Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of Rac1–mineralocorticoid-receptor signalling in renal and cardiac disease

Abstract

The Rho-family small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), has been implicated in renal and cardiac disease. Rac1 activation in podocytes has been shown in several models of proteinuric kidney disease and a concept involving motile podocytes has been proposed. Evidence also exists for a critical role of Rac1-mediated oxidative stress in cardiac hypertrophy, cardiomyopathy and arrhythmia, and of the aldosterone–mineralocorticoid-receptor system in proteinuria and cardiac disorders. However, plasma aldosterone concentrations are not always increased in these conditions and the mechanisms of mineralocorticoid-receptor overactivation are difficult to determine. Using knockout mice, we identified a novel mechanism of Rac1-mediated podocyte impairment; Rac1 potentiates the activity of the mineralocorticoid receptor, thereby accelerating podocyte injury. We subsequently demonstrated that the Rac1–mineralocorticoid-receptor pathway contributes to ligand-independent mineralocorticoid-receptor activation in several animal models of kidney and cardiac injury. Hyperkalaemia is a major concern associated with the use of mineralocorticoid-receptor antagonists; however, agents that modulate the activity of the Rac1–mineralocorticoid-receptor pathway in target cells, such as cell-type-specific Rac inhibitors and selective mineralocorticoid-receptor modulators, could potentially be novel therapeutic candidates with high efficacy and a low risk of adverse effects in patients with renal and cardiac diseases.

Key Points

  • Rac1 activation has been implicated in podocyte injury, cardiac dysfunction and other diseases

  • Rac1 activation in glomerular podocytes might be associated with increased podocyte motility and foot process effacement

  • Rac1 potentiates the activity of the mineralocorticoid receptor in a ligand-independent manner, thereby accelerating podocyte impairment

  • Ligand-independent mineralocorticoid-receptor activation is mediated by Rac1 in several animal models of salt-sensitive hypertension and kidney disease

  • Rac1–mineralocorticoid-receptor crosstalk contributes to the cardiac injury induced by reactive oxygen species

  • Rac inhibitors and selective mineralocorticoid-receptor modulators that regulate the activity of the Rac1–mineralocorticoid-receptor pathway might be novel candidates for the treatment of renal and cardiac disease

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of Rac1-induced renal and cardiac disease.
Figure 2: Regulation of Rac1 activity.
Figure 3: The role of Rac1–MR signalling in angiotensin II and salt-induced renal injury.
Figure 4: Mechanisms of MR activation.

Similar content being viewed by others

References

  1. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Mundel, P. & Reiser, J. Proteinuria: an enzymatic disease of the podocyte? Kidney Int. 77, 571–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Welsh, G. I. & Saleem, M. A. The podocyte cytoskeleton—key to a functioning glomerulus in health and disease. Nat. Rev. Nephrol. 8, 14–21 (2012).

    Article  CAS  Google Scholar 

  5. Brown, J. H., Del Re, D. P. & Sussman, M. A. The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ. Res. 98, 730–742 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lezoualc'h, F., Métrich, M., Hmitou, I., Duquesnes, N. & Morel, E. Small GTP-binding proteins and their regulators in cardiac hypertrophy. J. Mol. Cell. Cardiol. 44, 623–632 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. Briet, M. & Schiffrin, E. L. Aldosterone: effects on the kidney and cardiovascular system. Nat. Rev. Nephrol. 6, 261–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Bertocchio, J. P., Warnock, D. G. & Jaisser, F. Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease. Kidney Int. 79, 1051–1060 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Williams, G. H. et al. Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. Am. J. Cardiol. 93, 990–996 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Funder, J. W. RALES, EPHESUS and redox. J. Steroid Biochem. Mol. Biol. 93, 121–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Nagase, M. et al. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47, 1084–1093 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Shibata, S. et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med. 14, 1370–1376 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Kawarazaki, W. et al. Angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation. J. Am. Soc. Nephrol. 23, 997–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shibata, S. et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J. Clin. Invest. 121, 3233–3243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagase, M. et al. Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1. Hypertension 59, 500–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Jordan, P., Brazao, R., Boavida, M. G., Gespach, C. & Chastre, E. Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 18, 6835–6839 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Sugihara, K. et al. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17, 3427–3433 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Rossman, K. L., Der, C. J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Tzima, E. et al. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 21, 6791–6800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aikawa, R. et al. Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem. Biophys. Res. Commun. 289, 901–907 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Papaharalambus, C. et al. Tumor necrosis factor-α stimulation of Rac1 activity. Role of isoprenylcysteine carboxylmethyltransferase. J. Biol. Chem. 280, 18790–18796 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Kurokawa, K., Itoh, R. E., Yoshizaki, H., Nakamura, Y. O. & Matsuda, M. Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor. Mol. Biol. Cell 15, 1003–1010 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell. 9, 1863–1871 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, C. L. et al. Superoxide destabilization of β-catenin augments apoptosis of high-glucose-stressed mesangial cells. Endocrinology 149, 2934–2942 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, E. et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 58, 2386–2395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yi, F., Zhang, A. Y., Janscha, J. L., Li, P. L. & Zou, A. P. Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int. 66, 1977–1987 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Uhlik, M. T. et al. Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat. Cell Biol. 5, 1104–1110 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Friis, M. B. et al. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. J. Physiol. 567, 427–443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silva, G. B. & Garvin, J. L. Rac1 mediates NaCl-induced superoxide generation in the thick ascending limb. Am. J. Physiol. Renal Physiol. 298, F421–F425 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, R. & Juncos, L. A. GTPase-Rac enhances depolarization-induced superoxide production by the macula densa during tubuloglomerular feedback. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R453–R458 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Schmitz, U. et al. Angiotensin II-induced stimulation of p21-activated kinase and c-Jun NH2-terminal kinase is mediated by Rac1 and Nck. J. Biol. Chem. 276, 22003–22010 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Takemoto, M. et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J. Clin. Invest. 108, 1429–1437 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishida, M. et al. Gα12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J. Biol. Chem. 280, 18434–18441 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Shibata, S., Nagase, M., Yoshida, S., Kawachi, H. & Fujita, T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49, 355–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Iwashima, F. et al. Aldosterone induces superoxide generation via Rac1 activation in endothelial cells. Endocrinology 149, 1009–1014 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Loirand, G., Scalbert, E., Bril, A. & Pacaud, P. Rho exchange factors in the cardiovascular system. Curr. Opin. Pharmacol. 8, 174–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Knaus, U. G., Heyworth, P. G., Evans, T., Curnutte, J. T. & Bokoch, G. M. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254, 1512–1515 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Abo, A. et al. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353, 668–670 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, K. S. et al. Protection from reoxygenation injury by inhibition of rac1. J. Clin. Invest. 101, 1821–1826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bustelo, X. R., Sauzeau, V. & Berenjeno, I. M. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29, 356–370 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D'Agati, V. D., Kaskel, F. J. & Falk, R. J. Focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 2398–2411 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Hsu, H. H. et al. Mechanisms of angiotensin II signaling on cytoskeleton of podocytes. J. Mol. Med. (Berl.) 86, 1379–1394 (2008).

    Article  CAS  Google Scholar 

  46. Hoffmann, S., Podlich, D., Hahnel, B., Kriz, W. & Gretz, N. Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J. Am. Soc. Nephrol. 15, 1475–1487 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Tian, D. et al. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci. Signal. 3, ra77 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 3, 932–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, M. et al. Ang II-stimulated migration of vascular smooth muscle cells is dependent on LR11 in mice. J. Clin. Invest. 118, 2733–2746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohta, Y., Hartwig, J. H. & Stossel, T. P. FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat. Cell Biol. 8, 803–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, T. C. et al. HIV-1 Nef disrupts the podocyte actin cytoskeleton by interacting with diaphanous interacting protein. J. Biol. Chem. 283, 8173–8182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu, H. et al. Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation 114, 2271–2279 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Maack, C. et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108, 1567–1574 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Adam, O. et al. Role of Rac1 GTPase activation in atrial fibrillation. J. Am. Coll. Cardiol. 50, 359–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Morel, E. et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ. Res. 97, 1296–1304 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Liao, J. K. Isoprenoids as mediators of the biological effects of statins. J. Clin. Invest. 110, 285–288 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kawamura, S., Miyamoto, S. & Brown, J. H. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J. Biol. Chem. 278, 31111–31117 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Pracyk, J. B. et al. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J. Clin. Invest. 102, 929–937 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clerk, A. et al. Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. Mol. Cell. Biol. 21, 1173–1184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ito, M., Adachi, T., Pimentel, D. R., Ido, Y. & Colucci, W. S. Statins inhibit β-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes via a Rac1-dependent mechanism. Circulation 110, 412–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Satoh, M. et al. Requirement of Rac1 in the development of cardiac hypertrophy. Proc. Natl Acad. Sci. USA 103, 7432–7437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsai, C. T. et al. Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation 117, 344–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Sussman, M. A. et al. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J. Clin. Invest. 105, 875–886 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, J. et al. Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 59, 2033–2042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Van Linthout, S. et al. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 50, 1977–1986 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Adam, O. et al. Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J. Am. Coll. Cardiol. 55, 469–480 (2010).

    Article  PubMed  CAS  Google Scholar 

  69. Sawada, N., Kim, H. H., Moskowitz, M. A. & Liao, J. K. Rac1 is a critical mediator of endothelium-derived neurotrophic activity. Sci. Signal. 2, ra10 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kassai, H. et al. Rac1 in cortical projection neurons is selectively required for midline crossing of commissural axonal formation. Eur. J. Neurosci. 28, 257–267 (2008).

    Article  PubMed  Google Scholar 

  71. Vecchione, C. et al. Selective Rac-1 inhibition protects from diabetes-induced vascular injury. Circ. Res. 98, 218–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Ozaki, M. et al. Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J. 14, 418–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Binker, M. G., Binker-Cosen, A. A., Gaisano, H. Y. & Cosen-Binker, L. I. Inhibition of Rac1 decreases the severity of pancreatitis and pancreatitis-associated lung injury in mice. Exp. Physiol. 93, 1091–1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Desire, L. et al. RAC1 inhibition targets amyloid precursor protein processing by γ-secretase and decreases Aβ production in vitro and in vivo. J. Biol. Chem. 280, 37516–37525 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Montalvo-Ortiz, B. L. et al. Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. J. Biol. Chem. 287, 13228–13238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu, L., Jiang, R., Aoudjit, L., Jones, N. & Takano, T. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1621–1630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, L. et al. Mechanisms of the proteinuria induced by Rho GTPases. Kidney Int. 81, 1075–1085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scott, R. P. et al. Podocyte-specific loss of cdc42 leads to congenital nephropathy. J. Am. Soc. Nephrol. 23, 1149–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Machacek, M. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kistler, A. D., Altintas, M. M. & Reiser, J. Podocyte GTPases regulate kidney filter dynamics. Kidney Int. 81, 1053–1055 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maillet, M. et al. Cdc42 is an antihypertrophic molecular switch in the mouse heart. J. Clin. Invest. 119, 3079–3088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, W. et al. Pak1 as a novel therapeutic target for antihypertrophic treatment in the heart. Circulation 124, 2702–2715 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ke, Y., Wang, L., Pyle, W. G., de Tombe, P. P. & Solaro, R. J. Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ. Res. 94, 194–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Sah, V. P. et al. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J. Clin. Invest. 103, 1627–1634 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xiang, S. Y. et al. RhoA protects the mouse heart against ischemia/reperfusion injury. J. Clin. Invest. 121, 3269–3276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Luther, J. M. et al. Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 82, 643–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McCurley, A. et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18, 1429–1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Usher, M. G. et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J. Clin. Invest. 120, 3350–3364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jaffe, I. Z. & Mendelsohn, M. E. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 96, 643–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Kretzler, M., Koeppen-Hagemann, I. & Kriz, W. Podocyte damage is a critical step in the development of glomerulosclerosis in the uninephrectomised, desoxycorticosterone-hypertensive rat. Virchows Arch. 425, 181–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Guo, C. et al. Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology 147, 5363–5373 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Han, S. Y. et al. Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. J. Am. Soc. Nephrol. 17, 1362–1372 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Nishiyama, A. et al. Mineralocorticoid receptor blockade enhances the antiproteinuric effect of an angiotensin II blocker through inhibiting podocyte injury in type 2 diabetic rats. J. Pharmacol. Exp. Ther. 332, 1072–1080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Toyonaga, J. et al. Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production. Nephrol. Dial. Transplant. 26, 2475–2484 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Rocha, R., Chander, P. N., Khanna, K., Zuckerman, A. & Stier, C. T. Jr. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 31, 451–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Nagase, M. et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J. Am. Soc. Nephrol. 17, 3438–3446 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Zitt, E. et al. The selective mineralocorticoid receptor antagonist eplerenone is protective in mild anti-GBM glomerulonephritis. Int. J. Clin. Exp. Pathol. 4, 606–615 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Asai, M. et al. Spironolactone in combination with cilazapril ameliorates proteinuria and renal interstitial fibrosis in rats with anti-Thy-1 irreversible nephritis. Hypertens. Res. 27, 971–978 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Monrad, S. U., Killen, P. D., Anderson, M. R., Bradke, A. & Kaplan, M. J. The role of aldosterone blockade in murine lupus nephritis. Arthritis Res. Ther. 10, R5 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Fukuda, A., Fujimoto, S., Iwatsubo, S., Kawachi, H. & Kitamura, K. Effects of mineralocorticoid and angiotensin II receptor blockers on proteinuria and glomerular podocyte protein expression in a model of minimal change nephrotic syndrome. Nephrology (Carlton) 15, 321–326 (2010).

    Article  CAS  Google Scholar 

  101. Nakhoul, F. et al. Eplerenone potentiates the antiproteinuric effects of enalapril in experimental nephrotic syndrome. Am. J. Physiol. Renal Physiol. 294, F628–F637 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Greene, E. L., Kren, S. & Hostetter, T. H. Role of aldosterone in the remnant kidney model in the rat. J. Clin. Invest. 98, 1063–1068 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Navaneethan, S. D., Nigwekar, S. U., Sehgal, A. R. & Strippoli, G. F. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 4, 542–551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhu, C. et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARgamma. Am. J. Pathol. 178, 2020–2031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yuan, Y. et al. Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int. 82, 771–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Ogawa, Y. et al. Natriuretic peptide receptor guanylyl cyclase-A protects podocytes from aldosterone-induced glomerular injury. J. Am. Soc. Nephrol. 23, 1198–1209 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, C. et al. Aldosterone induces apoptosis in rat podocytes: role of PI3-K/Akt and p38MAPK signaling pathways. Nephron Exp. Nephrol. 113, e26–e34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ransom, R. F., Lam, N. G., Hallett, M. A., Atkinson, S. J. & Smoyer, W. E. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int. 68, 2473–2483 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Wada, T., Pippin, J. W., Marshall, C. B., Griffin, S. V. & Shankland, S. J. Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. J. Am. Soc. Nephrol. 16, 2615–2625 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Greiber, S., Muller, B., Daemisch, P. & Pavenstadt, H. Reactive oxygen species alter gene expression in podocytes: induction of granulocyte macrophage-colony-stimulating factor. J. Am. Soc. Nephrol. 13, 86–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Xing, C. Y. et al. Direct effects of dexamethasone on human podocytes. Kidney Int. 70, 1038–1045 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science 312, 97–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Riggs, B. L. & Hartmann, L. C. Selective estrogen-receptor modulators—mechanisms of action and application to clinical practice. N. Engl. J. Med. 348, 618–629 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Gronemeyer, H., Gustafsson, J. A. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3, 950–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Qin, W. et al. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ. Res. 93, 69–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Garnier, A. et al. Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation 110, 1819–1825 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Ouvrard-Pascaud, A. et al. Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. Circulation 111, 3025–3033 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brilla, C. G. & Weber, K. T. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J. Lab. Clin. Med. 120, 893–901 (1992).

    CAS  PubMed  Google Scholar 

  121. Fraccarollo, D. et al. Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 123, 400–408 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Lother, A. et al. Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension 57, 746–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Beygui, F. et al. High plasma aldosterone levels on admission are associated with death in patients presenting with acute ST-elevation myocardial infarction. Circulation 114, 2604–2610 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Guder, G. et al. Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation 115, 1754–1761 (2007).

    Article  PubMed  CAS  Google Scholar 

  125. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. McMurray, J. J. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 (2012).

    Article  PubMed  Google Scholar 

  129. Edelmann, F. et al. Rationale and design of the 'Aldosterone Receptor Blockade in Diastolic Heart Failure' trial: a double-blind, randomized, placebo-controlled, parallel group study to determine the effects of spironolactone on exercise capacity and diastolic function in patients with symptomatic diastolic heart failure (Aldo-DHF). Eur. J. Heart Fail. 12, 874–882 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Desai, A. S. et al. Rationale and design of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial: a randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction. Am. Heart J. 162, 966–972 e910 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. He, B. J. et al. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat. Med. 17, 1610–1618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rickard, A. J. et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54, 537–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Togawa, A. et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIα. Oncogene 18, 5373–5380 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Su, L. F., Knoblauch, R. & Garabedian, M. J. Rho GTPases as modulators of the estrogen receptor transcriptional response. J. Biol. Chem. 276, 3231–3237 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Cai, D. et al. AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res. 63, 6802–6808 (2003).

    CAS  PubMed  Google Scholar 

  136. Wang, R. A., Mazumdar, A., Vadlamudi, R. K. & Kumar, R. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-α and promotes hyperplasia in mammary epithelium. EMBO J. 21, 5437–5447 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lyons, L. S. et al. Ligand-independent activation of androgen receptors by Rho GTPase signaling in prostate cancer. Mol. Endocrinol. 22, 597–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Kino, T. et al. Rho family guanine nucleotide exchange factor Brx couples extracellular signals to the glucocorticoid signaling system. J. Biol. Chem. 281, 9118–9126 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Nagase, M., Matsui, H., Shibata, S., Gotoda, T. & Fujita, T. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension 50, 877–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Engeli, S. et al. Weight loss and the renin–angiotensin–aldosterone system. Hypertension 45, 356–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Matsui, H. et al. Salt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder. Hypertension 52, 287–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Giordano, F. J. Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Invest. 115, 500–508 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Matsui, Y. et al. Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy. Hypertension 43, 1195–1201 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Fiebeler, A. et al. Mineralocorticoid receptor affects AP-1 and nuclear factor-κB activation in angiotensin II-induced cardiac injury. Hypertension 37, 787–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Wehling, M. Specific, nongenomic actions of steroid hormones. Annu. Rev. Physiol. 59, 365–393 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Frost, J. A. et al. Stimulation of NFκB activity by multiple signaling pathways requires PAK1. J. Biol. Chem. 275, 19693–19699 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Simon, A. R. et al. Regulation of STAT3 by direct binding to the Rac1 GTPase. Science 290, 144–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Kawashima, T. et al. Rac1 and a GTPase-activating protein, MgcRacGAP, are required for nuclear translocation of STAT transcription factors. J. Cell Biol. 175, 937–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu, X. et al. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 133, 340–353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Galigniana, M. D., Erlejman, A. G., Monte, M., Gomez-Sanchez, C. & Piwien-Pilipuk, G. The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol. Cell. Biol. 30, 1285–1298 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Storer, C. L., Dickey, C. A., Galigniana, M. D., Rein, T. & Cox, M. B. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol. Metab. 22, 481–490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, J. H. et al. Podocyte injury induces nuclear translocation of WTIP via microtubule-dependent transport. J. Biol. Chem. 285, 9995–10004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Guess, A. et al. Dose- and time-dependent glucocorticoid receptor signaling in podocytes. Am. J. Physiol. Renal Physiol. 299, F845–F853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Best, A., Ahmed, S., Kozma, R. & Lim, L. The Ras-related GTPase Rac1 binds tubulin. J. Biol. Chem. 271, 3756–3762 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Buscemi, N. et al. Myocardial subproteomic analysis of a constitutively active Rac1-expressing transgenic mouse with lethal myocardial hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 289, H2325–H2333 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Weigel, N. L. & Moore, N. L. Kinases and protein phosphorylation as regulators of steroid hormone action. Nucl. Recept. Signal. 5, e005 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. McKenna, N. J. & O'Malley, B. W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108, 465–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Denner, L. A., Weigel, N. L., Maxwell, B. L., Schrader, W. T. & O'Malley, B. W. Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 250, 1740–1743 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. Massaad, C., Houard, N., Lombes, M. & Barouki, R. Modulation of human mineralocorticoid receptor function by protein kinase A. Mol. Endocrinol. 13, 57–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Le Moellic, C. et al. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCα activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response. J. Am. Soc. Nephrol. 15, 1145–1160 (2004).

    CAS  PubMed  Google Scholar 

  161. Yokota, K. et al. Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J. Biol. Chem. 282, 1998–2010 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Murai-Takeda, A. et al. NF-YC functions as a corepressor of agonist-bound mineralocorticoid receptor. J. Biol. Chem. 285, 8084–8093 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Viengchareun, S. et al. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl. Recept. Signal. 5, e012 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Yang, J. & Fuller, P. J. Interactions of the mineralocorticoid receptor--within and without. Mol. Cell. Endocrinol. 350, 196–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Miralles, F. & Visa, N. Actin in transcription and transcription regulation. Curr. Opin. Cell. Biol. 18, 261–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Ando, K. et al. Rationale and design of the Eplerenone Combination Versus Conventional Agents to Lower Blood Pressure on Urinary Antialbuminuric Treatment Effect (EVALUATE) trial: a double-blinded randomized placebo-controlled trial to evaluate the antialbuminuric effects of an aldosterone blocker in hypertensive patients with albuminuria. Hypertens. Res. 33, 616–621 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 24390214 [M. Nagase] and No. 21229012 [T. Fujita]).

Author information

Authors and Affiliations

Authors

Contributions

M. Nagase researched the data for the article and wrote the manuscript. T. Fujita made a substantial contribution to discussions of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Toshiro Fujita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagase, M., Fujita, T. Role of Rac1–mineralocorticoid-receptor signalling in renal and cardiac disease. Nat Rev Nephrol 9, 86–98 (2013). https://doi.org/10.1038/nrneph.2012.282

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing