarachnoid hemorrhage. Eur. Neurol. 68, 329–343 (2012).

    Article  PubMed  Google Scholar 

  68. Haskard, D. O., Boyle, J. J. & Mason, J. C. The role of complement in atherosclerosis. Curr. Opin. Lipidol. 19, 478–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Lilien, M. R. & Groothoff, J. W. Cardiovascular disease in children with CKD or ESRD. Nat. Rev. Nephrol. 5, 229–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Nilsson, B., Ekdahl, K. N., Mollnes, T. E. & Lambris, J. D. The role of complement in biomaterial-induced inflammation. Mol. Immunol. 44, 82–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Ažukaitis, K., Loirat, C., Malina, M., Adomaitiene, I. & Jankauskiene, A. Macrovascular involvement in a child with atypical hemolytic uremic syndrome. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-013-2713-3.

Download references

Acknowledgements

The authors are partially supported by grants from Fondazione ART per la Ricerca sui Trapianti ONLUS, (Milan, Italy) and the European Community (FP7 Grant 2012-305,608 EURenOmics).

Author information

Authors and Affiliations

Authors

Contributions

M. Noris researched the data and wrote the article. G. Remuzzi reviewed and edited the manuscript before submission. Both authors made substantial contribution to discussion of the article content.

Corresponding author

Correspondence to Giuseppe Remuzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noris, M., Remuzzi, G. Cardiovascular complications in atypical haemolytic uraemic syndrome. Nat Rev Nephrol 10, 174–180 (2014). https://doi.org/10.1038/nrneph.2013.280

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing