Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal cancer in von Hippel–Lindau disease and related syndromes

Abstract

Sporadic and hereditary forms of renal cell carcinoma (RCC), von Hippel–Lindau (VHL) disease and the familial paraganglioma syndromes are closely related in terms of their clinical, molecular, and genetic aspects. Most RCCs occur sporadically and the heritable fraction of RCC is estimated to be just 2–4%. An understanding of the molecular genetic basis, the disease-specific and gene-specific biology and the clinical characteristics of these cancer syndromes is of utmost importance for effective genetic diagnosis and appropriate treatment. In addition, such insight will improve our understanding of sporadic RCCs. To date, 10 different heritable RCC syndromes have been described. VHL syndrome is the oldest known hereditary RCC syndrome. Similar to VHL disease, phaeochromocytoma is a major manifestation of the paraganglioma syndromes types 1, 3 and 4 in which RCCs have been reported. These syndromes are therefore regarded as VHL-related disorders and are included in this Review. Multifocal tumours, bilateral occurrence, a young age at diagnosis and/or family history are clinical red flags suggestive of hereditary disease and should trigger referral for genetic and molecular analysis. The identification of an underlying genetic alteration enables gene-specific risk assessment and opens up the possibility of a tailored follow-up strategy and specific surveillance protocols as the basis of effective preventive medicine. The important goals of preventive medicine are to increase the life expectancy of affected patients and to improve their quality of life. The study of seemingly rare hereditary syndromes and their susceptibility genes has consistently revealed clues regarding the aetiology and pathogenesis of these diseases, and can aid diagnosis and the development of therapeutics for patients affected by much more common sporadic counterparts.

Key Points

  • Von Hippel–Lindau (VHL) disease is the oldest known, most common hereditary renal cell carcinoma (RCC) syndrome; it is an autosomal dominant disorder caused by germline mutations in the VHL tumour suppressor gene

  • RCCs are the major neoplasm and leading cause of death in patients with VHL disease

  • A substantial amount of our knowledge regarding the tumourigenesis and treatment strategies for sporadic renal cancer results from the investigation of heritable types of RCC, particularly VHL-associated RCC

  • At least 50% of sporadic RCCs are associated with somatic inactivation of the VHL gene

  • Sporadic RCCs and the hereditary RCC syndromes, VHL disease and the paraganglioma syndromes differ in their molecular background but involve a common final pathway, the HIF–VEGF pathway

  • Improved knowledge of the molecular genetic basis, gene-specific biology and clinical characteristics of VHL disease are contributing to the improved assessment of neoplasia risk and the development of effective preventive strategies and treatment options

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRI of renal lesions in von Hippel–Lindau disease.
Figure 2: Extrarenal and extra-adrenal lesions in von Hippel–Lindau disease.
Figure 3: Histopathological characteristics of simple and complex renal cysts and renal cell carcinoma in von Hippel–Lindau disease.
Figure 4: Paraganglial tumours.

Similar content being viewed by others

References

  1. Ferlay, J., Parkin, D. M. & Steliarova-Foucher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 46, 765–781 (2010).

    CAS  PubMed  Google Scholar 

  2. Chow, W. H., Devesa, S. S., Warren, J. L. & Fraumeni, J. F. Jr. Rising incidence of renal cell cancer in the United States. JAMA 281, 1628–1631 (1999).

    CAS  PubMed  Google Scholar 

  3. Linehan, W. M., Yang, J. C. & Bates, S. E. Cancer of the kidney. In Cancer: Principles & Practice of Oncology (eds DeVita, S. E., Hellman, S. & Rosenberg, S. A.) 1139–1168 (Lippincott Williams & Wilkins, 2005).

    Google Scholar 

  4. Tosco, L., Van Poppel, H., Frea, B., Gregoraci, G. & Joniau, S. Survival and impact of clinical prognostic factors in surgically treated metastatic renal cell carcinoma. Eur. Urol. 63, 646–652 (2013).

    PubMed  Google Scholar 

  5. Motzer, R. J., Bander, N. H. & Nanus, D. M. Renal-cell carcinoma. N. Engl. J. Med. 335, 865–875 (1996).

    CAS  PubMed  Google Scholar 

  6. Linehan, W. M., Walther, M. M. & Zbar, B. The genetic basis of cancer of the kidney. J. Urol. 170, 2163–2172 (2003).

    CAS  PubMed  Google Scholar 

  7. Axwijk, P. H. et al. Hereditary causes of kidney tumours. Eur. J. Clin. Invest. 40, 433–439 (2010).

    CAS  PubMed  Google Scholar 

  8. Bodmer, D. et al. An alternative route for multistep tumorigenesis in a novel case of hereditary renal cell cancer and a t(2;3)(q35;q21) chromosome translocation. Am. J. Hum. Genet. 62, 1475–1483 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Carpten, J. D. et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat. Genet. 32, 676–680 (2002).

    CAS  PubMed  Google Scholar 

  10. Cohen, A. J. et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N. Engl. J. Med. 301, 592–595 (1979).

    CAS  PubMed  Google Scholar 

  11. Malchoff, C. D. et al. Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J. Clin. Endocrinol. Metab. 85, 1758–1764 (2000).

    CAS  PubMed  Google Scholar 

  12. Malinoc, A. et al. Biallelic inactivation of the SDHC gene in renal carcinoma associated with paraganglioma syndrome type 3. Endocr. Relat. Cancer 19, 283–290 (2012).

    CAS  PubMed  Google Scholar 

  13. Nickerson, M. L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2, 157–164 (2002).

    CAS  PubMed  Google Scholar 

  14. Ricketts, C. et al. Germline SDHB mutations and familial renal cell carcinoma. J. Natl Cancer Inst. 100, 1260–1262 (2008).

    CAS  PubMed  Google Scholar 

  15. Ricketts, C. J. et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum. Mutat. 31, 41–51 (2010).

    CAS  PubMed  Google Scholar 

  16. Ricketts, C. J. et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J. Urol. 188, 2063–2071 (2012).

    CAS  PubMed  Google Scholar 

  17. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    CAS  PubMed  Google Scholar 

  18. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    CAS  PubMed  Google Scholar 

  19. Vanharanta, S. et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet. 74, 153–159 (2004).

    CAS  PubMed  Google Scholar 

  20. Choyke, P. L. et al. The natural history of renal lesions in von Hippel-Lindau disease: a serial CT study in 28 patients. AJR Am. J. Roentgenol. 159, 1229–1234 (1992).

    CAS  PubMed  Google Scholar 

  21. Lonser, R. R. et al. von Hippel-Lindau disease. Lancet 361, 2059–2067 (2003).

    CAS  PubMed  Google Scholar 

  22. Neumann, H. P. et al. Prevalence, morphology and biology of renal cell carcinoma in von Hippel-Lindau disease compared to sporadic renal cell carcinoma. J. Urol. 160, 1248–1254 (1998).

    CAS  PubMed  Google Scholar 

  23. Poston, C. D. et al. Characterization of the renal pathology of a familial form of renal cell carcinoma associated with von Hippel-Lindau disease: clinical and molecular genetic implications. J. Urol. 153, 22–26 (1995).

    CAS  PubMed  Google Scholar 

  24. Gill, A. J. et al. Renal tumors associated with germline SDHB mutation show distinctive morphology. Am. J. Surg. Pathol. 35, 1578–1585 (2011).

    PubMed  Google Scholar 

  25. Wilding, A. et al. Life expectancy in hereditary cancer predisposing diseases: an observational study. J. Med. Genet. 49, 264–269 (2012).

    PubMed  Google Scholar 

  26. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    CAS  PubMed  Google Scholar 

  27. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    CAS  PubMed  Google Scholar 

  28. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    CAS  PubMed  Google Scholar 

  29. Maher, E. R. et al. Von Hippel-Lindau disease: a genetic study. J. Med. Genet. 28, 443–447 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Neumann, H. P. & Wiestler, O. D. Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus. Lancet 337, 1052–1054 (1991).

    CAS  PubMed  Google Scholar 

  31. Maher, E. R. et al. Clinical features and natural history of von Hippel-Lindau disease. Q. J. Med. 77, 1151–1163 (1990).

    CAS  PubMed  Google Scholar 

  32. Maddock, I. R. et al. A genetic register for von Hippel-Lindau disease. J. Med. Genet. 33, 120–127 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Maher, E. R. & Kaelin, W. G. Jr. von Hippel-Lindau disease. Medicine (Baltimore) 76, 381–391 (1997).

    CAS  Google Scholar 

  34. Glasker, S. Central nervous system manifestations in VHL: genetics, pathology and clinical phenotypic features. Fam. Cancer 4, 37–42 (2005).

    PubMed  Google Scholar 

  35. Kreusel, K. M. Ophthalmological manifestations in VHL and NF 1: pathological and diagnostic implications. Fam. Cancer 4, 43–47 (2005).

    PubMed  Google Scholar 

  36. Kreusel, K. M., Bechrakis, N. E., Krause, L., Neumann, H. P. & Foerster, M. H. Retinal angiomatosis in von Hippel-Lindau disease: a longitudinal ophthalmologic study. Ophthalmology 113, 1418–1424 (2006).

    PubMed  Google Scholar 

  37. Walther, M. M., Lubensky, I. A., Venzon, D., Zbar, B. & Linehan, W. M. Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel-Lindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J. Urol. 154, 2010–2014 (1995).

    CAS  PubMed  Google Scholar 

  38. Montani, M. et al. VHL-gene deletion in single renal tubular epithelial cells and renal tubular cysts: further evidence for a cyst-dependent progression pathway of clear cell renal carcinoma in von Hippel-Lindau disease. Am. J. Surg. Pathol. 34, 806–815 (2010).

    PubMed  Google Scholar 

  39. Thoma, C. R. et al. pVHL and GSK3beta are components of a primary cilium-maintenance signalling network. Nat. Cell Biol. 9, 588–595 (2007).

    CAS  PubMed  Google Scholar 

  40. Jilg, C. A. et al. Growth kinetics in von Hippel-Lindau-associated renal cell carcinoma. Urol. Int. 88, 71–78 (2011).

    PubMed  Google Scholar 

  41. Walther, M. M. et al. Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J. Urol. 161, 1475–1479 (1999).

    CAS  PubMed  Google Scholar 

  42. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).

    CAS  PubMed  Google Scholar 

  43. Akcaglar, S., Yavascaoglu, I., Vuruskan, H. & Oktay, B. Genetic evaluation of von Hippel-Lindau disease for early diagnosis and improved prognosis. Int. Urol. Nephrol. 40, 615–620 (2008).

    PubMed  Google Scholar 

  44. Hes, F. et al. Genotype-phenotype correlations in families with deletions in the von Hippel-Lindau (VHL) gene. Hum. Genet. 106, 425–431 (2000).

    CAS  PubMed  Google Scholar 

  45. Kaelin, W. G. Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682 (2002).

    CAS  PubMed  Google Scholar 

  46. Zbar, B. et al. Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum. Mutat. 8, 348–357 (1996).

    CAS  PubMed  Google Scholar 

  47. Maranchie, J. K. et al. Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location. Hum. Mutat. 23, 40–46 (2004).

    CAS  PubMed  Google Scholar 

  48. McNeill, A. et al. Genotype-phenotype correlations in VHL exon deletions. Am J. Med. Genet. A 149A, 2147–2151 (2009).

    CAS  PubMed  Google Scholar 

  49. Bayley, J. P. et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 11, 366–372 (2010).

    CAS  PubMed  Google Scholar 

  50. Hao, H. X. et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325, 1139–1142 (2009).

    CAS  PubMed  Google Scholar 

  51. Mannelli, M. et al. Genetic screening for pheochromocytoma: should SDHC gene analysis be included? J. Med. Genet. 44, 586–587 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Neumann, H. P. et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002).

    CAS  PubMed  Google Scholar 

  53. Neumann, H. P. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292, 943–951 (2004).

    CAS  PubMed  Google Scholar 

  54. Schiavi, F. et al. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA 294, 2057–2063 (2005).

    CAS  PubMed  Google Scholar 

  55. Bausch, B., Borozdin, W. & Neumann, H. P. Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N. Engl. J. Med. 354, 2729–2731 (2006).

    CAS  PubMed  Google Scholar 

  56. Merino, M. J., Parillar-Castella, E. R., Linehan, M. The unrecognised morphology of renal tumours in SDH syndromes: immunohistochemistry and genetic changes [abstract]. Mod. Pathol. 23, 917 (2010).

    Google Scholar 

  57. Gill, A. J. et al. Renal tumors and hereditary pheochromocytoma-paraganglioma syndrome type 4. N. Engl. J. Med. 364, 885–886 (2011).

    CAS  PubMed  Google Scholar 

  58. Grubb, R. L. 3rd et al. Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J. Urol. 177, 2074–2079 (2007).

    CAS  PubMed  Google Scholar 

  59. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    CAS  PubMed  Google Scholar 

  60. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  61. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    CAS  PubMed  Google Scholar 

  62. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  63. Li, L. & Kaelin, W. G. Jr. New insights into the biology of renal cell carcinoma. Hematol. Oncol. Clin. North Am. 25, 667–686 (2011).

    PubMed  PubMed Central  Google Scholar 

  64. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    CAS  PubMed  Google Scholar 

  65. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    CAS  PubMed  Google Scholar 

  66. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    CAS  PubMed  Google Scholar 

  67. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    CAS  PubMed  Google Scholar 

  68. Coppin, C., Kollmannsberger, C., Le, L., Porzsolt, F. & Wilt, T. J. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int. 108, 1556–1563 (2011).

    CAS  PubMed  Google Scholar 

  69. Guethmundsson, E., Hellborg, H., Lundstam, S., Erikson, S. & Ljungberg, B. Metastatic potential in renal cell carcinomas ≤7 cm: Swedish Kidney Cancer Quality Register data. Eur. Urol. 60, 975–982 (2011).

    PubMed  Google Scholar 

  70. Johnson, A. et al. Feasibility and outcomes of repeat partial nephrectomy. J. Urol. 180, 89–93 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. Herring, J. C. et al. Parenchymal sparing surgery in patients with hereditary renal cell carcinoma: 10-year experience. J. Urol. 165, 777–781 (2001).

    CAS  PubMed  Google Scholar 

  72. Duffey, B. G. et al. The relationship between renal tumor size and metastases in patients with von Hippel-Lindau disease. J. Urol. 172, 63–65 (2004).

    PubMed  Google Scholar 

  73. Ploussard, G. et al. Local recurrence after nephron-sparing surgery in von Hippel-Lindau disease. Urology 70, 435–439 (2007).

    PubMed  Google Scholar 

  74. Matin, S. F., Ahrar, K., Wood, C. G., Daniels, M. & Jonasch, E. Patterns of intervention for renal lesions in von Hippel-Lindau disease. BJU Int. 102, 940–945 (2008).

    PubMed  Google Scholar 

  75. Joly, D. et al. Progress in nephron sparing therapy for renal cell carcinoma and von Hippel-Lindau disease. J. Urol. 185, 2056–2060 (2011).

    PubMed  Google Scholar 

  76. Jilg, C. A. et al. Nephron sparing surgery in von Hippel-Lindau associated renal cell carcinoma; clinicopathological long-term follow-up. Fam. Cancer 11, 387–394 (2012).

    CAS  PubMed  Google Scholar 

  77. Roupret, M. et al. Nephron sparing surgery for renal cell carcinoma and von Hippel-Lindau's disease: a single center experience. J. Urol. 170, 1752–1755 (2003).

    PubMed  Google Scholar 

  78. Gupta, G. N. et al. Oncological outcomes of partial nephrectomy for multifocal renal cell carcinoma greater than 4 cm. J. Urol. 184, 59–63 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Park, S. Y. et al. Percutaneous radiofrequency ablation of renal cell carcinomas in patients with von Hippel Lindau disease previously undergoing a radical nephrectomy or repeated nephron-sparing surgery. Acta Radiol. 52, 680–685 (2011).

    PubMed  Google Scholar 

  80. Iwamoto, Y. et al. Management of renal tumors in Von Hippel-Lindau disease by percutaneous CT fluoroscopic guided radiofrequency ablation: preliminary results. Fam. Cancer 10, 529–534 (2011).

    PubMed  Google Scholar 

  81. Park, B. K. & Kim, C. K. Percutaneous radio frequency ablation of renal tumors in patients with von Hippel-Lindau disease: preliminary results. J. Urol. 183, 1703–1707 (2010).

    PubMed  Google Scholar 

  82. Goldfarb, D. A., Neumann, H. P., Penn, I. & Novick, A. C. Results of renal transplantation in patients with renal cell carcinoma and von Hippel-Lindau disease. Transplantation 64, 1726–1729 (1997).

    CAS  PubMed  Google Scholar 

  83. Atkins, M. B. Management of advanced renal cancer. Kidney Int. 67, 2069–2082 (2005).

    PubMed  Google Scholar 

  84. Motzer, R. J. & Basch, E. Targeted drugs for metastatic renal cell carcinoma. Lancet 370, 2071–2073 (2007).

    CAS  PubMed  Google Scholar 

  85. Motzer, R. J. et al. Sunitinib efficacy against advanced renal cell carcinoma. J. Urol. 178, 1883–1887 (2007).

    CAS  PubMed  Google Scholar 

  86. Shuin, T. et al. Von Hippel-Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Jpn. J. Clin. Oncol. 36, 337–343 (2006).

    PubMed  Google Scholar 

  87. Hensen, E. F. et al. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23, 4076–4083 (2004).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B. Bausch, C. Jilg, and H. P. H. Neumann researched data for the article, provided a substantial contribution to discussion of content, wrote the article and reviewed/edited the manuscript before submission. S. Gläsker and C. Eng provided a substantial contribution to discussion of content, wrote the article and reviewed/edited the manuscript before submission. A. Vortmeyer and N. Lützen provided a substantial contribution to discussion of content and reviewed/edited the manuscript before submission. A. Anton researched data for the article.

Corresponding author

Correspondence to Hartmut P. H. Neumann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bausch, B., Jilg, C., Gläsker, S. et al. Renal cancer in von Hippel–Lindau disease and related syndromes. Nat Rev Nephrol 9, 529–538 (2013). https://doi.org/10.1038/nrneph.2013.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing