Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut–renal axis: do incretin-based agents confer renoprotection in diabetes?

An Addendum to this article was published on 02 May 2014

This article has been updated

Key Points

  • Incretin-based therapies—glucagon-like peptide 1 receptor (GLP-1R) agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors—improve glycaemic control by ameliorating multiple phenotypic defects associated with type 2 diabetes mellitus

  • GLP-1R agonists reduce body weight, whereas DPP-4 inhibitors do not affect body weight; both are generally well-tolerated by patients

  • Evidence from animal and human studies indicates that incretin-based therapies might prevent the onset and progression of diabetic nephropathy, as measured by clinical and histological improvements

  • Incretin-based therapies might positively influence haemodynamic variables (hyperfiltration, glomerular capillary hydraulic pressure, and systemic blood pressure), metabolic factors (glycaemia, dyslipidaemia, oxidative stress) and inflammatory pathways in the pathogenesis of diabetic nephropathy

  • Inhibitors of DPP-4 block the degradation of endogenous GLP-1 and might also influence circulating levels and activity of other vasoactive peptides that could act on the kidney

Abstract

Diabetic nephropathy is the leading cause of end-stage renal disease worldwide, and is associated with a high risk of cardiovascular morbidity and mortality. Intensive control of glucose levels and blood pressure is currently the mainstay of both prevention and treatment of diabetic nephropathy. However, this strategy cannot fully prevent the development and progression of diabetic nephropathy, and an unmet need remains for additional novel therapies. The incretin-based agents—agonists of glucagon-like peptide 1 receptor (GLP-1R) and inhibitors of dipeptidyl peptidase 4 (DPP-4), an enzyme that degrades glucagon-like peptide 1—are novel blood-glucose-lowering drugs used in the treatment of type 2 diabetes mellitus (T2DM). Therapeutic agents from these two drug classes improve pancreatic islet function and induce extrapancreatic effects that ameliorate various phenotypic defects of T2DM that are beyond glucose control. Agonists of GLP-1R and inhibitors of DPP-4 reduce blood pressure, dyslipidaemia and inflammation, although only GLP-1R agonists decrease body weight. Both types of incretin-based agents inhibit renal tubular sodium reabsorption and decrease glomerular pressure as well as albuminuria in rodents and humans. In rodents, incretin-based therapies also prevent onset of the morphological abnormalities of diabetic nephropathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of kidney disease in patients with diabetes.
Figure 2: The gut–renal axis.
Figure 3: Effects of incretin-based therapies on renal risk factors in T2DM.
Figure 4: Potential GLP-1-independent effects of DPP-4 inhibitors on renal outcome.

Similar content being viewed by others

Change history

  • 02 May 2014

    It is with regret that Nature Review Nephrology informs readers that Professor Michaela Diamant passed away on 9 April 2014. Future correspondence for this article should be addressed to Marcel H. A. Muskiet (ma.muskiet@vumc.nl).

References

  1. Whiting, D. R., Guariguata, L., Weil, C. & Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94, 311–321 (2011).

    PubMed  Google Scholar 

  2. Williams, M. E. Diabetic CKD/ESRD 2010: a progress report? Semin. Dial. 23, 129–133 (2010).

    PubMed  Google Scholar 

  3. Ninomiya, T. et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J. Am. Soc. Nephrol. 20, 1813–1821 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jager, A. et al. Microalbuminuria is strongly associated with NIDDM and hypertension, but not with the insulin resistance syndrome: the Hoorn Study. Diabetologia 41, 694–700 (1998).

    CAS  PubMed  Google Scholar 

  6. Turner, R. C. et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 316, 823–828 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ismail, N., Becker, B., Strzelczyk, P. & Ritz, E. Renal disease and hypertension in non-insulin-dependent diabetes mellitus. Kidney Int. 55, 1–28 (1999).

    CAS  PubMed  Google Scholar 

  8. Hamet, P. What matters in ADVANCE and ADVANCE-ON. Diabetes Obes. Metab. 14 (Suppl. 1), 20–29 (2012).

    CAS  PubMed  Google Scholar 

  9. Gaede, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348, 383–393 (2003).

    PubMed  Google Scholar 

  10. Ruggenenti, P. & Remuzzi, G. Nephropathy of type 1 and type 2 diabetes: diverse pathophysiology, same treatment? Nephrol. Dial. Transplant. 15, 1900–1902 (2000).

    CAS  PubMed  Google Scholar 

  11. Cooper, M. E. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 44, 1957–1972 (2001).

    CAS  PubMed  Google Scholar 

  12. Barnes, D., Pinto, J. & Viberti, G. in Oxford Textbook of Clinical Nephrology (ed. Davison, A.) 723–775 (Oxford University Press, 1998).

    Google Scholar 

  13. Helal, I., Fick-Brosnahan, G. M., Reed-Gitomer, B. & Schrier, R. W. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 8, 293–300 (2012).

    CAS  PubMed  Google Scholar 

  14. Vallon, V. & Thomson, S. C. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu. Rev. Physiol. 74, 351–375 (2012).

    CAS  PubMed  Google Scholar 

  15. Fioretto, P. & Mauer, M. Histopathology of diabetic nephropathy. Semin. Nephrol. 27, 195–207 (2007).

    PubMed  PubMed Central  Google Scholar 

  16. Frische, S. Glomerular filtration rate in early diabetes: ongoing discussions of causes and mechanisms. J. Nephrol. 24, 537–540 (2011).

    PubMed  Google Scholar 

  17. Saad, S. et al. High glucose transactivates the EGF receptor and up-regulates serum glucocorticoid kinase in the proximal tubule. Kidney Int. 68, 985–997 (2005).

    CAS  PubMed  Google Scholar 

  18. Ruggenenti, P., Cravedi, P. & Remuzzi, G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol. 6, 319–330 (2010).

    CAS  PubMed  Google Scholar 

  19. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 107, 1058–1070 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Du, X. L. et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl Acad. Sci. USA 97, 12222–12226 (2000).

    CAS  PubMed  Google Scholar 

  21. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

    CAS  PubMed  Google Scholar 

  22. Navarro-González, J. F., Mora-Fernández, C., Muros de Fuentes, M. & García-Pérez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 7, 327–340 (2011).

    PubMed  Google Scholar 

  23. Poulsen, P. L., Hansen, K. W. & Mogensen, C. E. Ambulatory blood pressure in the transition from normo- to microalbuminuria. A longitudinal study in IDDM patients. Diabetes 43, 1248–1253 (1994).

    CAS  PubMed  Google Scholar 

  24. Rosario, R. F. & Prabhakar, S. Lipids and diabetic nephropathy. Curr. Diab. Rep. 6, 455–462 (2006).

    CAS  PubMed  Google Scholar 

  25. Ziyadeh, F. N. & Wolf, G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr. Diabetes Rev. 4, 39–45 (2008).

    CAS  PubMed  Google Scholar 

  26. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Chapter 1: definition and classification of CKD. Kidney Int. Suppl. 3, 19–62 (2013).

  27. Abbate, M., Zoja, C. & Remuzzi, G. How does proteinuria cause progressive renal damage? J. Am. Soc. Nephrol. 17, 2974–2984 (2006).

    CAS  PubMed  Google Scholar 

  28. Adler, A. I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63, 225–232 (2003).

    PubMed  Google Scholar 

  29. National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am. J. Kidney Dis. 60, 850–886 (2012).

  30. Kramer, H. J., Nguyen, Q. D., Curhan, G. & Hsu, C.-Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289, 3273–3277 (2003).

    PubMed  Google Scholar 

  31. Basi, S., Fesler, P., Mimran, A. & Lewis, J. B. Microalbuminuria in type 2 diabetes and hypertension: a marker, treatment target, or innocent bystander? Diabetes Care 31 (Suppl. 2), S194–S201 (2008).

    CAS  PubMed  Google Scholar 

  32. Perkins, B. A., Ficociello, L. H., Roshan, B., Warram, J. H. & Krolewski, A. S. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 77, 57–64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Heerspink, H. J. & de Zeeuw, D. The kidney in type 2 diabetes therapy. Rev. Diabet. Stud. 8, 392–402 (2011).

    PubMed  Google Scholar 

  34. Wang, P. H., Lau, J. & Chalmers, T. C. Meta-analysis of effects of intensive blood-glucose control on late complications of type I diabetes. Lancet 341, 1306–1309 (1993).

    CAS  PubMed  Google Scholar 

  35. [No authors listed] The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 329, 977–986 (1993).

  36. De Boer, I. H. et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N. Engl. J. Med. 365, 2366–2376 (2011).

    CAS  PubMed  Google Scholar 

  37. Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643–2653 (2005).

    PubMed  Google Scholar 

  38. [No authors listed] Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 837–853 (1998).

  39. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    CAS  PubMed  Google Scholar 

  40. Skyler, J. S. et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology. Circulation 119, 351–357 (2009).

    PubMed  Google Scholar 

  41. Gerstein, H. C. et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    CAS  PubMed  Google Scholar 

  42. Ismail-Beigi, F. et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 376, 419–430 (2010).

    PubMed  PubMed Central  Google Scholar 

  43. Patel, A. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    CAS  PubMed  Google Scholar 

  44. Duckworth, W. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360, 129–139 (2009).

    CAS  PubMed  Google Scholar 

  45. Agrawal, L. et al. Observation on renal outcomes in the Veterans Affairs Diabetes Trial. Diabetes Care 34, 2090–2094 (2011).

    PubMed  PubMed Central  Google Scholar 

  46. Coca, S. G., Ismail-Beigi, F., Haq, N., Krumholz, H. M. & Parikh, C. R. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch. Intern. Med. 172, 761–769 (2012).

    PubMed  PubMed Central  Google Scholar 

  47. Perkovic, V. et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 83, 517–523 (2013).

    CAS  PubMed  Google Scholar 

  48. Inzucchi, S. E. et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35, 1364–1379 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. [No authors listed] Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317, 703–713 (1998).

    PubMed Central  Google Scholar 

  50. Holman, R. R., Paul, S. K., Bethel, M. A., Neil, H. A. & Matthews, D. R. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N. Engl. J. Med. 359, 1565–1576 (2008).

    CAS  PubMed  Google Scholar 

  51. Patel, A. et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370, 829–840 (2007).

    CAS  PubMed  Google Scholar 

  52. Cushman, W. C. et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1575–1585 (2010).

    PubMed  Google Scholar 

  53. Ismail-Beigi, F. et al. Combined intensive blood pressure and glycemic control does not produce an additive benefit on microvascular outcomes in type 2 diabetic patients. Kidney Int. 81, 586–594 (2012).

    CAS  PubMed  Google Scholar 

  54. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. Suppl. 2, 337–414 (2012).

  55. Gaede, P., Lund-Andersen, H., Parving, H.-H. & Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 358, 580–591 (2008).

    CAS  PubMed  Google Scholar 

  56. Lewis, E. J. et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    CAS  PubMed  Google Scholar 

  57. [No authors listed] Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group. Lancet 349, 1787–1792 (1997).

  58. Mauer, M. et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N. Engl. J. Med. 361, 40–51 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bilous, R. et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann. Intern. Med. 151, 11–20 (2009).

    PubMed  Google Scholar 

  60. [No authors listed] Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 355, 253–259 (2000).

  61. Ruggenenti, P. et al. Preventing microalbuminuria in type 2 diabetes. N. Engl. J. Med. 351, 1941–1951 (2004).

    CAS  PubMed  Google Scholar 

  62. Haller, H. et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N. Engl. J. Med. 364, 907–917 (2011).

    CAS  PubMed  Google Scholar 

  63. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    CAS  PubMed  Google Scholar 

  64. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    CAS  PubMed  Google Scholar 

  65. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    CAS  PubMed  Google Scholar 

  66. Yusuf, S. et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet 372, 1174–1183 (2008).

    CAS  PubMed  Google Scholar 

  67. Mallat, S. G. Dual renin-angiotensin system inhibition for prevention of renal and cardiovascular events: do the latest trials challenge existing evidence? Cardiovasc. Diabetol. 12, 108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

    CAS  PubMed  Google Scholar 

  69. Parving, H.-H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).

    CAS  PubMed  Google Scholar 

  70. Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 369, 1892–1903 (2013).

    CAS  PubMed  Google Scholar 

  71. Bakris, G. L. et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J. Hypertens. 24, 2047–2055 (2006).

    CAS  PubMed  Google Scholar 

  72. Schernthaner, G., Matthews, D. R., Charbonnel, B., Hanefeld, M. & Brunetti, P. Efficacy and safety of pioglitazone versus metformin in patients with type 2 diabetes mellitus: a double-blind, randomized trial. J. Clin. Endocrinol. Metab. 89, 6068–6076 (2004).

    CAS  PubMed  Google Scholar 

  73. European Medicines Agency Press Office. European Medicines Agency recommends suspension of avandia, avandamet and avaglim. Anti-diabetes medication to be taken off the market. [online] (2010).

  74. Schernthaner, G., Currie, C. J. & Schernthaner, G.-H. Do we still need pioglitazone for the treatment of type 2 diabetes? A risk-benefit critique in 2013. Diabetes Care 36 (Suppl. 2), S155–S161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Eissele, R. et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. J. Clin. Invest. 22, 283–291 (1992).

    CAS  PubMed  Google Scholar 

  76. Kreymann, B., Williams, G., Ghatei, M. A. & Bloom, S. R. Glucagon-like peptide-17–36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    CAS  PubMed  Google Scholar 

  77. Fineman, M. S., Cirincione, B. B., Maggs, D. & Diamant, M. GLP-1 based therapies: differential effects on fasting and postprandial glucose. Diabetes. Obes. Metab. 14, 675–688 (2012).

    CAS  PubMed  Google Scholar 

  78. Elrick, H., Stimmler, L., Hlad, C. J. & Arai, Y. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 24, 1076–1082 (1964).

    CAS  PubMed  Google Scholar 

  79. McIntyre, N., Holdsworrth, C. D. & Turner, D. S. New interpretation of oral glucose tolerance. Lancet 2, 20–21 (1964).

    CAS  PubMed  Google Scholar 

  80. Nauck, M. A. et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63, 492–498 (1986).

    CAS  PubMed  Google Scholar 

  81. Nauck, M., Stöckmann, F., Ebert, R. & Creutzfeldt, W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986).

    CAS  PubMed  Google Scholar 

  82. Nauck, M. A. et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 17–36 amide in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993).

    CAS  PubMed  Google Scholar 

  83. Zander, M., Madsbad, S., Madsen, J. L. & Holst, J. J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study. Lancet 359, 824–830 (2002).

    CAS  PubMed  Google Scholar 

  84. Mentlein, R., Gallwitz, B. & Schmidt, W. E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-17–36 amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829–835 (1993).

    CAS  PubMed  Google Scholar 

  85. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    CAS  PubMed  Google Scholar 

  86. Eng, J., Kleinman, W. A., Singh, L., Singh, G. & Raufman, J. P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 267, 7402–7405 (1992).

    CAS  PubMed  Google Scholar 

  87. Aroda, V. R. et al. Efficacy of GLP-1 receptor agonists and DPP-4 inhibitors: meta-analysis and systematic review. Clin. Ther. 34, 1247–1258 (2012).

    CAS  PubMed  Google Scholar 

  88. Mayo, K. E. et al. International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol. Rev. 55, 167–194 (2003).

    CAS  PubMed  Google Scholar 

  89. Thorens, B. Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc. Natl Acad. Sci. USA 89, 8641–8645 (1992).

    CAS  PubMed  Google Scholar 

  90. Sivertsen, J., Rosenmeier, J., Holst, J. J. & Vilsbøll, T. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat. Rev. Cardiol. 9, 209–222 (2012).

    CAS  PubMed  Google Scholar 

  91. Campos, R. V., Lee, Y. C. & Drucker, D. J. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134, 2156–2164 (1994).

    CAS  PubMed  Google Scholar 

  92. Egan, J. M., Montrose-Rafizadeh, C., Wang, Y., Bernier, M. & Roth, J. Glucagon-like peptide-1 (7–36) amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: one of several potential extrapancreatic sites of GLP-1 action. Endocrinology 135, 2070–2075 (1994).

    CAS  PubMed  Google Scholar 

  93. Bullock, B. P., Heller, R. S. & Habener, J. F. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137, 2968–2978 (1996).

    CAS  PubMed  Google Scholar 

  94. Schlatter, P., Beglinger, C., Drewe, J. & Gutmann, H. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells. Regul. Pept. 141, 120–128 (2007).

    CAS  PubMed  Google Scholar 

  95. Wei, Y. & Mojsov, S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 358, 219–224 (1995).

    CAS  PubMed  Google Scholar 

  96. Körner, M., Stöckli, M., Waser, B. & Reubi, J. C. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J. Nucl. Med. 48, 736–743 (2007).

    PubMed  Google Scholar 

  97. Panjwani, N. et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE−/− mice. Endocrinology 154, 127–139 (2013).

    CAS  PubMed  Google Scholar 

  98. Lennane, R. J., Carey, R. M., Goodwin, T. J. & Peart, W. S. A comparison of natriuresis after oral and intravenous sodium loading in sodium-depleted man: evidence for a gastrointestinal or portal monitor of sodium intake. Clin. Sci. Mol. Med. 49, 437–440 (1975).

    CAS  PubMed  Google Scholar 

  99. Carey, R. M. Evidence for a splanchnic sodium input monitor regulating renal sodium excretion in man. Lack of dependence upon aldosterone. Circ. Res. 43, 19–23 (1978).

    CAS  PubMed  Google Scholar 

  100. Michell, A. R., Debnam, E. S. & Unwin, R. J. Regulation of renal function by the gastrointestinal tract: potential role of gut-derived peptides and hormones. Annu. Rev. Physiol. 70, 379–403 (2008).

    CAS  PubMed  Google Scholar 

  101. Tang-Christensen, M. et al. Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. Am. J. Physiol. 271, R848–R856 (1996).

    CAS  PubMed  Google Scholar 

  102. Moreno, C., Mistry, M. & Roman, R. J. Renal effects of glucagon-like peptide in rats. Eur. J. Pharmacol. 434, 163–167 (2002).

    CAS  PubMed  Google Scholar 

  103. Yu, M. et al. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J. Hypertens. 21, 1125–1135 (2003).

    CAS  PubMed  Google Scholar 

  104. Crajoinas, R. O. et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am. J. Physiol. Renal Physiol. 301, F355–F363 (2011).

    CAS  PubMed  Google Scholar 

  105. Gutzwiller, J.-P. et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin. Endocrinol. Metab. 89, 3055–3061 (2004).

    CAS  PubMed  Google Scholar 

  106. Girardi, A. C., Fukuda, L. E., Rossoni, L. V., Malnic, G. & Rebouças, N. A. Dipeptidyl peptidase IV inhibition downregulates Na+-H+ exchanger NHE3 in rat renal proximal tubule. Am. J. Physiol. Renal Physiol. 294, F414–F422 (2008).

    CAS  PubMed  Google Scholar 

  107. Carraro-Lacroix, L. R., Malnic, G. & Girardi, A. C. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 297, F1647–F1655 (2009).

    CAS  PubMed  Google Scholar 

  108. Hirata, K. et al. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem. Biophys. Res. Commun. 380, 44–49 (2009).

    CAS  PubMed  Google Scholar 

  109. Pacheco, B. P. et al. Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J. Hypertens. 29, 520–528 (2011).

    CAS  PubMed  Google Scholar 

  110. Marina, A. S., Kutina, A. V. & Natochin, Y. V. Exenatide stimulates solute-free water clearance by the rat kidney in hyperhydration. Dokl. Biol. Sci. 437, 85–87 (2011).

    CAS  PubMed  Google Scholar 

  111. Rieg, T. et al. Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. Am. J. Physiol. Renal Physiol. 303, F963–F971 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim, M. et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat. Med. 19, 567–575 (2013).

    CAS  PubMed  Google Scholar 

  113. Skov, J. et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J. Clin. Endocrinol. Metab. 98, E664–E671 (2013).

    CAS  PubMed  Google Scholar 

  114. Kutina, A. V., Marina, A. S., Shakhmatova, E. I. & Natochin, Y. V. Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic. Clin. Exp. Pharmacol. Physiol. 40, 510–517 (2013).

    CAS  PubMed  Google Scholar 

  115. Shakhmatova, E. I. et al. Exenatide stimulated solute-free water excretion by human kidney [Russian]. Ross. Fiziol. Zh. Im. I. M. Sechenova 98, 1021–1029 (2012).

    CAS  PubMed  Google Scholar 

  116. Liu, Q. et al. The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats. Cardiovasc. Diabetol. 9, 32 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Park, C. W. et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227–1238 (2007).

    CAS  PubMed  Google Scholar 

  118. Kodera, R. et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia 54, 965–978 (2011).

    CAS  PubMed  Google Scholar 

  119. Hendarto, H. et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism. 61, 1422–1434 (2012).

    CAS  PubMed  Google Scholar 

  120. Ojima, A. et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am. J. Pathol. 182, 132–141 (2013).

    CAS  PubMed  Google Scholar 

  121. Vaghasiya, J., Sheth, N., Bhalodia, Y. & Manek, R. Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regul. Pept. 166, 48–54 (2011).

    CAS  PubMed  Google Scholar 

  122. Liu, W. J. et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther. 340, 248–255 (2012).

    CAS  PubMed  Google Scholar 

  123. Alter, M. L. et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press. Res. 36, 119–130 (2012).

    CAS  PubMed  Google Scholar 

  124. Mega, C. et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Exp. Diabetes Res. 2011, 1–12 (2011).

    Google Scholar 

  125. Wang, Y. et al. Attenuation of renovascular damage in Zucker diabetic fatty rat by NWT-03, an egg protein hydrolysate with ACE- and DPP4-inhibitory Activity. PLoS ONE 7, e46781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Robinson, L. E., Holt, T. A., Rees, K., Randeva, H. S. & O'Hare, J. P. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open 3, e001986 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Monami, M., Dicembrini, I., Nardini, C., Fiordelli, I. & Mannucci, E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes. Metab. http://dx.doi.org/10.1111/dom.12175.

  128. Vilsbøll, T., Christensen, M., Junker, A. E., Knop, F. K. & Gluud, L. L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344, d7771 (2012).

    PubMed  PubMed Central  Google Scholar 

  129. Kubota, A. et al. Pleiotropic effects of sitagliptin in the treatment of type 2 diabetes mellitus patients. J. Clin. Med. Res. 4, 309–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ogawa, S. et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J. Exp. Med. 223, 133–135 (2011).

    CAS  PubMed  Google Scholar 

  131. Mistry, G. C. et al. Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension. J. Clin. Pharmacol. 48, 592–598 (2008).

    CAS  PubMed  Google Scholar 

  132. Monami, M., Ahrén, B., Dicembrini, I. & Mannucci, E. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes. Metab. 15, 112–120 (2013).

    CAS  PubMed  Google Scholar 

  133. Von Eynatten, M., Gong, Y., Emser, A. & Woerle, H.-J. Efficacy and safety of linagliptin in type 2 diabetes subjects at high risk for renal and cardiovascular disease: a pooled analysis of six phase III clinical trials. Cardiovasc. Diabetol. 12, 60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bergenstal, R. M. et al. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet 376, 431–439 (2010).

    PubMed  Google Scholar 

  135. Pratley, R. E. et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet 375, 1447–1456 (2010).

    CAS  PubMed  Google Scholar 

  136. Dai, Y., Mehta, J. L. & Chen, M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-κB Activation. Cardiovasc. Drugs Ther. 27, 371–380 (2013).

    CAS  PubMed  Google Scholar 

  137. Shah, Z. et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124, 2338–2349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Van Genugten, R. E., Möller-Goede, D. L., van Raalte, D. H. & Diamant, M. Extra-pancreatic effects of incretin-based therapies: potential benefit for cardiovascular-risk management in type 2 diabetes. Diabetes Obes. Metab. 15, 593–606 (2013).

    CAS  PubMed  Google Scholar 

  139. Gallwitz, B., Vaag, A., Falahati, A. & Madsbad, S. Adding liraglutide to oral antidiabetic drug therapy: onset of treatment effects over time. Int. J. Clin. Pract. 64, 267–276 (2010).

    CAS  PubMed  Google Scholar 

  140. Jensen, E. P. et al. Activation of renal GLP-1 receptors located in the afferent arteriole causes an increase in renal blood flow. Diabetologia 56 (Suppl.), 255 (2013).

    Google Scholar 

  141. Thomson, S. C., Kashkouli, A. & Singh, P. Glucagon-like peptide-1 receptor stimulation increases GFR and suppresses proximal reabsorption in the rat. Am. J. Physiol. Renal Physiol. 304, F137–F144 (2013).

    CAS  PubMed  Google Scholar 

  142. Deng, A. & Baylis, C. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am. J. Physiol. 264, F212–F215 (1993).

    CAS  PubMed  Google Scholar 

  143. DeFronzo, R. A. et al. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr. Med. Res. Opin. 24, 2943–2952 (2008).

    CAS  PubMed  Google Scholar 

  144. Ceriello, A. Oxidative stress and glycemic regulation. Metabolism 49, 27–29 (2000).

    CAS  PubMed  Google Scholar 

  145. Bunck, M. C. et al. One-year treatment with exenatide vs. insulin glargine: effects on postprandial glycemia, lipid profiles, and oxidative stress. Atherosclerosis 212, 223–229 (2010).

    CAS  PubMed  Google Scholar 

  146. Ishibashi, Y., Matsui, T., Takeuchi, M. & Yamagishi, S.-I. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem. Biophys. Res. Commun. 391, 1405–1408 (2010).

    CAS  PubMed  Google Scholar 

  147. Ishibashi, Y., Matsui, T., Takeuchi, M. & Yamagishi, S. Sitagliptin augments protective effects of GLP-1 against advanced glycation end product receptor axis in endothelial cells. Horm. Metab. Res. 43, 731–734 (2011).

    CAS  PubMed  Google Scholar 

  148. Puddu, A., Storace, D., Durante, A., Odetti, P. & Viviani, G. L. Glucagon-like peptide-1 counteracts the detrimental effects of advanced glycation end-products in the pancreatic β cell line HIT-T 15. Biochem. Biophys. Res. Commun. 398, 462–466 (2010).

    CAS  PubMed  Google Scholar 

  149. Sakata, K. et al. Efficacy of alogliptin, a dipeptidyl peptidase-4 inhibitor, on glucose parameters, the activity of the advanced glycation end product receptor for advanced glycation end product axis, and albuminuria in Japanese type 2 diabetes. Diabetes Metab. Res. Rev. 29, 624–630 (2013).

    CAS  PubMed  Google Scholar 

  150. Chaudhuri, A. et al. Exenatide exerts a potent antiinflammatory effect. J. Clin. Endocrinol. Metab. 97, 198–207 (2012).

    CAS  PubMed  Google Scholar 

  151. Makdissi, A. et al. Sitagliptin exerts an antinflammatory action. J. Clin. Endocrinol. Metab. 97, 3333–3341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Klonoff, D. C. et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr. Med. Res. Opin. 24, 275–286 (2008).

    CAS  PubMed  Google Scholar 

  153. Monami, M., Marchionni, N. & Mannucci, E. Glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized clinical trials. Eur. J. Endocrinol. 160, 909–917 (2009).

    CAS  PubMed  Google Scholar 

  154. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    CAS  PubMed  Google Scholar 

  155. Esposito, K. et al. Dipeptidyl peptidase-4 inhibitors and HbA1c target of <7% in type 2 diabetes: meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 13, 594–603 (2011).

    CAS  PubMed  Google Scholar 

  156. Monami, M., Lamanna, C., Desideri, C. M. & Mannucci, E. DPP-4 inhibitors and lipids: systematic review and meta-analysis. Adv. Ther. 29, 14–25 (2012).

    CAS  PubMed  Google Scholar 

  157. Mentlein, R. Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides. Regul. Pept. 85, 9–24 (1999).

    CAS  PubMed  Google Scholar 

  158. Marchetti, C. et al. High mobility group box 1 is a novel substrate of dipeptidyl peptidase-IV. Diabetologia 55, 236–244 (2012).

    CAS  PubMed  Google Scholar 

  159. Hocher, B., Reichetzeder, C. & Alter, M. L. Renal and cardiac effects of DPP4 inhibitors--from preclinical development to clinical research. Kidney Blood Press. Res. 36, 65–84 (2012).

    CAS  PubMed  Google Scholar 

  160. Tagore, D. M. et al. Peptidase substrates via global peptide profiling. Nat. Chem. Biol. 5, 23–25 (2009).

    CAS  PubMed  Google Scholar 

  161. Kiemer, A. K., Fürst, R. & Vollmar, A. M. Vasoprotective actions of the atrial natriuretic peptide. Curr. Med. Chem. Cardiovasc. Hematol. Agents 3, 11–21 (2005).

    CAS  PubMed  Google Scholar 

  162. DeFelice, A. F. & Brousseau, A. Natriuretic and vasodilating activities of intrarenally administered atriopeptin II, substance P and bradykinin in the dog. J. Pharmacol. Exp. Ther. 246, 183–188 (1988).

    CAS  PubMed  Google Scholar 

  163. Anderson, J. V., Struthers, A. D., Payne, N. N., Slater, J. D. & Bloom, S. R. Atrial natriuretic peptide inhibits the aldosterone response to angiotensin II in man. Clin. Sci. (Lond.). 70, 507–512 (1986).

    CAS  PubMed  Google Scholar 

  164. Imaizumi, T. & Takeshita, A. Influence of ANP on sympathetic nerve activity and chronotropic regulation of the heart. J. Cardiovasc. Electrophysiol. 4, 719–729 (1993).

    CAS  PubMed  Google Scholar 

  165. Minson, R., McRitchie, R. & Chalmers, J. Effects of neuropeptide Y on the renal, mesenteric and hindlimb vascular beds of the conscious rabbit. J. Auton. Nerv. Syst. 27, 139–146 (1989).

    CAS  PubMed  Google Scholar 

  166. Tögel, F., Isaac, J., Hu, Z., Weiss, K. & Westenfelder, C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 67, 1772–1784 (2005).

    PubMed  Google Scholar 

  167. Zaruba, M.-M. et al. Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4, 313–323 (2009).

    CAS  PubMed  Google Scholar 

  168. Hocher, B., Sharkovska, Y., Mark, M., Klein, T. & Pfab, T. The novel DPP-4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischemia/reperfusion in rats. Int. J. Cardiol. 167, 87–93 (2013).

    PubMed  Google Scholar 

  169. Fadini, G. P. et al. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1α. Diabetes Care 33, 1607–1609 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Gilbey, M. P., McKenna, K. E. & Schramm, L. P. Effects of substance P on sympathetic preganglionic neurones. Neurosci. Lett. 41, 157–159 (1983).

    CAS  PubMed  Google Scholar 

  171. O'Connor, T. M. et al. The role of substance P in inflammatory disease. J. Cell. Physiol. 201, 167–180 (2004).

    CAS  PubMed  Google Scholar 

  172. Wu, H. et al. HMGB1 contributes to kidney ischemia reperfusion injury. J. Am. Soc. Nephrol. 21, 1878–1890 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kim, J., Sohn, E., Kim, C.-S., Jo, K. & Kim, J. S. The role of high-mobility group box-1 protein in the development of diabetic nephropathy. Am. J. Nephrol. 33, 524–529 (2011).

    CAS  PubMed  Google Scholar 

  174. Hattori, S. Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr. J. 58, 69–73 (2011).

    CAS  PubMed  Google Scholar 

  175. Groop, P.-H. et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care 36, 3460–3468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, H., Zhang, X., Hu, C. & Lu, W. Exenatide reduces urinary transforming growth factor-β1 and type IV collagen excretion in patients with type 2 diabetes and microalbuminuria. Kidney Blood Press. Res. 35, 483–488 (2012).

    CAS  PubMed  Google Scholar 

  177. US Department of Health and Human Services. Guidance for Industry: diabetes mellitus— evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. [online], (2008).

  178. White, W. B. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 369, 1327–1335 (2013).

    CAS  PubMed  Google Scholar 

  179. Scirica, B. M. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013).

    CAS  PubMed  Google Scholar 

  180. Pendergrass, M., Fenton, C., Haffner, S. M. & Chen, W. Exenatide and sitagliptin are not associated with increased risk of acute renal failure: a retrospective claims analysis. Diabetes Obes. Metab. 14, 596–600 (2012).

    CAS  PubMed  Google Scholar 

  181. Tofovic, D. S., Bilan, V. P. & Jackson, E. K. Sitagliptin augments angiotensin II-induced renal vasoconstriction in kidneys from rats with metabolic syndrome. Clin. Exp. Pharmacol. Physiol. 37, 689–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Jackson, E. K. & Mi, Z. Sitagliptin augments sympathetic enhancement of the renovascular effects of angiotensin II in genetic hypertension. Hypertension 51, 1637–1642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Marney, A., Kunchakarra, S., Byrne, L. & Brown, N. J. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans. Hypertension 56, 728–733 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Jackson, E. K. Dipeptidyl peptidase IV inhibition alters the hemodynamic response to angiotensin-converting enzyme inhibition in humans with the metabolic syndrome. Hypertension 56, 581–583 (2010).

    CAS  PubMed  Google Scholar 

  185. Chaykovska, L. et al. Effects of telmisartan and linagliptin when used in combination on blood pressure and oxidative stress in rats with 2-kidney-1-clip hypertension. J. Hypertens. 31, 2290–2299 (2013).

    CAS  PubMed  Google Scholar 

  186. Ishibashi, Y. et al. Glucagon-like peptide-1 inhibits angiotensin II-induced mesangial cell damage via protein kinase A. Microvasc. Res. 84, 395–398 (2012).

    CAS  PubMed  Google Scholar 

  187. Mima, A. et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes 61, 2967–2979 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Butler, P. C., Elashoff, M., Elashoff, R. & Gale, E. A. A critical analysis of the clinical use of incretin-based therapies: are the GLP-1 therapies safe? Diabetes Care 36, 2118–2125 (2013).

    PubMed  PubMed Central  Google Scholar 

  189. Elashoff, M., Matveyenko, A. V., Gier, B., Elashoff, R. & Butler, P. C. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 141, 150–156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Drucker, D. J. Incretin action in the pancreas: Potential promise, possible perils, and pathological pitfalls. Diabetes 62, 3316–3323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Nauck, M. A. A critical analysis of the clinical use of incretin-based therapies: the benefits by far outweigh the potential risks. Diabetes Care 36, 2126–2132 (2013).

    PubMed  PubMed Central  Google Scholar 

  192. SAFEGUARD safety evaluation of adverse reactions in diabetes. Safeguard-diabetes.org [online], (2011).

  193. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  194. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  195. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  196. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  197. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  198. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  199. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  200. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Diamant, M. H. A. Muskiet and M. M. Smits researched the data for the article, made a substantial contribution to discussions of the content, wrote the article, and reviewed and/or edited the manuscript before submission. L. M. Morsink made a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Marcel H. A. Muskiet.

Ethics declarations

Competing interests

M. Diamant is a consultant for Abbott, Astra Zeneca, Boehringer–Ingelheim, Bristol-Myers Squibb, Eli Lilly, GI Dynamics, Merck Sharp & Dohme, Novo Nordisk, Poxel Pharma and Sanofi. She is also a speaker for Astra Zeneca, Bristol-Myers Squibb, Eli Lilly, Novo Nordisk and Sanofi. Through M. Diamant, the VU University Medical Centre receives research grants from Abbott, Astra Zeneca, Boehringer–Ingelheim, Bristol-Myers Squibb, Eli Lilly, Medtronic, Merck Sharp & Dohme, Novo Nordisk and Sanofi. M. Diamant receives no personal payments in connection to the above-mentioned activities: all funds are directly transferred to the Diabetes Centre's nonprofit Research Foundation. The other authors declare no competing interests.

Supplementary information

Supplementary Table 1

Evidence of renoprotective effects of established glucose lowering agents in patients with T2DM (DOC 61 kb)

Supplementary Table 2

Evidence of renoprotective effects of established blood pressure lowering agents in patients with T2DM (DOC 116 kb)

Supplementary Table 3

Evidence of renoprotective effects of an established multifactorial intervention in patients with T2DM (DOC 41 kb)

Supplementary Table 4

Renal effects of GLP-1R agonists and DPP-4 inhibitors in preclinical studies (DOC 75 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muskiet, M., Smits, M., Morsink, L. et al. The gut–renal axis: do incretin-based agents confer renoprotection in diabetes?. Nat Rev Nephrol 10, 88–103 (2014). https://doi.org/10.1038/nrneph.2013.272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing