Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Statins in the management of dyslipidemia associated with chronic kidney disease

Abstract

The cause of death in the majority of patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) is accelerated cardiovascular disease and not renal failure per se, suggesting a role for statin therapy in this setting. During the past 6 years three large, randomized, placebo-controlled studies of three different statins have been conducted in the dialysis population—but two of these studies did not demonstrate any benefits of statin therapy, and the third study showed only marginally positive results. To understand why statins have failed to reduce cardiovascular events in patients with ESRD, the basic mechanisms underlying the pathogenesis of dyslipidemia in CKD must be critically examined. The observed negative results in the clinical trials of statin therapy might also reflect the biomarkers and targets that were chosen to be evaluated. The characteristics of dyslipidemia in patients with CKD not yet requiring dialysis treatment differ markedly from those of individuals with established ESRD and form the basis for therapeutic recommendations. The potential adverse effects associated with statin therapy are important to consider in the management of dyslipidemia in patients with CKD.

Key Points

  • Most patients with chronic kidney disease (CKD) or end-stage renal disease on dialysis die from accelerated cardiovascular disease (CVD); CVD risk is further exacerbated in patients on hemodialysis

  • CKD is associated with oxidative stress, inflammation and profound dysregulation of lipid metabolism, which collectively contribute to the accelerated progression of CVD

  • Cholesterol-lowering therapy with statins consistently reduces the risk of cardiovascular events in the general population

  • Contrary to expectations, statins showed little or no benefit as primary CVD prevention in three large clinical trials (4D, AURORA and SHARP) conducted in patients on dialysis

  • In the minority of patients with CKD and hypercholesterolemia, development and progression of CVD can be ameliorated by the administration of statins

  • Several factors contribute to CVD in patients on hemodialysis: accumulation of atherogenic oxidized lipoproteins; HDL cholesterol deficiency and dysfunction; hypertension; and vascular calcification (however, LDL cholesterol concentration is largely normal)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atkins, R. C. & Zimmet, P. Diabetic kidney disease: act now or pay later. Nephrol. Dial. Transplant. 25, 331–333 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Schieppati, A. & Remuzzi, G. Chronic renal disease as a public health problem: epidemiology, social, and economic implications. Kidney Int. Suppl. 98, S7–S10 (2005).

    Google Scholar 

  3. Modi, G. K. & Jha, V. The incidence of end-stage renal disease in India: a population-based study. Kidney Int. 70, 2131–2133 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. European Renal Association (ERA)-European Dialysis and Transplant Association (EDTA). ERA-EDTA Registry Annual Report 2004. ERA-EDTA [online], (2006).

  5. Correa-Rotter, R. & González-Michaca, L. Early detection and prevention of diabetic nephropathy: a challenge calling for mandatory action for Mexico and the developing world. Kidney Int. Suppl. 98, S69–S75 (2005).

    Article  Google Scholar 

  6. Shaheen, F. & Al-Khader, A. A. Preventive strategies of renal failure in the Arab world. Kidney Int. Suppl. 98, S37–S40 (2005).

    Article  Google Scholar 

  7. Dirks, J. H. et al. Prevention of chronic kidney and vascular disease: toward global health equity—the Bellagio 2004 Declaration. Kidney Int. Suppl. 98, S1–S6 (2005).

    Article  Google Scholar 

  8. Coresh, J., Astor, B. C., Greene, T., Eknoyan, G. & Levey, A. S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 41, 1–12 (2003).

    Article  PubMed  Google Scholar 

  9. Gilbertson, D. T. et al. Projecting the number of patients with end-stage renal disease in the United States to the year 2015. J. Am. Soc. Nephrol. 16, 3736–3741 (2005).

    Article  PubMed  Google Scholar 

  10. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Collins, A. J. et al. Excerpts from the United States Renal Data System 2007 annual data report. Am. J. Kidney Dis. 51 (Suppl. 1), S1–S320 (2008).

    PubMed  Google Scholar 

  12. Levey, A. S. et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139, 137–147 (2003).

    Article  PubMed  Google Scholar 

  13. Prichard, S. Risk factors for coronary artery disease in patients with renal failure. Am. J. Med. Sci. 325, 209–213 (2003).

    Article  PubMed  Google Scholar 

  14. Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am. J. Kidney Dis. 41 (Suppl. 3), S1–S91 (2003).

  15. Sarnak, M. J. & Levey, A. S. Cardiovascular disease and chronic renal disease: a new paradigm. Am. J. Kidney Dis. 35 (Suppl. 1), S117–S131 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Weiner, D. E. et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J. Am. Soc. Nephrol. 15, 1307–1315 (2004).

    Article  PubMed  Google Scholar 

  17. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 108, 2154–2169 (2003).

    Article  PubMed  Google Scholar 

  18. Parfrey, P. S. et al. Outcome and risk factors of ischemic heart disease in chronic uremia. Kidney Int. 49, 1428–1434 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney. Dis. 32 (Suppl. 3), S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  21. Drüeke, T. B. & Massy, Z. A. Atherosclerosis in CKD: differences from the general population. Nat. Rev. Nephrol. 6, 723–735 (2010).

    Article  PubMed  Google Scholar 

  22. Zoccali, C., Mallamaci, F. & Tripepi, G. Novel cardiovascular risk factors in end-stage renal disease. J. Am. Soc. Nephrol. 15 (Suppl. 1), S77–S80 (2004).

    Article  PubMed  Google Scholar 

  23. Liu, Y. et al. Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291, 451–459 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomized placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. März, W. et al. Atorvastatin and low-density lipoprotein cholesterol in type 2 diabetes mellitus patients on hemodialysis. Clin. J. Am. Soc. Nephrol. 6, 1316–1325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Cholesterol Treatment Trialists' (CTT) Collaboration. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

  30. Strippoli, G. F. & Craig, J. C. Sunset for statins after AURORA? N. Engl. J. Med. 360, 1455–1457 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Stevens, K. K. & Jardine, A. G. SHARP: a stab in the right direction in chronic kidney disease. Lancet 377, 2153–2154 (2011).

    Article  PubMed  Google Scholar 

  32. Krane, V. & Wanner, C. Statins, inflammation and kidney disease. Nat. Rev. Nephrol. 7, 385–397 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Holdaas, H. et al. Rosuvastatin in diabetic hemodialysis patients. J. Am. Soc. Nephrol. 22, 1335–1341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar, S., Raftery, M., Yaqoob, M. & Fan, S. L. Anti-inflammatory effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors (statins) in peritoneal dialysis patients. Perit. Dial. Int. 27, 283–287 (2007).

    CAS  PubMed  Google Scholar 

  35. Attman, P. O., Samuelsson, O., Johansson, A. C., Moberly, J. B. & Alaupovic, P. Dialysis modalities and dyslipidemia. Kidney Int. Suppl. 84, S110–S112 (2003).

    Article  Google Scholar 

  36. Kasiske, B. L. Hyperlipidemia in patients with chronic renal disease. Am. J. Kidney Dis. 32 (Suppl. 3), S142–S156 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kwan, B. C., Kronenberg, F., Beddhu, S., Cheung, A. K. Lipoprotein metabolism and lipid management in chronic kidney disease. J. Am. Soc. Nephrol. 18, 1246–1261 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Strippoli, G. F. et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ 336, 645–651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaysen, G. A. New insights into lipid metabolism in chronic kidney disease. J. Ren. Nutr. 21, 120–123 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Vaziri, N. D. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am. J. Physiol. Renal Physiol. 290, F262–F272 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kovesdy, C. P., Astor, B. C., Longenecker, J. C. & Coresh, J. Association of kidney function with serum lipoprotein(a) level: the third National Health and Nutrition Examination Survey (1991–1994). Am. J. Kidney Dis. 40, 899–908 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Tonelli, M. et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 110, 1557–1563 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Tonelli, M. et al. Effect of pravastatin in people with diabetes and chronic kidney disease. J. Am. Soc. Nephrol. 16, 3748–3754 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Tonelli, M. et al. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann. Intern. Med. 138, 98–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Ridker, P. M. et al. Efficacy of rosuvastatin among men and women with moderate chronic kidney disease and elevated high-sensitivity C-reactive protein: a secondary analysis from the JUPITER (justification for the use of statins in prevention—an intervention trial evaluating rosuvastatin) trial. J. Am. Coll. Cardiol. 55, 1266–1273 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Shepherd, J. et al. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: the Treating to New Targets (TNT) study, Clin. J. Am. Soc. Nephrol. 2, 1131–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Holdaas, H. et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet 361, 2024–2031 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Holdaas, H. et al. Long-term cardiac outcomes in renal transplant recipients receiving fluvastatin: the ALERT extension study. Am. J. Transplant. 5, 2929–2936 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ansell, B. J. et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 108, 2751–2756 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Vaziri, N. D., Navab, M. & Fogelman, A. M. HDL metabolism and activity in chronic kidney disease. Nat. Rev. Nephrol. 6, 287–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Moradi, H., Pahl, M. V., Elahimehr, R. & Vaziri, N. D. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl. Res. 153, 77–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kalantar-Zadeh, K., Kopple, J. D., Kamranpour, N., Fogelman, A. M. & Navab, M. HDL-inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int. 72, 1149–1156 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Vaziri, N. D., Moradi, H., Pahl, M. V., Fogelman, A. M. & Navab, M. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int. 76, 437–444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vaziri, N. D. et al. Salutary effects of hemodialysis on low-density lipoprotein proinflammatory and high-density lipoprotein anti-inflammatory properties in patient with end-stage renal disease. J. Natl Med. Assoc. 103, 524–533 (2011).

    Article  PubMed  Google Scholar 

  55. Attman, P. O. & Alaupovic, P. Lipid and apolipoprotein profiles of uremic dyslipoproteinemia—relation to renal function and dialysis. Nephron 57, 401–410 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Vaziri, N. D., Deng, G. & Liang, K. Hepatic HDL receptor, SR-B1 and Apo A-I expression in chronic renal failure. Nephrol. Dial. Transplant. 14, 1462–1466 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Kamanna, V. S. et al. Uremic serum subfraction inhibits apolipoprotein A-I production by a human hepatoma cell line. J. Am. Soc. Nephrol. 5, 193–200 (1994).

    CAS  PubMed  Google Scholar 

  58. Vaziri, N. D., Liang, K. & Parks, J. S. Down-regulation of hepatic lecithin: cholesterol acyltransferase gene expression in chronic renal failure. Kidney Int. 59, 2192–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Kimura, H., Miyazaki, R., Suzuki, S., Gejyo, F. & Yoshida, H. Cholesteryl ester transfer protein as a protective factor against vascular disease in hemodialysis patients. Am. J. Kidney Dis. 38, 70–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Shao, B., Oda, M. N., Oram, J. F. & Heinecke, J. W. Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein. Curr. Opin. Cardiol. 21, 322–328 (2006).

    Article  PubMed  Google Scholar 

  61. Liang, K. & Vaziri, N. D. Down-regulation of hepatic high-density lipoprotein receptor, SR-B1, in nephrotic syndrome. Kidney Int. 56, 621–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Vaziri, N. D. et al. Nephrotic syndrome causes upregulation of HDL endocytic receptor and PDZK-1-dependent downregulation of HDL docking receptor. Nephrol. Dial. Transplant. 26, 3118–3123 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Vaziri, N. D., Deng, G. & Liang, K. Hepatic HDL receptor, SR-B1 and Apo A-I expression in chronic renal failure. Nephrol. Dial. Transplant. 14, 1462–1466 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Akmal, M., Kasim, S. E., Soliman, A. R. & Massry, S. G. Excess parathyroid hormone adversely affects lipid metabolism in chronic renal failure. Kidney Int. 37, 854–858 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Vaziri, N. D. & Liang, K. Down-regulation of tissue lipoprotein lipase expression in experimental chronic renal failure. Kidney Int. 50, 1928–1935 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Vaziri, N. D., Wang, X. Q. & Liang, K. Secondary hyperparathyroidism downregulates lipoprotein lipase expression in chronic renal failure. Am. J. Physiol. 273, F925–F930 (1997).

    CAS  PubMed  Google Scholar 

  67. Herz, J. & Strickland, D. K. LRP: a multifunctional scavenger and signaling receptor. J. Clin. Invest. 108, 779–784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, C. & Vaziri, N. D. Down-regulation of hepatic LDL receptor-related protein (LRP) in chronic renal failure. Kidney Int. 67, 1028–1032 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Klin, M., Smogorzewski, M., Ni, Z., Zhang, G. & Massry, S. G. Abnormalities in hepatic lipase in chronic renal failure: role of excess parathyroid hormone. J. Clin. Invest. 97, 2167–2173 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang, K. & Vaziri, N. D. Down-regulation of hepatic lipase expression in experimental nephrotic syndrome. Kidney Int. 51, 1933–1937 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Sato, T., Liang, K. & Vaziri, N. D. Protein restriction and AST-120 improve lipoprotein lipase and VLDL receptor in focal glomerulosclerosis. Kidney Int. 64, 1780–1786 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Vaziri, N. D., Yuan, J., Ni, Z., Nicholas, S. B. & Norris, K. C. Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression. Clin. Exp. Nephrol. http://dx.doi.org/10.1007/s10157-011-0549-3.

  73. Vaziri, N. D. & Liang, K. Down-regulation of VLDL receptor expression in chronic experimental renal failure. Kidney Int. 51, 913–919 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, H. J., Moradi, H., Yuan, J., Norris, K. & Vaziri, N. D. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am. J. Physiol. Renal Physiol. 296, F1297–F1306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moradi, H., Yuan, J., Ni, Z., Norris, K. & Vaziri, N. D. Reverse cholesterol transport pathway in experimental chronic renal failure. Am. J. Nephrol. 30, 147–154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang, K. & Vaziri, N. D. Upregulation of acyl-CoA: cholesterol acyltransferase in chronic renal failure. Am. J. Physiol. Endocrinol. Metab. 283, E676–E681 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Vaziri, N. D. & Liang, K. ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure. Am. J. Physiol. Renal Physiol. 287, F1038–F1043 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Kaysen, G. A. & de Sain-van der Velden, M. G. New insights into lipid metabolism in the nephrotic syndrome. Kidney Int. Suppl. 71, S18–S21 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Liang, K. & Vaziri, N. D. Down-regulation of hepatic high-density lipoprotein receptor, SR-B1, in nephrotic syndrome. Kidney Int. 56, 621–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Vaziri, N. D. & Liang, K. H. Acyl-coenzyme A: cholesterol acyltransferase inhibition ameliorates proteinuria, hyperlipidemia, lecithin-cholesterol acyltransferase, SRB-1, and low-density lipoprotein receptor deficiencies in nephrotic syndrome. Circulation 110, 419–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Vaziri, N. D. & Liang, K. H. Up-regulation of acyl-coenzyme A: cholesterol acyltransferase (ACAT) in nephrotic syndrome. Kidney Int. 61, 1769–1775 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Beltowski, J., Wójcicka, G. & Jamroz-Wis´niewska, A. Adverse effects of statins—mechanisms and consequences. Curr. Drug Saf. 4, 209–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Sever, P. S. et al. The Anglo-Scandinavian Cardiac Outcomes Trial lipid lowering arm: extended observations 2 years after trial closure. Eur. Heart J. 29, 499–508 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Brugts, J. J. et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ 338, b2376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. FDA. FDA drug safety communication: new restrictions, contraindications, and dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. US Department of Health and Human Services [online], (2011).

  87. SEARCH Collaborative Group. et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

  88. Ponda, M. P. & Barash, I. Lipid metabolism in dialysis patients—the story gets more complicated. Semin. Dial. 21, 390–394 (2008).

    Article  PubMed  Google Scholar 

  89. Otvos, J. D. et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 113, 1556–1563 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Cromwell, W. C. et al. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study—implications for LDL management. J. Clin. Lipidol. 1, 583–592 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Otvos, J. D. et al. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J. Clin. Lipidol. 5, 105–113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hsia, J. et al. Lipoprotein particle concentrations may explain the absence of coronary protection in the Women's Health Initiative hormone trials. Arterioscler. Thromb. Vasc. Biol. 28, 1666–1671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mora, S. et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 192, 211–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Himmelfarb, J., Stenvinkel, P., Ikizler, T. A. & Hakim, R. M. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 62, 1524–1538 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Vaziri, N. D. et al. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfr624.

  96. Kim, H. J. & Vaziri, N. D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am. J. Physiol. Renal Physiol. 298, F662–F671 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Rucker, D. & Tonelli, M. Cardiovascular risk and management in chronic kidney disease. Nat. Rev. Nephrol. 5, 287–296 (2009).

    Article  PubMed  Google Scholar 

  98. Stenvinkel, P. & Alvestrand, A. Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin. Dial. 15, 329–337 (2002).

    Article  PubMed  Google Scholar 

  99. Vaziri, N. D. Oxidative stress in uremia: nature, mechanisms and consequences. Semin. Nephrol. 24, 469–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Vaziri, N. D. & Norris, K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 31, 189–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Vaziri, N. D. Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J. Ren. Nutr. 20 (Suppl.), S35–S43 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Martinez, L. O. et al. Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, discussion of content and writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Murray Epstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, M., Vaziri, N. Statins in the management of dyslipidemia associated with chronic kidney disease. Nat Rev Nephrol 8, 214–223 (2012). https://doi.org/10.1038/nrneph.2012.33

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing