Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signal transduction in podocytes—spotlight on receptor tyrosine kinases

Key Points

  • Podocytes respond to hormones and growth factors that are present in the circulation or locally produced in the glomerulus

  • A variety of receptors on the cell surface are thought to enable podocytes to respond to these external stimuli

  • The podocyte response to growth factors does not involve cell proliferation, but does include mitosis and hypertrophic cell growth, eventually leading to pathological alterations

  • Growth factors signal via receptor tyrosine kinases (RTKs), which are promising targets for cancer therapy

  • To understand and interfere with the pathological effects of growth factors on podocytes and the glomerular filter, their precise receptors must be identified and characterized

  • RTK inhibitors that are already used in cancer therapy might be promising new treatment options for proteinuric kidney diseases

Abstract

The mammalian kidney filtration barrier is a complex multicellular, multicomponent structure that maintains homeostasis by regulating electrolytes, acid–base balance, and blood pressure (via maintenance of salt and water balance). To perform these multiple functions, podocytes—an important component of the filtration apparatus—must process a series of intercellular signals. Integrating these signals with diverse cellular responses enables a coordinated response to various conditions. Although mature podocytes are terminally differentiated and cannot proliferate, they are able to respond to growth factors. It is possible that the initial response of podocytes to growth factors is beneficial and protective, and might include the induction of hypertrophic cell growth. However, extended and/or uncontrolled growth factor signalling might be maladaptive and could result in the induction of apoptosis and podocyte loss. Growth factors signal via the activation of receptor tyrosine kinases (RTKs) on their target cells and around a quarter of the 58 RTK family members that are encoded in the human genome have been identified in podocytes. Pharmacological inhibitors of many RTKs exist and are currently used in experimental and clinical cancer therapy. The identification of pathological RTK-mediated signal transduction pathways in podocytes could provide a starting point for the development of novel therapies for glomerular disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Podocytes form complex communication networks with their environment and are in constant contact with a variety of signal sources and receivers, including other glomerular cell types and the extracellular matrix.
Figure 2: Cell signalling receptors differ in their mechanisms of activation and signal transmission, subcellular localization, and ligand binding.

Similar content being viewed by others

References

  1. Mundel, P. & Kriz, W. Structure and function of podocytes: an update. Anat. Embryol. (Berl.) 192, 385–397 (1995).

    CAS  Google Scholar 

  2. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    CAS  PubMed  Google Scholar 

  3. Neal, C. R. et al. Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions. Am. J. Physiol. Renal Physiol. 293, F1787–F1798 (2007).

    CAS  PubMed  Google Scholar 

  4. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    CAS  PubMed  Google Scholar 

  5. Khurana, S., Bruggeman, L. A. & Kao, H. Y. Nuclear hormone receptors in podocytes. Cell Biosci. 2, 33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sachs, N. & Sonnenberg, A. Cell-matrix adhesion of podocytes in physiology and disease. Nat. Rev. Nephrol. 9, 200–210 (2013).

    CAS  PubMed  Google Scholar 

  7. Gomperts, B. D., Tatham, P. E. R. & Kramer, I. M. Signal Transduction 2nd edn (Elsevier Academic Press, 2009).

    Google Scholar 

  8. Langley, J. N. On the physiology of the salivary secretion: part II. On the mutual antagonism of atropin and pilocarpin, having especial reference to their relations in the sub-maxillary gland of the cat. J. Physiol. 1, 339–369 (1878).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Davenport, H. W. Early history of the concept of chemical transmission of the nerve impulse. Physiologist 34, 178–190 (1991).

    Google Scholar 

  10. Cohen, P. The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem. Sci. 25, 596–601 (2000).

    CAS  PubMed  Google Scholar 

  11. Collett, M. S. & Erikson, R. L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl Acad. Sci. USA 75, 2021–2024 (1978).

    CAS  PubMed  Google Scholar 

  12. Hunter, T. & Sefton, B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl Acad. Sci. USA 77, 1311–1315 (1980).

    CAS  PubMed  Google Scholar 

  13. Ushiro, H. & Cohen, S. Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J. Biol. Chem. 255, 8363–8365 (1980).

    CAS  PubMed  Google Scholar 

  14. Kasuga, M., Karlsson, F. A. & Kahn, C. R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215, 185–187 (1982).

    CAS  PubMed  Google Scholar 

  15. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    CAS  PubMed  Google Scholar 

  16. Sadowski, I., Stone, J. C. & Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell Biol. 6, 4396–4408 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson, D. et al. Binding of SH2 domains of phospholipase C γ1, GAP, and Src to activated growth factor receptors. Science 250, 979–982 (1990).

    CAS  PubMed  Google Scholar 

  18. Pawson, T. & Schlessingert, J. SH2 and SH3 domains. Curr. Biol. 3, 434–442 (1993).

    CAS  PubMed  Google Scholar 

  19. Liu, B. A. et al. The human and mouse complement of SH2 domain proteins—establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22, 851–868 (2006).

    PubMed  Google Scholar 

  20. Karkkainen, S. et al. Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep. 7, 186–191 (2006).

    PubMed  Google Scholar 

  21. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    CAS  PubMed  Google Scholar 

  22. Grassot, J., Mouchiroud, G. & Perriere, G. RTKdb: database of receptor tyrosine kinase. Nucleic Acids Res. 31, 353–358 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ward, C. W. et al. The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Trends Biochem. Sci. 32, 129–137 (2007).

    CAS  PubMed  Google Scholar 

  25. Witsch, E., Sela, M. & Yarden, Y. Roles for growth factors in cancer progression. Physiology (Bethesda) 25, 85–101 (2010).

    CAS  Google Scholar 

  26. Haglund, K., Rusten, T. E. & Stenmark, H. Aberrant receptor signaling and trafficking as mechanisms in oncogenesis. Crit. Rev. Oncog. 13, 39–74 (2007).

    PubMed  Google Scholar 

  27. Giamas, G. et al. Kinases as targets in the treatment of solid tumors. Cell Signal. 22, 984–1002 (2010).

    CAS  PubMed  Google Scholar 

  28. Kriz, W. et al. The role of podocytes in the development of glomerular sclerosis. Kidney Int. Suppl. 45, S64–S72 (1994).

    CAS  PubMed  Google Scholar 

  29. Kriz, W., Shirato, I., Nagata, M., LeHir, M. & Lemley, K. V. The podocyte's response to stress: the enigma of foot process effacement. Am. J. Physiol. Renal Physiol. 304, F333–F347 (2013).

    CAS  PubMed  Google Scholar 

  30. Liapis, H., Romagnani, P. & Anders, H. J. New insights into the pathology of podocyte loss: mitotic catastrophe. Am. J. Pathol. 183, 1364–1374 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Coward, R. J. & Saleem, M. A. Podocytes as a target of insulin. Curr. Diabetes Rev. 7, 22–27 (2011).

    CAS  PubMed  Google Scholar 

  32. Jauregui, A., Mintz, D. H., Mundel, P. & Fornoni, A. Role of altered insulin signaling pathways in the pathogenesis of podocyte malfunction and microalbuminuria. Curr. Opin. Nephrol. Hypertens. 18, 539–545 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stieger, N., Worthmann, K. & Schiffer, M. The role of metabolic and haemodynamic factors in podocyte injury in diabetes. Diabetes Metab. Res. Rev. 27, 207–215 (2011).

    CAS  PubMed  Google Scholar 

  34. Hale, L. J. & Coward, R. J. The insulin receptor and the kidney. Curr. Opin. Nephrol. Hypertens. 22, 100–106 (2013).

    CAS  PubMed  Google Scholar 

  35. Coward, R. J. et al. The human glomerular podocyte is a novel target for insulin action. Diabetes 54, 3095–3102 (2005).

    CAS  PubMed  Google Scholar 

  36. Anfossi, G., Russo, I., Doronzo, G. & Trovati, M. Contribution of insulin resistance to vascular dysfunction. Arch. Physiol. Biochem. 115, 199–217 (2009).

    CAS  PubMed  Google Scholar 

  37. Ritchie, S. A., Ewart, M. A., Perry, C. G., Connell, J. M. & Salt, I. P. The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clin. Sci. (Lond.) 107, 519–532 (2004).

    CAS  Google Scholar 

  38. Wolf, G., Chen, S. & Ziyadeh, F. N. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54, 1626–1634 (2005).

    CAS  PubMed  Google Scholar 

  39. Coward, R. J. et al. Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes 56, 1127–1135 (2007).

    CAS  PubMed  Google Scholar 

  40. Welsh, G. I. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell. Metab. 12, 329–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mogensen, C. E., Christensen, N. J. & Gundersen, H. J. The acute effect of insulin on heart rate, blood pressure, plasma noradrenaline and urinary albumin excretion. The role of changes in blood glucose. Diabetologia 18, 453–457 (1980).

    CAS  PubMed  Google Scholar 

  42. Fogo, A. B. & Kon, V. The glomerulus—a view from the inside—the endothelial cell. Int. J. Biochem. Cell Biol. 42, 1388–1397 (2010).

    CAS  PubMed  Google Scholar 

  43. Advani, A. Vascular endothelial growth factor and the kidney: something of the marvellous. Curr. Opin. Nephrol. Hypertens. 23, 87–92 (2014).

    CAS  PubMed  Google Scholar 

  44. Ku, C. H. et al. Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic mice. Diabetes 57, 2824–2833 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Guan, F., Villegas, G., Teichman, J., Mundel, P. & Tufro, A. Autocrine VEGF-A system in podocytes regulates podocin and its interaction with CD2AP. Am. J. Physiol. Renal Physiol. 291, F422–F428 (2006).

    CAS  PubMed  Google Scholar 

  46. Chen, S. et al. Podocyte-derived vascular endothelial growth factor mediates the stimulation of α3(IV) collagen production by transforming growth factor-β1 in mouse podocytes. Diabetes 53, 2939–2949 (2004).

    CAS  PubMed  Google Scholar 

  47. Foster, R. R. et al. Functional evidence that vascular endothelial growth factor may act as an autocrine factor on human podocytes. Am. J. Physiol. Renal Physiol. 284, F1263–F1273 (2003).

    CAS  PubMed  Google Scholar 

  48. Veron, D. et al. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int. 77, 989–999 (2010).

    CAS  PubMed  Google Scholar 

  49. Veron, D. et al. Induction of podocyte VEGF164 overexpression at different stages of development causes congenital nephrosis or steroid-resistant nephrotic syndrome. Am. J. Pathol. 177, 2225–2233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sison, K. et al. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling. J. Am. Soc. Nephrol. 21, 1691–1701 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Itoh, N. & Ornitz, D. M. Evolution of the FGF and FGFR gene families. Trends Genet. 20, 563–569 (2004).

    CAS  PubMed  Google Scholar 

  52. White, K. E. et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 60, 2079–2086 (2001).

    CAS  PubMed  Google Scholar 

  53. Szebenyi, G. & Fallon, J. F. Fibroblast growth factors as multifunctional signaling factors. Int. Rev. Cytol. 185, 45–106 (1999).

    CAS  PubMed  Google Scholar 

  54. Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).

    CAS  PubMed  Google Scholar 

  55. Bates, C. M. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr. Nephrol. 22, 343–349 (2007).

    PubMed  Google Scholar 

  56. Celli, G., LaRochelle, W. J., Mackem, S., Sharp, R. & Merlino, G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J. 17, 1642–1655 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Davidson, G., Dono, R. & Zeller, R. FGF signalling is required for differentiation-induced cytoskeletal reorganisation and formation of actin-based processes by podocytes. J. Cell Sci. 114, 3359–3366 (2001).

    CAS  PubMed  Google Scholar 

  58. Floege, J. et al. Basic fibroblast growth factor augments podocyte injury and induces glomerulosclerosis in rats with experimental membranous nephropathy. J. Clin. Invest. 96, 2809–2819 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cauchi, J. et al. Light-microscopic immunolocalization of fibroblast growth factor-1 and -2 in adult rat kidney. Cell Tissue Res. 285, 179–187 (1996).

    CAS  PubMed  Google Scholar 

  60. Takeuchi, A. et al. Basic fibroblast growth factor promotes proliferation of rat glomerular visceral epithelial cells in vitro. Am. J. Pathol. 141, 107–116 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Floege, J. et al. Localization of fibroblast growth factor-2 (basic FGF) and FGF receptor-1 in adult human kidney. Kidney Int. 56, 883–897 (1999).

    CAS  PubMed  Google Scholar 

  62. Floege, J. et al. Rat glomerular mesangial cells synthesize basic fibroblast growth factor. Release, upregulated synthesis, and mitogenicity in mesangial proliferative glomerulonephritis. J. Clin. Invest. 90, 2362–2369 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Floege, J. et al. Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J. Clin. Invest. 92, 2952–2962 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ballermann, B. J. Regulation of bovine glomerular endothelial cell growth in vitro. Am. J. Physiol. 256, C182–C189 (1989).

    CAS  PubMed  Google Scholar 

  65. Dono, R. & Zeller, R. Cell-type-specific nuclear translocation of fibroblast growth factor-2 isoforms during chicken kidney and limb morphogenesis. Dev. Biol. 163, 316–330 (1994).

    CAS  PubMed  Google Scholar 

  66. Tossidou, I. et al. CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes. J. Biol. Chem. 285, 25285–25295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tossidou, I. et al. CD2AP/CIN85 balance determines receptor tyrosine kinase signaling response in podocytes. J. Biol. Chem. 282, 7457–7464 (2007).

    CAS  PubMed  Google Scholar 

  68. Ray, P. E. et al. bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice. Kidney Int. 46, 759–772 (1994).

    CAS  PubMed  Google Scholar 

  69. Strutz, F. et al. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int. 57, 1521–1538 (2000).

    CAS  PubMed  Google Scholar 

  70. Mazue, G., Bertelero, F., Garofano, L., Brughera, M. & Carminati, P. Experience with the preclinical assessment of basic fibroblast growth factor (bFGF). Toxicol. Lett. 64–65, 329–338 (1992).

    Google Scholar 

  71. Kriz, W., Hähnel, B., Rösener, S. & Elger, M. Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int. 48, 1435–1450 (1995).

    CAS  PubMed  Google Scholar 

  72. Crabtree, G. R. & Olson, E. N. NFAT signaling: choreographing the social lives of cells. Cell 109 (Suppl.), S67–S79 (2002).

    CAS  PubMed  Google Scholar 

  73. Wang, Y. et al. Activation of NFAT signaling in podocytes causes glomerulosclerosis. J. Am. Soc. Nephrol. 21, 1657–1666 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nijenhuis, T. et al. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am. J. Pathol. 179, 1719–1732 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shankland, S. J. et al. Cyclin kinase inhibitors are increased during experimental membranous nephropathy: potential role in limiting glomerular epithelial cell proliferation in vivo. Kidney Int. 52, 404–413 (1997).

    CAS  PubMed  Google Scholar 

  76. Riley, S. G., Steadman, R., Williams, J. D., Floege, J. & Phillips, A. O. Augmentation of kidney injury by basic fibroblast growth factor or platelet-derived growth factor does not induce progressive diabetic nephropathy in the Goto Kakizaki model of non-insulin-dependent diabetes. J. Lab. Clin. Med. 134, 304–312 (1999).

    CAS  PubMed  Google Scholar 

  77. Sasaki, T., Hatta, H. & Osawa, G. Cytokines and podocyte injury: the mechanism of fibroblast growth factor 2-induced podocyte injury. Nephrol. Dial. Transplant. 14 (Suppl. 1), 33–34 (1999).

    CAS  PubMed  Google Scholar 

  78. Sasaki, T., Jyo, Y., Tanda, N., Tamai, H. & Osawa, G. The role of basic fibroblast growth factor (FGF2) in glomerular epithelial cell injury. Contrib. Nephrol. 118, 68–77 (1996).

    CAS  PubMed  Google Scholar 

  79. Beenken, A. & Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Unger, E. F. et al. Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am. J. Cardiol. 85, 1414–1419 (2000).

    CAS  PubMed  Google Scholar 

  81. Zimering, M. B. & Eng, J. Increased basic fibroblast growth factor-like substance in plasma from a subset of middle-aged or elderly male diabetic patients with microalbuminuria or proteinuria. J. Clin. Endocrinol. Metab. 81, 4446–4452 (1996).

    CAS  PubMed  Google Scholar 

  82. Ray, P. E., Liu, X. H., Xu, L. & Rakusan, T. Basic fibroblast growth factor in HIV-associated hemolytic uremic syndrome. Pediatr. Nephrol. 13, 586–593 (1999).

    CAS  PubMed  Google Scholar 

  83. Nugent, M. A. & Iozzo, R. V. Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32, 115–120 (2000).

    CAS  PubMed  Google Scholar 

  84. Floege, J. et al. Endogenous fibroblast growth factor-2 mediates cytotoxicity in experimental mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 9, 792–801 (1998).

    CAS  PubMed  Google Scholar 

  85. Nickel, W. Pathways of unconventional protein secretion. Curr. Opin. Biotechnol. 21, 621–626 (2010).

    CAS  PubMed  Google Scholar 

  86. Ornitz, D. M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22, 108–112 (2000).

    CAS  PubMed  Google Scholar 

  87. Schumacher, V. A. et al. WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier. J. Am. Soc. Nephrol. 22, 1286–1296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pelletier, J. et al. Germline mutations in the Wilm's tumor suppressor gene are associated with abnormal urogential development in Denys-Drash syndrome. Cell 67, 437–447 (1991).

    CAS  PubMed  Google Scholar 

  89. Okamoto, K. et al. Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat. Genet. 43, 459–463 (2011).

    CAS  PubMed  Google Scholar 

  90. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    CAS  PubMed  Google Scholar 

  91. Tallquist, M. & Kazlauskas, A. PDGF signaling in cells and mice. Cytokine Growth Factor Rev. 15, 205–213 (2004).

    CAS  PubMed  Google Scholar 

  92. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    CAS  PubMed  Google Scholar 

  93. Floege, J. et al. Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int. 41, 297–309 (1992).

    CAS  PubMed  Google Scholar 

  94. Matsuda, M. et al. Gene expression of PDGF and PDGF receptor in various forms of glomerulonephritis. Am. J. Nephrol. 17, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  95. Uehara, G., Suzuki, D., Toyoda, M., Umezono, T. & Sakai, H. Glomerular expression of platelet-derived growth factor (PDGF)-A, -B chain and PDGF receptor-α, -β in human diabetic nephropathy. Clin. Exp. Nephrol. 8, 36–42 (2004).

    CAS  PubMed  Google Scholar 

  96. Iida, H. et al. Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc. Natl Acad. Sci. USA 88, 6560–6564 (1991).

    CAS  PubMed  Google Scholar 

  97. van Roeyen, C. R. et al. Biological responses to PDGF-BB versus PDGF-DD in human mesangial cells. Kidney Int. 69, 1393–1402 (2006).

    CAS  PubMed  Google Scholar 

  98. Ostendorf, T. et al. A fully human monoclonal antibody (CR002) identifies PDGF-D as a novel mediator of mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 14, 2237–2247 (2003).

    CAS  PubMed  Google Scholar 

  99. Hudkins, K. L. et al. Exogenous PDGF-D is a potent mesangial cell mitogen and causes a severe mesangial proliferative glomerulopathy. J. Am. Soc. Nephrol. 15, 286–298 (2004).

    CAS  PubMed  Google Scholar 

  100. Changsirikulchai, S. et al. Platelet-derived growth factor-D expression in developing and mature human kidneys. Kidney Int. 62, 2043–2054 (2002).

    CAS  PubMed  Google Scholar 

  101. Gesualdo, L. et al. Expression of platelet-derived growth factor receptors in normal and diseased human kidney. An immunohistochemistry and in situ hybridization study. J. Clin. Invest. 94, 50–58 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Alpers, C. E., Seifert, R. A., Hudkins, K. L., Johnson, R. J. & Bowen-Pope, D. F. PDGF-receptor localizes to mesangial, parietal epithelial, and interstitial cells in human and primate kidneys. Kidney Int. 43, 286–294 (1993).

    CAS  PubMed  Google Scholar 

  103. Bergsten, E. et al. PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor. Nat. Cell Biol. 3, 512–516 (2001).

    CAS  PubMed  Google Scholar 

  104. van Roeyen, C. R. et al. Induction of progressive glomerulonephritis by podocyte-specific overexpression of platelet-derived growth factor-D. Kidney Int. 80, 1292–1305 (2011).

    CAS  PubMed  Google Scholar 

  105. Nakamura, T., Nawa, K. & Ichihara, A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem. Biophys. Res. Commun. 122, 1450–1459 (1984).

    CAS  PubMed  Google Scholar 

  106. Nakamura, T. et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440–443 (1989).

    CAS  PubMed  Google Scholar 

  107. Nakamura, T. & Mizuno, S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 86, 588–610 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Park, M. et al. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc. Natl Acad. Sci. USA 84, 6379–6383 (1987).

    CAS  PubMed  Google Scholar 

  109. Sonnenberg, E., Meyer, D., Weidner, K. M. & Birchmeier, C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J. Cell Biol. 123, 223–235 (1993).

    CAS  PubMed  Google Scholar 

  110. Zhang, X. et al. Sp1 and Sp3 transcription factors synergistically regulate HGF receptor gene expression in kidney. Am. J. Physiol. Renal Physiol. 284, F82–F94 (2003).

    CAS  PubMed  Google Scholar 

  111. Mizuno, S., Matsumoto, K. & Nakamura, T. HGF as a renotrophic and anti-fibrotic regulator in chronic renal disease. Front. Biosci. 13, 7072–7086 (2008).

    CAS  PubMed  Google Scholar 

  112. Mizuno, S. et al. Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J. Clin. Invest. 101, 1827–1834 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dai, C. et al. Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice. J. Am. Soc. Nephrol. 15, 2637–2647 (2004).

    CAS  PubMed  Google Scholar 

  114. Cruzado, J. M. et al. Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats. Diabetes 53, 1119–1127 (2004).

    CAS  PubMed  Google Scholar 

  115. Bu, X. et al. Systemic administration of naked plasmid encoding HGF attenuates puromycin aminonucleoside-induced damage of murine glomerular podocytes. Am. J. Physiol. Renal Physiol. 301, F784–F792 (2011).

    PubMed  Google Scholar 

  116. Kato, T., Mizuno, S. & Nakamura, T. Preservations of nephrin and synaptopodin by recombinant hepatocyte growth factor in podocytes for the attenuations of foot process injury and albuminuria in nephritic mice. Nephrology (Carlton) 16, 310–318 (2011).

    CAS  Google Scholar 

  117. Dai, C., Saleem, M. A., Holzman, L. B., Mathieson, P. & Liu, Y. Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney Int. 77, 962–973 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fornoni, A., Li, H., Foschi, A., Striker, G. E. & Striker, L. J. Hepatocyte growth factor, but not insulin-like growth factor I protects podocytes against cyclosporin A-induced apoptosis. Am. J. Pathol. 158, 275–280 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, J. & Liu, Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J. Am. Soc. Nephrol. 13, 96–107 (2002).

    CAS  PubMed  Google Scholar 

  120. Zhang, J., Yang, J. & Liu, Y. Role of Bcl-xL induction in HGF-mediated renal epithelial cell survival after oxidant stress. Int. J. Clin. Exp. Pathol. 1, 242–253 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yamaguchi, Y. et al. Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am. J. Kidney Dis. 54, 653–664 (2009).

    CAS  PubMed  Google Scholar 

  122. Li, Y. et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am. J. Pathol. 172, 299–308 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104–117 (2011).

    CAS  PubMed  Google Scholar 

  124. Zhang, H. et al. ErbB receptors: from oncogenes to targeted cancer therapies. J. Clin. Invest. 117, 2051–2058 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Takeuchi, K. & Ito, F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol. Pharm. Bull. 34, 1774–1780 (2011).

    CAS  PubMed  Google Scholar 

  126. Force, T. & Kolaja, K. L. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug Discov. 10, 111–126 (2011).

    CAS  PubMed  Google Scholar 

  127. Nowak, G. & Schnellmann, R. G. Integrative effects of EGF on metabolism and proliferation in renal proximal tubular cells. Am. J. Physiol. 269, C1317–C1325 (1995).

    CAS  PubMed  Google Scholar 

  128. Pugh, J. L., Sweeney, W. E. Jr. & Avner, E. D. Tyrosine kinase activity of the EGF receptor in murine metanephric organ culture. Kidney Int. 47, 774–781 (1995).

    CAS  PubMed  Google Scholar 

  129. Zeng, F., Singh, A. B. & Harris, R. C. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp. Cell Res. 315, 602–610 (2009).

    CAS  PubMed  Google Scholar 

  130. Lautrette, A. et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat. Med. 11, 867–874 (2005).

    CAS  PubMed  Google Scholar 

  131. Pillebout, E. et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J. Clin. Invest. 112, 843–852 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Coaxum, S. D., Garnovskaya, M. N., Gooz, M., Baldys, A. & Raymond, J. R. Epidermal growth factor activates Na+/H+ exchanger in podocytes through a mechanism that involves Janus kinase and calmodulin. Biochim. Biophys. Acta 1793, 1174–1181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Harris, R. C., Hoover, R. L., Jacobson, H. R. & Badr, K. F. Evidence for glomerular actions of epidermal growth factor in the rat. J. Clin. Invest. 82, 1028–1039 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Adler, S. & Eng, B. Reversal of inhibition of rat glomerular epithelial cell growth by growth factors. Am. J. Pathol. 136, 557–563 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Tassin, M. T. et al. Effects of epidermal growth factor on calf renal glomerular cells in vitro. Growth Factors 6, 243–254 (1992).

    CAS  PubMed  Google Scholar 

  136. Flannery, P. J. & Spurney, R. F. Transactivation of the epidermal growth factor receptor by angiotensin II in glomerular podocytes. Nephron Exp. Nephrol. 103, e109–e118 (2006).

    CAS  PubMed  Google Scholar 

  137. Suzuki, H., Yamamoto, T., Fujigaki, Y., Eguchi, S. & Hishida, A. Comparison of ROCK and EGFR activation pathways in the progression of glomerular injuries in AngII-infused rats. Ren. Fail. 33, 1005–1012 (2011).

    CAS  PubMed  Google Scholar 

  138. Chen, J., Chen, J. K., Neilson, E. G. & Harris, R. C. Role of EGF receptor activation in angiotensin II-induced renal epithelial cell hypertrophy. J. Am. Soc. Nephrol. 17, 1615–1623 (2006).

    CAS  PubMed  Google Scholar 

  139. Advani, A. et al. Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy. Nephrology (Carlton) 16, 573–581 (2011).

    Google Scholar 

  140. Feng, L. et al. Heparin-binding EGF-like growth factor contributes to reduced glomerular filtration rate during glomerulonephritis in rats. J. Clin. Invest. 105, 341–350 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bollee, G. M. et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat. Med. 17, 1242–1250 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Sakai, M. et al. Production of heparin binding epidermal growth factor-like growth factor in the early phase of regeneration after acute renal injury. Isolation and localization of bioactive molecules. J. Clin. Invest. 99, 2128–2138 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Oda, K., Matsuoka, Y., Funahashi, A. & Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1, 2005.0010 (2005).

    PubMed  PubMed Central  Google Scholar 

  144. Satchell, S. C. et al. Human podocytes express angiopoietin 1, a potential regulator of glomerular vascular endothelial growth factor. J. Am. Soc. Nephrol. 13, 544–550 (2002).

    CAS  PubMed  Google Scholar 

  145. Davis, B. et al. Podocyte-specific induced overexpression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J. Am. Soc. Nephrol. 18, 2320–2329 (2007).

    CAS  PubMed  Google Scholar 

  146. Gao, X. et al. Angiopoietin-like protein 3 regulates the motility and permeability of podocytes by altering nephrin expression in vitro. Biochem. Biophys. Res. Commun. 399, 31–36 (2010).

    CAS  PubMed  Google Scholar 

  147. Jia, R., Hong, X., Li, S., Haichun, Y. & Chuanming, H. Expression of angiopoietin-like 3 associated with puromycin-induced podocyte damage. Nephron Exp. Nephrol. 115, e38–e45 (2010).

    PubMed  Google Scholar 

  148. Clement, L. C. et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 17, 117–122 (2011).

    CAS  PubMed  Google Scholar 

  149. Guha, M., Xu, Z. G., Tung, D., Lanting, L. & Natarajan, R. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J. 21, 3355–3368 (2007).

    CAS  PubMed  Google Scholar 

  150. Yokoi, H. et al. Overexpression of connective tissue growth factor in podocytes worsens diabetic nephropathy in mice. Kidney Int. 73, 446–455 (2008).

    CAS  PubMed  Google Scholar 

  151. Fuchshofer, R. et al. Connective tissue growth factor modulates podocyte actin cytoskeleton and extracellular matrix synthesis and is induced in podocytes upon injury. Histochem. Cell Biol. 136, 301–319 (2011).

    CAS  PubMed  Google Scholar 

  152. Dai, H. Y. et al. The roles of connective tissue growth factor and integrin-linked kinase in high glucose-induced phenotypic alterations of podocytes. J. Cell Biochem. 113, 293–301 (2012).

    CAS  PubMed  Google Scholar 

  153. Gross, O. et al. DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney Int. 66, 102–111 (2004).

    CAS  PubMed  Google Scholar 

  154. Kerroch, M. et al. Genetic inhibition of discoidin domain receptor 1 protects mice against crescentic glomerulonephritis. FASEB J. 26, 4079–4091 (2012).

    CAS  PubMed  Google Scholar 

  155. Hashimoto, T. et al. Ephrin-B1 localizes at the slit diaphragm of the glomerular podocyte. Kidney Int. 72, 954–964 (2007).

    CAS  PubMed  Google Scholar 

  156. Wnuk, M. et al. Podocyte EphB4 signaling helps recovery from glomerular injury. Kidney Int. 81, 1212–1225 (2012).

    CAS  PubMed  Google Scholar 

  157. Hale, L. J. et al. Insulin-like growth factor-II is produced by, signals to and is an important survival factor for the mature podocyte in man and mouse. J. Pathol. 230, 95–106 (2013).

    CAS  PubMed  Google Scholar 

  158. Fujinaka, H. et al. Expression and localization of insulin-like growth factor binding proteins in normal and proteinuric kidney glomeruli. Nephrology (Carlton) 15, 700–709 (2010).

    CAS  Google Scholar 

  159. Bridgewater, D. J., Ho, J., Sauro, V. & Matsell, D. G. Insulin-like growth factors inhibit podocyte apoptosis through the PI3 kinase pathway. Kidney Int. 67, 1308–1314 (2005).

    CAS  PubMed  Google Scholar 

  160. Bridgewater, D. J., Dionne, J. M., Butt, M. J., Pin, C. L. & Matsell, D. G. The role of the type I insulin-like growth factor receptor (IGF-IR) in glomerular integrity. Growth Horm. IGF Res. 18, 26–37 (2008).

    CAS  PubMed  Google Scholar 

  161. Prabakaran, T. et al. Receptor-mediated endocytosis of α-galactosidase A in human podocytes in Fabry disease. PLoS ONE 6, e25065 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hale, L. J. et al. Insulin directly stimulates VEGF-A production in the glomerular podocyte. Am. J. Physiol. Renal Physiol. 305, F182–F188 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim, E. Y., Anderson, M. & Dryer, S. E. Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidases and reactive oxygen species. Am. J. Physiol. Renal Physiol. 302, F298–F307 (2012).

    CAS  PubMed  Google Scholar 

  164. Carito, V. et al. Localization of nerve growth factor (NGF) receptors in the mitochondrial compartment: characterization and putative role. Biochim. Biophys. Acta 1820, 96–103 (2012).

    CAS  PubMed  Google Scholar 

  165. Hahn, W. H., Suh, J. S. & Cho, B. S. Linkage and association study of neurotrophins and their receptors as novel susceptibility genes for childhood IgA nephropathy. Pediatr. Res. 69, 299–305 (2011).

    CAS  PubMed  Google Scholar 

  166. Tsui, C. C., Shankland, S. J. & Pierchala, B. A. Glial cell line-derived neurotrophic factor and its receptor ret is a novel ligand-receptor complex critical for survival response during podocyte injury. J. Am. Soc. Nephrol. 17, 1543–1552 (2006).

    CAS  PubMed  Google Scholar 

  167. Benz, K. et al. Early glomerular alterations in genetically determined low nephron number. Am. J. Physiol. Renal Physiol. 300, F521–F530 (2011).

    CAS  PubMed  Google Scholar 

  168. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J. Reiser's research is supported by NIH grants DK073495, DK089394, DK093773 and DK101350. S. Sever's research is funded by NIH grant DK087985. C. Faul's research is funded by a Carl W. Gottschalk Research Scholar Grant from the American Society of Nephrology.

Author information

Authors and Affiliations

Authors

Contributions

J. Reiser and C. Faul researched the data and wrote the article. All authors made a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jochen Reiser or Christian Faul.

Ethics declarations

Competing interests

J. Reiser has issued and pending patents on the development of novel kidney protective therapeutics. He stands to gain royalties from their commercialization. S. Sever and C. Faul declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiser, J., Sever, S. & Faul, C. Signal transduction in podocytes—spotlight on receptor tyrosine kinases. Nat Rev Nephrol 10, 104–115 (2014). https://doi.org/10.1038/nrneph.2013.274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing