Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel approaches for reducing free light chains in patients with myeloma kidney

Abstract

Myeloma kidney is a tubulointerstitial pathology that accounts for approximately 80–90% of severe acute kidney injury in patients with multiple myeloma. Unless there is rapid intervention, progressive irreversible damage from interstitial fibrosis and tubular atrophy occurs. Work over the past decade has demonstrated that an early sustained reduction in serum concentrations of pathogenic monoclonal free light chains (FLCs) leads to improved renal recovery rates. In turn, an early improvement in renal function is associated with improved patient survival. An early reduction in FLC levels should therefore become standard of care, although the optimum mechanisms to achieve this depletion of FLCs remain to be determined. To provide a coordinated, cross-disciplinary approach to research in this disease, the International Kidney and Monoclonal Gammopathy Research Group was formed. In this Review, we address the current state of knowledge in the management of myeloma kidney.

Key Points

  • Recovery of renal function in patients with myeloma kidney requires an early substantial reduction in serum free light chain concentrations

  • Immediate treatment with high-dose dexamethasone is essential in patients with myeloma kidney

  • The proteasome inhibitor bortezomib provides rapid and high rates of myeloma response without the need for dose modification in patients with renal failure

  • The immunomodulatory drugs thalidomide and lenalidomide are both associated with improved outcomes in patients with kidney disease associated with myeloma

  • A role for free light chain removal by high cut-off hemodialysis in patients with myeloma kidney remains to be proved

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probability of renal recovery following reduction in FLC levels.

Similar content being viewed by others

References

  1. Kumar, S. K. et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 111, 2516–2520 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bladé, J. et al. Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch. Intern. Med. 158, 1889–1893 (1998).

    Article  PubMed  Google Scholar 

  3. Kyle, R. A. et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 78, 21–33 (2003).

    Article  PubMed  Google Scholar 

  4. Chow, C. C. et al. Renal impairment in patients with multiple myeloma. Hong Kong Med. J. 9, 78–82 (2003).

    CAS  PubMed  Google Scholar 

  5. Rayner, H. C., Haynes, A. P., Thompson, J. R., Russell, N. & Fletcher, J. Perspectives in multiple myeloma: survival, prognostic factors and disease complications in a single centre between 1975 and 1988. Q. J. Med. 79, 517–525 (1991).

    CAS  PubMed  Google Scholar 

  6. Torra, R. et al. Patients with multiple myeloma requiring long-term dialysis: presenting features, response to therapy, and outcome in a series of 20 cases. Br. J. Haematol. 91, 854–859 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Knudsen, L. M., Hjorth, M. & Hippe, E. Renal failure in multiple myeloma: reversibility and impact on the prognosis. Nordic Myeloma Study Group. Eur. J. Haematol. 65, 175–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Matsue, K. et al. Reversal of dialysis-dependent renal failure in patients with advanced multiple myeloma: single institutional experiences over 8 years. Ann. Hematol. 89, 291–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Dimopoulos, M. A. et al. Reversibility of renal impairment in patients with multiple myeloma treated with bortezomib-based regimens: identification of predictive factors. Clin. Lymphoma Myeloma 9, 302–306 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Alexanian, R., Barlogie, B. & Dixon, D. Renal failure in multiple myeloma. Pathogenesis and prognostic implications. Arch. Intern. Med. 150, 1693–1695 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Hutchison, C. A. et al. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat. Rev. Nephrol. 8, 43–51 (2012).

    Article  CAS  Google Scholar 

  12. Sanders, P. W., Herrera, G. A., Kirk, K. A., Old, C. W. & Galla, J. H. Spectrum of glomerular and tubulointerstitial renal lesions associated with monotypical immunoglobulin light chain deposition. Lab. Invest. 64, 527–537 (1991).

    CAS  PubMed  Google Scholar 

  13. Sanders, P. W. & Herrera, G. A. Monoclonal immunoglobulin light chain-related renal diseases. Semin. Nephrol. 13, 324–341 (1993).

    CAS  PubMed  Google Scholar 

  14. Herrera, G. A. & Sanders, P. W. Paraproteinemic renal diseases that involve the tubulo-interstitium. Contrib. Nephrol. 153, 105–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Solomon, A., Weiss, D. T. & Kattine, A. A. Nephrotoxic potential of Bence Jones proteins. N. Engl. J. Med. 324, 1845–1851 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Mead, G. P. et al. Serum free light chains for monitoring multiple myeloma. Br. J. Haematol. 126, 348–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Jagannath, S. Value of serum free light chain testing for the diagnosis and monitoring of monoclonal gammopathies in hematology. Clin. Lymphoma Myeloma 7, 518–523 (2007).

    Article  PubMed  Google Scholar 

  18. Stone, M. J. & Frendel, E. P. The clinical spectrum of light chain myeloma. A study of 35 patients with special reference to the occurrence of amyloidosis. Am. J. Med. 58, 601–619 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Chauveau, D. & Choukroun, G. Bence Jones proteinuria and myeloma kidney. Nephrol. Dial. Transplant. 11, 413–415 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Sanders, P. W. & Booker, B. B. Pathobiology of cast nephropathy from human Bence Jones proteins. J. Clin. Invest. 89, 630–639 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Askonas, B. A. & Williamson, A. R. Biosynthesis of immunoglobulins. Free light chain as an intermediate in the assembly of γG-molecules. Nature 211, 369–372 (1966).

    Article  CAS  PubMed  Google Scholar 

  22. Winearls, C. G. Acute myeloma kidney. Kidney Int. 48, 1347–1361 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Montseny, J. J. et al. Long-term outcome according to renal histological lesions in 118 patients with monoclonal gammopathies. Nephrol. Dial. Transplant. 13, 1438–1445 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Magee, C., Vella, J. P., Tormey, W. P. & Walshe, J. J. Multiple myeloma and renal failure: one center's experience. Ren. Fail. 20, 597–606 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Leung, N. et al. Improvement of cast nephropathy with plasma exchange depends on the diagnosis and on reduction of serum free light chains. Kidney Int. 73, 1282–1288 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Sanders, P. W. Pathogenesis and treatment of myeloma kidney. J. Lab. Clin. Med. 124, 484–488 (1994).

    CAS  PubMed  Google Scholar 

  27. Misiani, R., Tiraboschi, G., Mingardi, G. & Mecca, G. Management of myeloma kidney: an anti-light-chain approach. Am. J. Kidney Dis. 10, 28–33 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Dispenzieri, A. et al. on behalf of the International Myeloma Working Group. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 23, 215–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Bradwell, A. R. et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin. Chem. 47, 673–680 (2001).

    CAS  PubMed  Google Scholar 

  30. Clark, W. F. et al. Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann. Intern. Med. 143, 777–784 (2005).

    Article  PubMed  Google Scholar 

  31. Johnson, W. J., Kyle, R. A., Pineda, A. A., O'Brien, P. C. & Holley, K. E. Treatment of renal failure associated with multiple myeloma. Plasmapheresis, hemodialysis, and chemotherapy. Arch. Intern. Med. 150, 863–869 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Zucchelli, P., Pasquali, S., Cagnoli, L. & Ferrari, G. Controlled plasma exchange trial in acute renal failure due to multiple myeloma. Kidney Int. 33, 1175–1180 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Roussou, M. et al. Treatment of patients with multiple myeloma complicated by renal failure with bortezomib-based regimens. Leuk. Lymphoma 49, 890–895 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Hutchison, C. A. et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin. J. Am. Soc. Nephrol. 4, 745–754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hutchison, C. A. et al. Early reduction of serum-free light chains associates with renal recovery in myeloma kidney. J. Am. Soc. Nephrol. 22, 1129–1136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kastritis, E. et al. Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high dose dexamethasone-containing regimens and the impact of novel agents. Haematologica 92, 546–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Tosi, P. et al. Thalidomide alone or in combination with dexamethasone in patients with advanced, relapsed or refractory multiple myeloma and renal failure. Eur. J. Haematol. 73, 98–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Tosi, P. et al. Thalidomide-dexamethasone as induction therapy before autologous stem cell transplantation in patients with newly diagnosed multiple myeloma and renal insufficiency. Biol. Blood Marrow Transplant. 16, 1115–1121 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Eriksson, T. et al. Pharmacokinetics of thalidomide in patients with impaired renal function and while on and off dialysis. J. Pharm. Pharmacol. 55, 1701–1706 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Harris, E. et al. Use of thalidomide in patients with myeloma and renal failure may be associated with unexplained hyperkalaemia. Br. J. Haematol. 122, 160–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Fakhouri, F. et al. Thalidomide in patients with multiple myeloma and renal failure. Br. J. Haematol. 125, 96–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Anderson, K. C. & Prince, H. M. Lenalidomide and thalidomide: an evolving paradigm for the management of multiple myeloma. Semin. Hematol. 42, S1–S2 (2005).

    Article  PubMed  Google Scholar 

  43. Chen, N. et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J. Clin. Pharmacol. 47, 1466–1475 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Richardson, P. G. et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 108, 3458–3464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weber, D. M. et al. for the Multiple Myeloma (009) Study Investigators. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N. Engl. J. Med. 357, 2133–2142 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Dimopoulos, M. et al. for the Multiple Myeloma (010) Study Investigators. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N. Engl. J. Med. 357, 2123–2132 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Dimopoulos, M. et al. The efficacy and safety of lenalidomide plus dexamethasone in relapsed and/or refractory multiple myeloma patients with impaired renal function. Cancer 116, 3807–3814 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Reece, D. E. et al. Use of lenalidomide (Revlimid®) ± corticosteroids in relapsed/refractory multiple myeloma patients with elevated baseline serum creatinine levels [abstract]. Blood (ASH Annual Meeting Abstracts) 108, 3548 (2006).

    Google Scholar 

  49. Klein, U. et al. Lenalidomide in combination with dexamethasone: effective regimen in patients with relapsed or refractory multiple myeloma complicated by renal impairment. Ann. Hematol. 90, 429–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Dimopoulos, M. A. et al. Lenalidomide and dexamethasone for the treatment of refractory/relapsed multiple myeloma: dosing of lenalidomide according to renal function and effect on renal impairment. Eur. J. Haematol. 85, 1–5 (2010).

    Article  PubMed  Google Scholar 

  51. de la Rubia, J. et al. Activity and safety of lenalidomide and dexamethasone in patients with multiple myeloma requiring dialysis: a Spanish multicenter retrospective study. Eur. J. Haematol. 85, 363–365 (2010).

    Article  PubMed  Google Scholar 

  52. Boccadoro, M., Morgan, G. & Cavenagh, J. Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int. 5, 18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mulkerin, D. et al. Safety, tolerability and pharmacology of bortezomib in cancer patients with renal failure requiring dialysis: results from a prospective phase 1 study [abstract]. Blood (ASH Annual Meeting Abstracts) 110, 3477 (2007).

    Google Scholar 

  54. Jagannath, S. et al. Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impaired renal function. Cancer 103, 1195–1200 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. San-Miguel, J. F. et al. Efficacy and safety of bortezomib in patients with renal impairment: results from the APEX phase 3 study. Leukemia 22, 842–849 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Chanan-Khan, A. A. et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal function: a multicenter retrospective study. Blood 109, 2604–2606 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Morabito, F. et al. Safety and efficacy of bortezomib-based regimens for multiple myeloma patients with renal impairment: a retrospective study of Italian Myeloma Network GIMEMA. Eur. J. Haematol. 84, 223–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Ludwig, H., Drach, J., Graf, H., Lang, A. & Meran, J. G. Reversal of acute renal failure by bortezomib-based chemotherapy in patients with multiple myeloma. Haematologica 92, 1411–1414 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Shah, J. et al. Rapid early monoclonal protein reduction after therapy with bortezomib or bortezomib and pegylated liposomal doxorubicin in relapsed/refractory myeloma is associated with a longer time to progression. Cancer 117, 3758–3762 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Dimopoulos, M. A. et al. VMP (bortezomib, melphalan, and prednisone) is active and well tolerated in newly diagnosed patients with multiple myeloma with moderately impaired renal function, and results in reversal of renal impairment: cohort analysis of phase III VISTA study. J. Clin. Oncol. 27, 6086–6093 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Ludwig, H. et al. Light chain-induced acute renal failure can be reversed by bortezomib-doxorubicin-dexamethasone in multiple myeloma: results of a phase II study. J. Clin. Oncol. 28, 4635–4641 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Roussou, M. et al. Reversibility of renal failure in newly diagnosed patients with multiple myeloma and the role of novel agents. Leuk. Res. 34, 1395–1397 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Ying, W. Z., Wang, P. X., Aaron, K. J., Basnayake, K. & Sanders, P. W. Immunoglobulin light chains activate nuclear factorκB in renal epithelial cells through a Src-dependent mechanism. Blood 117, 1301–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dimopoulos, M. A. et al. Renal impairment in patients with multiple myeloma: a consensus statement on behalf of the International Myeloma Working Group. J. Clin. Oncol. 28, 4976–4984 (2010).

    Article  PubMed  Google Scholar 

  65. Waldmann, T. A., Strober, W. & Mogielnicki, R. P. The renal handling of low molecular weight proteins. II. Disorders of serum protein catabolism in patients with tubular proteinuria, the nephrotic syndrome, or uremia. J. Clin. Invest. 51, 2162–2174 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miettinen, T. A. & Kekki, M. Effect of impaired hepatic and renal function on Bence Jones protein catabolism in human subjects. Clin. Chim. Acta 18, 395–407 (1967).

    Article  Google Scholar 

  67. Hutchison, C. A. et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1684–1690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hutchison, C. A. et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with type II diabetes: an early marker of diabetic kidney disease? Expert Opin. Ther. Targets 12, 667–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Hutchison, C. A. et al. Efficient removal of immunoglobulin free light chains by hemodialysis for multiple myeloma: in vitro and in vivo studies. J. Am. Soc. Nephrol. 18, 886–895 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. ISRCTN Register. Myeloma Renal Impairment Trial: adjunctive plasma exchange in patients with newly diagnosed multiple myeloma and acute renal failure [online], (2009).

  71. Cserti, C., Haspel, R., Stowell, C. & Dzik, W. Light-chain removal by plasmapheresis in myeloma-associated renal failure. Transfusion 47, 511–514 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Burnette, B. L., Leung, N. & Rajkumar, S. V. Renal improvement in myeloma with bortezomib plus plasma exchange. N. Engl. J. Med. 364, 2365–2366 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Ward, R. A., Greene, T., Hartmann, B. & Samtleben, W. Resistance to intercompartmental mass transfer limits β2-microglobulin removal by post-dilution hemodiafiltration. Kidney Int. 69, 1431–1437 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Granger Vallée, A. et al. Online high-efficiency haemodiafiltration achieves higher serum free light chain removal then high-flux haemodialysis in multiple myeloma patients: preliminary quantitative study. Nephrol. Dial. Transplant. 26, 3627–3633 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Gondouin, B. & Hutchison, C. A. High cut-off dialysis membranes: current uses and future potential. Adv. Chronic Kidney Dis. 18, 180–187 (2011).

    Article  PubMed  Google Scholar 

  76. Hutchison, C. A. et al. Serum free-light chain removal by high cutoff hemodialysis: optimizing removal and supportive care. Artif. Organs 32, 910–917 (2008).

    Article  PubMed  Google Scholar 

  77. Hutchison, C. A., Basnayake, K., Cook, M., Bradwell, A. R. & Cockwell, P. Free light chain hemodialysis increases renal recovery rate and improves patient survival in patients with cast nephropathy. Nephrol. Dial. Transplant. 1 (Suppl. 2), ii9a (2008).

    Google Scholar 

  78. Bachmann, U. et al. Combination of bortezomib-based chemotherapy and extracorporeal free light chain removal for treating cast nephropathy in multiple myeloma. NDT Plus 1, 106–108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hutchison, C. A. et al. Immunoglobulin free light chain levels and recovery from myeloma kidney on treatment with chemotherapy and high cut-off haemodialysis. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfr773.

  80. Harding, S. et al. Aggregated serum free light chains may prevent adequate removal by high cut-off haemodialysis. Nephrol. Dial. Transplant. 26, 1438 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Heyne, N. et al. Extracorporeal light chain elimination: high cut-off (HCO) hemodialysis parallel to chemotherapy allows for a high proportion of renal recovery in multiple myeloma patients with dialysis-dependent acute kidney injury. Ann. Hematol. http://dx.doi.org/10.1007/s00277-011-1383-0.

  82. Hutchison, C. A. et al. European trial of free light chain removal by extended haemodialysis in cast nephropathy (EuLITE): a randomised controlled trial. Trials 9, 55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  84. Badros, A. et al. Results of autologous stem cell transplant in multiple myeloma patients with renal failure. Br. J. Haematol. 114, 822–829 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. San Miguel, J. F. et al. Are myeloma patients with renal failure candidates for autologous stem cell transplantation? Hematol. J. 1, 28–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, C. K. et al. Dialysis-dependent renal failure in patients with myeloma can be reversed by high-dose myeloablative therapy and autotransplant. Bone Marrow Transplant. 33, 823–828 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Knudsen, L. M., Nielsen, B., Gimsing, P. & Geisler, C. Autologous stem cell transplantation in multiple myeloma: outcome in patients with renal failure. Eur. J. Haematol. 75, 27–33 (2005).

    Article  PubMed  Google Scholar 

  88. Parikh, G. C. et al. Autologous hematopoietic stem cell transplantation may reverse renal failure in patients with multiple myeloma. Biol. Blood Marrow Transplant. 15, 812–816 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dawson, A. A. & Ogston, D. Factors influencing the prognosis in myelomatosis. Postgrad. Med. J. 47, 635–638 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Peto, R. Factors of prognostic significance in myelomatosis. J. Clin. Pathol. 25, 555 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kleber, M. et al. Detection of renal impairment as one specific comorbidity factor in multiple myeloma: multicenter study in 198 consecutive patients. Eur. J. Haematol. 83, 519–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Augustson, B. M. et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United Kingdom Medical Research Council trials between 1980 and 2002. Medical Research Council Adult Leukaemia Working Party. J. Clin. Oncol. 23, 9219–9226 (2005).

    Article  PubMed  Google Scholar 

  93. Niesvizky, R. et al. Lenalidomide-induced myelosuppression is associated with renal dysfunction: adverse events evaluation of treatment-naive patients undergoing front-line lenalidomide and dexamethasone therapy. Br. J. Haematol. 138, 640–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Ailawadhi, S. et al. Renal dysfunction does not affect clinical response in multiple myeloma (MM) patients treated with bortezomib-based regimens [abstract]. Blood (ASH Annual Meeting Abstracts) 110, 1477 (2007).

    Google Scholar 

  95. Bladé, J. et al. Pegylated liposomal doxorubicin plus bortezomib in relapsed or refractory multiple myeloma: efficacy and safety in patients with renal function impairment. Clin. Lymphoma Myeloma 8, 352–355 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

C. A. Hutchison, J. Bladé, P. Cockwell, M. Cook, M. Drayson, J.-P. Fermand, E. Kastritis, N. Leung and C. Winearls researched data to include in the manuscript. C. A. Hutchison, J. Bladé, M. Cook, J.-P. Fermand, E. Kastritis, N. Leung and C. Winearls wrote the article. All authors contributed equally to discussion of content for the article, and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Colin A. Hutchison.

Ethics declarations

Competing interests

C. A. Hutchison has received speakers bureau honoraria and grant/research support from Binding Site. M. Cook has received speakers bureau honoraria from Celgene and Janssen. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchison, C., Bladé, J., Cockwell, P. et al. Novel approaches for reducing free light chains in patients with myeloma kidney. Nat Rev Nephrol 8, 234–243 (2012). https://doi.org/10.1038/nrneph.2012.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing