Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Childhood nephrotic syndrome—current and future therapies

Abstract

The introduction of corticosteroids more than 50 years ago dramatically improved the prognosis of children with nephrotic syndrome. Corticosteroids remain the standard initial treatment for children with this disease, but a considerable proportion of patients do not respond and are therefore at risk of progressing to end-stage renal disease. Because of this risk, new therapeutic strategies are needed for steroid-resistant nephrotic syndrome. These strategies have historically focused on identifying effective alternative immunosuppressive agents, such as ciclosporin and tacrolimus, yet evidence now indicates that nephrotic syndrome results from podocyte dysfunction. Even conventional immunosuppressive agents, such as glucocorticoids and ciclosporin, directly affect podocyte structure and function, challenging the 'immune theory' of the pathogenesis of childhood nephrotic syndrome in which disease is caused by T cells. This Review summarizes the currently available treatments for childhood nephrotic syndrome, and discusses selected novel pathways in podocytes that could be targeted for the development of next-generation treatments for children with this syndrome.

Key Points

  • Corticosteroids have been used to treat childhood nephrotic syndrome for more than 50 years but a minority of patients, especially those with focal segmental glomerulosclerosis, are resistant to this treatment

  • Evidence now suggests that childhood nephrotic syndrome is attributable to podocyte dysfunction; many medications used to treat childhood nephrotic syndrome target the immune system, but also directly affect podocytes

  • Several currently available agents developed for other diseases, such as diabetes, are now being considered for treatment of steroid-resistant childhood nephrotic syndrome

  • Ongoing research has identified a number of pathways occuring in podocytes that may be potential targets for future therapies to treat steroid-resistant childhood nephrotic syndrome

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Total rituximab dose does not seem to correlate with initial clinical response.
Figure 2: Oral galactose induces remission of proteinuria in an adult with nephrotic syndrome resistant to multiple immunosuppressive agents.
Figure 3: Schematic of the canonical and alternate modes of action of thiazolidinediones.
Figure 4: Following TGF-β binding, the TGF-β receptor is activated, resulting in downstream activation of pro-apoptotic p38 MAPK and MK2 signaling via activation of PKC.

Similar content being viewed by others

References

  1. Arneil, G. C. The nephrotic syndrome. Pediatr. Clin. North Am. 18, 547–559 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Cameron, J. S. in The Nephrotic Syndrome (eds Cameron, J. S., Glassock, R. J. & Whelton, A.) 3–56 (Marcel Dekker, Inc., New York, 1988).

    Google Scholar 

  3. Arneil, G. C. & Lam, C. N. Long-term assessment of steroid therapy in childhood nephrosis. Lancet 2, 819–821 (1966).

    Article  CAS  PubMed  Google Scholar 

  4. Minimal change nephrotic syndrome in children: deaths during the first 5 to 15 years' observation. Report of the International Study of Kidney Disease in Children. Pediatrics 73, 497–501 (1984).

  5. Chavers, B. M., Li, S., Collins, A. J. & Herzog, C. A. Cardiovascular disease in pediatric chronic dialysis patients. Kidney Int. 62, 648–653 (2002).

    Article  PubMed  Google Scholar 

  6. Benoit, G., Machuca, E. & Antignac, C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr. Nephrol. 25, 1621–1632 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Machuca, E., Benoit, G. & Antignac, C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum. Mol. Genet. 18, R185–R194 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Lowik, M. M., Groenen, P. J., Levtchenko, E. N., Monnens, L. A. & van den Heuvel, L. P. Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review. Eur. J. Pediatr. 27, 27 (2009).

    Google Scholar 

  9. Savin, V. J. et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 334, 878–883 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397–1405 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ozaltin, F. et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 89, 139–147 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei, C. & Reiser, J. Minimal change disease as a modifiable podocyte paracrine disorder. Nephrol. Dial. Transplant. 26, 1776–1777 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schonenberger, E., Ehrich, J. H., Haller, H. & Schiffer, M. The podocyte as a direct target of immunosuppressive agents. Nephrol. Dial. Transplant. 26, 18–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Churg, J., Habib, R. & White, R. H. Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet 760, 1299–1302 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J. Pediatr. 98, 561–564 (1981).

  17. Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A Report of the International Study of Kidney Disease in Children. Kidney Int. 20, 765–771 (1981).

  18. Eddy, A. A. & Symons, J. M. Nephrotic syndrome in childhood. Lancet 362, 629–639 (2003).

    Article  PubMed  Google Scholar 

  19. Rydel, J. J., Korbet, S. M., Borok, R. Z. & Sxhwartz, M. M. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am. J. Kidney Dis. 25, 534–542 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Chun, M. J., Korbet, S. M., Schwartz, M. M. & Lewis, E. J. Focal segmental glomerulosclerosis in nephrotic adults: presentation, prognosis, and response to therapy of the histologic variants. J. Am. Soc. Nephrol. 15, 2169–2177 (2004).

    Article  PubMed  Google Scholar 

  21. Hodson, E. M., Willis, N. S. & Craig, J. C. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database of Systematic Reviews, Issue 4. Article No.: CD001533.doi: 10.1002/14651858.CD001533.pub4 (2007).

  22. Saadeh, S. A. et al. Weight or body surface area dosing of steroids in nephrotic syndrome: is there an outcome difference? Pediatr. Nephrol. 26, 2167–2171 (2011).

    Article  PubMed  Google Scholar 

  23. Ransom, R. F., Lam, N. G., Hallett, M. A., Atkinson, S. J. & Smoyer, W. E. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int. 68, 2473–2483 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Murnaghan, K., Vasmant, D. & Bensman, A. Pulse methylprednisolone therapy in severe idiopathic childhood nephrotic syndrome. Acta Paediatr. Scand. 73, 733–739 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Hari, P., Bagga, A. & Mantan, M. Short term efficacy of intravenous dexamethasone and methylprednisolone therapy in steroid resistant nephrotic syndrome. Indian Pediatr. 41, 993–1000 (2004).

    PubMed  Google Scholar 

  26. Mori, K., Honda, M. & Ikeda, M. Efficacy of methylprednisolone pulse therapy in steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 19, 1232–1236 (2004).

    Article  PubMed  Google Scholar 

  27. Shenoy, M. et al. Intravenous methylprednisolone in idiopathic childhood nephrotic syndrome. Pediatr. Nephrol. 25, 899–903 (2010).

    Article  PubMed  Google Scholar 

  28. Tune, B. M. et al. Intravenous methylprednisolone and oral alkylating agent therapy of prednisone-resistant pediatric focal segmental glomerulosclerosis: a long-term follow-up. Clin. Nephrol. 43, 84–88 (1995).

    CAS  PubMed  Google Scholar 

  29. Tune, B. M. & Mendoza, S. A. Treatment of the idiopathic nephrotic syndrome: regimens and outcomes in children and adults. J. Am. Soc. Nephrol. 8, 824–832 (1997).

    CAS  PubMed  Google Scholar 

  30. Mendoza, S. A. et al. Treatment of steroid-resistant focal segmental glomerulosclerosis with pulse methylprednisolone and alkylating agents. Pediatr. Nephrol. 4, 303–307 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Ehrich, J. H. et al. Steroid-resistant idiopathic childhood nephrosis: overdiagnosed and undertreated. Nephrol. Dial. Transplant. 22, 2183–2193 (2007).

    Article  PubMed  Google Scholar 

  32. Vester, U., Kranz, B., Zimmermann, S. & Hoyer, P. F. Cyclophosphamide in steroid-sensitive nephrotic syndrome: outcome and outlook. Pediatr. Nephrol. 18, 661–664 (2003).

    PubMed  Google Scholar 

  33. Plank, C. et al. Cyclosporin A is superior to cyclophosphamide in children with steroid-resistant nephrotic syndrome—a randomized controlled multicentre trial by the Arbeitsgemeinschaft für Pädiatrische Nephrologie. Pediatr. Nephrol. 23, 1483–1493 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sharda, S. V. et al. Do glutathione-S-transferase polymorphisms influence response to intravenous cyclophosphamide therapy in idiopathic nephrotic syndrome? Pediatr. Nephrol. 23, 2001–2006 (2008).

    Article  PubMed  Google Scholar 

  35. Vester, U., Kranz, B., Zimmermann, S., Buscher, R. & Hoyer, P. F. The response to cyclophosphamide in steroid-sensitive nephrotic syndrome is influenced by polymorphic expression of glutathion-S-transferases-M1 and -P1. Pediatr. Nephrol. 20, 478–481 (2005).

    Article  PubMed  Google Scholar 

  36. Latta, K., von Schnakenburg, C. & Ehrich, J. H. A meta-analysis of cytotoxic treatment for frequently relapsing nephrotic syndrome in children. Pediatr. Nephrol. 16, 271–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Dooley, M. A. et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N. Engl. J. Med. 365, 1886–1895 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Tang, S. C. et al. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney Int. 77, 543–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Eugui, E. M., Almquist, S. J., Muller, C. D. & Allison, A. C. Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: role of deoxyguanosine nucleotide depletion. Scand. J. Immunol. 33, 161–173 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Ishikawa, H. Mizoribine and mycophenolate mofetil. Curr. Med. Chem. 6, 575–597 (1999).

    CAS  PubMed  Google Scholar 

  41. Senthil Nayagam, L. et al. Mycophenolate mofetil or standard therapy for membranous nephropathy and focal segmental glomerulosclerosis: a pilot study. Nephrol. Dial. Transplant. 23, 1926–1930 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Cattran, D. C., Wang, M. M., Appel, G., Matalon, A. & Briggs, W. Mycophenolate mofetil in the treatment of focal segmental glomerulosclerosis. Clin. Nephrol. 62, 405–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Moudgil, A., Bagga, A. & Jordan, S. C. Mycophenolate mofetil therapy in frequently relapsing steroid-dependent and steroid-resistant nephrotic syndrome of childhood: current status and future directions. Pediatr. Nephrol. 20, 1376–1381 (2005).

    Article  PubMed  Google Scholar 

  44. Fujinaga, S. et al. Mycophenolate mofetil therapy for childhood-onset steroid dependent nephrotic syndrome after long-term cyclosporine: extended experience in a single center. Clin. Nephrol. 72, 268–273 (2009).

    CAS  PubMed  Google Scholar 

  45. de Mello, V. R. et al. Mycophenolate mofetil in children with steroid/cyclophosphamide-resistant nephrotic syndrome. Pediatr. Nephrol. 25, 453–460 (2010).

    Article  PubMed  Google Scholar 

  46. Gargah, T. T. & Lakhoua, M. R. Mycophenolate mofetil in treatment of childhood steroid-resistant nephrotic syndrome. J. Nephrol. 24, 203–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Gipson, D. S. et al. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int. 80, 868–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujinaga, S. et al. Single daily high-dose mizoribine therapy for children with steroid-dependent nephrotic syndrome prior to cyclosporine administration. Pediatr. Nephrol. 26, 479–483 (2011).

    Article  PubMed  Google Scholar 

  49. Tanaka, H. et al. Mizoribine pulse therapy for a pediatric patient with steroid-resistant nephrotic syndrome. Tohoku J. Exp. Med. 205, 87–91 (2005).

    Article  PubMed  Google Scholar 

  50. Borel, J. F. Mechanism of action of cyclosporin A and rationale for use in nephrotic syndrome. Clin. Nephrol. 35 (Suppl. 1), S23–S30 (1991).

    PubMed  Google Scholar 

  51. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lieberman, K. V. & Tejani, A. A randomized double-blind placebo-controlled trial of cyclosporine in steroid-resistant idiopathic focal segmental glomerulosclerosis in children. J. Am. Soc. Nephrol. 7, 56–63 (1996).

    CAS  PubMed  Google Scholar 

  53. Cattran, D. C. et al. A randomized trial of cyclosporine in patients with steroid-resistant focal segmental glomerulosclerosis. North America Nephrotic Syndrome Study Group. Kidney Int. 56, 2220–2226 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Niaudet, P. Treatment of childhood steroid-resistant idiopathic nephrosis with a combination of cyclosporine and prednisone. French Society of Pediatric Nephrology. J. Pediatr. 125, 981–986 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Iijima, K. et al. Risk factors for cyclosporine-induced tubulointerstitial lesions in children with minimal change nephrotic syndrome. Kidney Int. 61, 1801–1805 (2002).

    Article  PubMed  Google Scholar 

  56. Bowman, L. J. & Brennan, D. C. The role of tacrolimus in renal transplantation. Expert Opin. Pharmacother. 9, 635–643 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. McCauley, J. et al. Pilot trial of FK 506 in the management of steroid-resistant nephrotic syndrome. Nephrol. Dial. Transplant. 8, 1286–1290 (1993).

    CAS  PubMed  Google Scholar 

  58. Gulati, S. et al. Tacrolimus: a new therapy for steroid-resistant nephrotic syndrome in children. Nephrol. Dial. Transplant. 23, 910–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Loeffler, K., Gowrishankar, M. & Yiu, V. Tacrolimus therapy in pediatric patients with treatment-resistant nephrotic syndrome. Pediatr. Nephrol. 19, 281–287 (2004).

    Article  PubMed  Google Scholar 

  60. Westhoff, T. H., Schmidt, S., Zidek, W., Beige, J. & van der Giet, M. Tacrolimus in steroid-resistant and steroid-dependent nephrotic syndrome. Clin. Nephrol. 65, 393–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Choudhry, S. et al. Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am. J. Kidney Dis. 53, 760–769 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Bhimma, R., Adhikari, M., Asharam, K. & Connolly, C. Management of steroid-resistant focal segmental glomerulosclerosis in children using tacrolimus. Am. J. Nephrol. 26, 544–551 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Garcia, C. D. et al. Plasmapheresis for recurrent posttransplant focal segmental glomerulosclerosis. Transplant. Proc. 38, 1904–1905 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Bosch, T. & Wendler, T. Extracorporeal plasma treatment in primary and recurrent focal segmental glomerular sclerosis: a review. Ther. Apher. 5, 155–160 (2001).

    CAS  PubMed  Google Scholar 

  65. Pradhan, M., Petro, J., Palmer, J., Meyers, K. & Baluarte, H. J. Early use of plasmapheresis for recurrent post-transplant FSGS. Pediatr. Nephrol. 18, 934–938 (2003).

    Article  PubMed  Google Scholar 

  66. Feld, S. M. et al. Plasmapheresis in the treatment of steroid-resistant focal segmental glomerulosclerosis in native kidneys. Am. J. Kidney Dis. 32, 230–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Ginsburg, D. S. & Dau, P. Plasmapheresis in the treatment of steroid-resistant focal segmental glomerulosclerosis. Clin. Nephrol. 48, 282–287 (1997).

    CAS  PubMed  Google Scholar 

  68. Oliveira, L., Wang, D. & McCormick, B. B. A case report of plasmapheresis and cyclophosphamide for steroid-resistant focal segmental glomerulosclerosis: recovery of renal function after five months on dialysis. Ther. Apher. Dial. 11, 227–231 (2007).

    Article  PubMed  Google Scholar 

  69. Jayne, D. Role of rituximab therapy in glomerulonephritis. J. Am. Soc. Nephrol. 21, 14–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Ruggenenti, P. et al. Rituximab for idiopathic membranous nephropathy: who can benefit? Clin. J. Am. Soc. Nephrol. 1, 738–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Fervenza, F. C. et al. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int. 73, 117–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Fornoni, A. et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 3, 85ra46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guigonis, V. et al. Rituximab treatment for severe steroid- or cyclosporine-dependent nephrotic syndrome: a multicentric series of 22 cases. Pediatr. Nephrol. 23, 1269–1279 (2008).

    Article  PubMed  Google Scholar 

  74. Prytula, A. et al. Rituximab in refractory nephrotic syndrome. Pediatr. Nephrol. 25, 461–468 (2010).

    Article  PubMed  Google Scholar 

  75. Gulati, A. et al. Efficacy and safety of treatment with rituximab for difficult steroid-resistant and -dependent nephrotic syndrome: multicentric report. Clin. J. Am. Soc. Nephrol. 5, 2207–2212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bagga, A., Sinha, A. & Moudgil, A. Rituximab in patients with the steroid-resistant nephrotic syndrome. N. Engl. J. Med. 356, 2751–2752 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kari, J. A. et al. Rituximab for refractory cases of childhood nephrotic syndrome. Pediatr. Nephrol. 26, 733–737 (2011).

    Article  PubMed  Google Scholar 

  78. Suri, M., Tran, K., Sharma, A. P., Filler, G. & Grimmer, J. Remission of steroid-resistant nephrotic syndrome due to focal and segmental glomerulosclerosis using rituximab. Int. Urol. Nephrol. 40, 807–810 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Kurosu, N. et al. Successful use of single-dose rituximab for the maintenance of remission in a patient with steroid-resistant nephrotic syndrome. Intern. Med. 48, 1901–1904 (2009).

    Article  PubMed  Google Scholar 

  80. Peters, H. P., van de Kar, N. C. & Wetzels, J. F. Rituximab in minimal change nephropathy and focal segmental glomerulosclerosis: report of four cases and review of the literature. Neth. J. Med. 66, 408–415 (2008).

    CAS  PubMed  Google Scholar 

  81. Smith, G. C. Is there a role for rituximab in the treatment of idiopathic childhood nephrotic syndrome? Pediatr. Nephrol. 22, 893–898 (2007).

    Article  PubMed  Google Scholar 

  82. Nakayama, M. et al. Rituximab for refractory focal segmental glomerulosclerosis. Pediatr. Nephrol. 23, 481–485 (2008).

    Article  PubMed  Google Scholar 

  83. Sharma, A. P. & Filler, G. Role of mycophenolate mofetil in remission maintenance after a successful response to rituximab. Pediatr. Nephrol. 24, 423–424 (2009).

    Article  PubMed  Google Scholar 

  84. Ravani, P. et al. Short-term effects of rituximab in children with steroid- and calcineurin-dependent nephrotic syndrome: a randomized controlled trial. Clin. J. Am. Soc. Nephrol. 6, 1308–1315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sinha, A., Bagga, A., Gulati, A. & Hari, P. Short-term efficacy of rituximab versus tacrolimus in steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 27, 235–241 (2011).

    Article  PubMed  Google Scholar 

  86. Sellier-Leclerc, A. L. et al. Rituximab in steroid-dependent idiopathic nephrotic syndrome in childhood—follow-up after CD19 recovery. Nephrol. Dial. Transplant. 27, 1083–1089 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Kemper, M. J. et al. Long-term follow-up after rituximab for steroid-dependent idiopathic nephrotic syndrome. Nephrol. Dial. Transplant. http://dx.doi:10.1093/ndt/gfr548.

  88. Iijima, K. Rituximab for childhood refractory nephrotic syndrome. Pediatr. Int. 53, 617–621 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Magnasco, A. Rituximab in children with resistant idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. http://dx.doi:10.1681/ASN.2011080775.

  90. Sellier-Leclerc, A.-L. et al. Rituximab efficiency in children with steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 25, 1109–1115 (2010).

    Article  PubMed  Google Scholar 

  91. Kamei, K. et al. Single dose of rituximab for refractory steroid-dependent nephrotic syndrome in children. Pediatr. Nephrol. 24, 1321–1328 (2009).

    Article  PubMed  Google Scholar 

  92. Ardelean, D. S. et al. Severe ulcerative colitis after rituximab therapy. Pediatrics 126, e243–e246 (2010).

    Article  PubMed  Google Scholar 

  93. Chan, A. C. Rituximab's new therapeutic target: the podocyte actin cytoskeleton. Sci. Transl. Med. 3, 85ps21 (2011).

    PubMed  Google Scholar 

  94. Savin, V. J., McCarthy, E. T., Sharma, R., Charba, D. & Sharma, M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl. Res. 151, 288–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. De Smet, E., Rioux, J. P., Ammann, H., Deziel, C. & Querin, S. FSGS permeability factor-associated nephrotic syndrome: remission after oral galactose therapy. Nephrol. Dial. Transplant. 24, 2938–2940 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Kopac, M., Meglic, A. & Rus, R. R. Partial remission of resistant nephrotic syndrome after oral galactose therapy. Ther. Apher. Dial. 15, 269–272 (2011).

    Article  PubMed  Google Scholar 

  97. Novel therapies in resistant focal segmental glomerulosclerosis: www.fonttrial.org (2010).

  98. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  99. Suranyi, M. G., Guasch, A., Hall, B. M. & Myers, B. D. Elevated levels of tumor necrosis factor-alpha in the nephrotic syndrome in humans. Am. J. Kidney Dis. 21, 251–259 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Bustos, C., Gonzalez, E., Muley, R., Alonso, J. L. & Egido, J. Increase of tumour necrosis factor alpha synthesis and gene expression in peripheral blood mononuclear cells of children with idiopathic nephrotic syndrome. Eur. J. Clin. Invest. 24, 799–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Gupta, A., Pendyala, P., Arora, P. & Sitrin, M. D. Development of the nephrotic syndrome during treatment of Crohn's disease with adalimumab. J. Clin. Gastroenterol. 45, e30–e33 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Nowak, B., Jeka, S., Wiland, P. & Szechinski, J. Rapid and complete resolution of ascites and hydrothorax due to nephrotic syndrome caused by renal amyloidosis in a patient with juvenile chronic arthritis treated with adalimumab. Joint Bone Spine 76, 217–219 (2009).

    Article  PubMed  Google Scholar 

  103. Joy, M. S. et al. Phase 1 trial of adalimumab in Focal Segmental Glomerulosclerosis (FSGS): II. Report of the FONT (Novel Therapies for Resistant FSGS) study group. Am. J. Kidney Dis. 55, 50–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Michalik, L. et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 58, 726–741 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Ma, L. J., Marcantoni, C., Linton, M. F., Fazio, S. & Fogo, A. B. Peroxisome proliferator-activated receptor-gamma agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int. 59, 1899–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, H. C., Ma, L. J., Ma, J. & Fogo, A. B. Peroxisome proliferator-activated receptor-gamma agonist is protective in podocyte injury-associated sclerosis. Kidney Int. 69, 1756–1764 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Cha, D. R. et al. Peroxisome proliferator activated receptor alpha/gamma dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice. Diabetes 56, 2036–2045 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Sarafidis, P. A., Stafylas, P. C., Georgianos, P. I., Saratzis, A. N. & Lasaridis, A. N. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am. J. Kidney Dis. 55, 835–847 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Mao, Z. & Ong, A. C. Peroxisome proliferator-activated receptor gamma agonists in kidney disease--future promise, present fears. Nephron Clin. Pract. 112, c230–c241 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Kanjanabuch, T. et al. PPAR-gamma agonist protects podocytes from injury. Kidney Int. 71, 1232–1239 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Liu, H. F. et al. Thiazolidinedione attenuate proteinuria and glomerulosclerosis in Adriamycin-induced nephropathy rats via slit diaphragm protection. Nephrology (Carlton) 15, 75–83 (2010).

    Article  CAS  Google Scholar 

  112. Agrawal, S., Guess, A. J., Benndorf, R. & Smoyer, W. E. Comparison of direct action of thiazolidinediones and glucocorticoids on renal podocytes: protection from injury and molecular effects. Mol. Pharmacol. 80, 389–399 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kawai, T. et al. PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-β. Lab. Invest. 89, 47–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Coulthard, L. R., White, D. E., Jones, D. L., McDermott, M. F. & Burchill, S. A. p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol. Med. 15, 369–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Grande, M. T. & Lopez-Novoa, J. M. Therapeutical relevance of MAP-kinase inhibitors in renal diseases: current knowledge and future clinical perspectives. Curr. Med. Chem. 15, 2054–2070 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Gaestel, M. Specificity of signaling from MAPKs to MAPKAPKs: kinases' tango nuevo. Front. Biosci. 13, 6050–6059 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Stambe, C., Atkins, R. C., Hill, P. A. & Nikolic-Paterson, D. J. Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis. Kidney Int. 64, 2121–2132 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Sheryanna, A. et al. Inhibition of p38 mitogen-activated protein kinase is effective in the treatment of experimental crescentic glomerulonephritis and suppresses monocyte chemoattractant protein-1 but not IL-1β or IL-6. J. Am. Soc. Nephrol. 18, 1167–1179 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Koshikawa, M. et al. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J. Am. Soc. Nephrol. 16, 2690–2701 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Stambe, C., Nikolic-Paterson, D. J., Hill, P. A., Dowling, J. & Atkins, R. C. p38 Mitogen-activated protein kinase activation and cell localization in human glomerulonephritis: correlation with renal injury. J. Am. Soc. Nephrol. 15, 326–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Polzer, K. et al. Selective p38MAPK isoform expression and activation in antineutrophil cytoplasmatic antibody-associated crescentic glomerulonephritis: role of p38MAPKα. Ann. Rheum. Dis. 67, 602–608 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Pengal, R. et al. Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury. Am. J. Physiol. Renal Physiol. 301, F509–F519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yoshida, S., Nagase, M., Shibata, S. & Fujita, T. Podocyte injury induced by albumin overload in vivo and in vitro: involvement of TGF-β and p38 MAPK. Nephron Exp. Nephrol. 108, e57–e68 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Sekar, M. C., Yang, M., Meezan, E. & Pillion, D. J. Angiotensin II and bradykinin stimulate phosphoinositide breakdown in intact rat kidney glomeruli but not in proximal tubules: glomerular response modulated by phorbol ester. Biochem. Biophys. Res. Commun. 166, 373–379 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Nowicki, S., Kruse, M. S., Brismar, H. & Aperia, A. Dopamine-induced translocation of protein kinase C isoforms visualized in renal epithelial cells. Am. J. Physiol. Cell. Physiol. 279, C1812–C1818 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Huber, T. B. et al. Loss of podocyte aPKCλ/ι causes polarity defects and nephrotic syndrome. J. Am. Soc. Nephrol. 20, 798–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Menne, J. et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-α-deficient diabetic mice. Diabetes 53, 2101–2109 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Tossidou, I. et al. PKC-α modulates TGF-β signaling and impairs podocyte survival. Cell. Physiol. Biochem. 24, 627–634 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Schiffer, M. et al. Apoptosis in podocytes induced by TGF-β and Smad7. J. Clin. Invest. 108, 807–816 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shen, G. X. Selective protein kinase C inhibitors and their applications. Curr. Drug Targets Cardiovasc. Haematol. Disord. 3, 301–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Gaestel, M., Mengel, A., Bothe, U. & Asadullah, K. Protein kinases as small molecule inhibitor targets in inflammation. Curr. Med. Chem. 14, 2214–2234 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Baier, G. & Wagner, J. PKC inhibitors: potential in T cell-dependent immune diseases. Curr. Opin. Cell. Biol. 21, 262–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Wagner, E. F. & Nebreda, A. R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537–549 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Yong, H. Y., Koh, M. S. & Moon, A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin. Investig. Drugs 18, 1893–1905 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Roffey, J. et al. Protein kinase C intervention: the state of play. Curr. Opin. Cell. Biol. 21, 268–279 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Niranjan, T., Murea, M. & Susztak, K. The pathogenic role of Notch activation in podocytes. Nephron Exp. Nephrol. 111, e73–e79 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Barisoni, L. Notch signaling: a common pathway of injury in podocytopathies? J. Am. Soc. Nephrol. 19, 1045–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Walsh, D. W. et al. Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. Biochim. Biophys. Acta 1782, 10–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Waters, A. M. et al. Ectopic notch activation in developing podocytes causes glomerulosclerosis. J. Am. Soc. Nephrol. 19, 1139–1157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lasagni, L. et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 28, 1674–1685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sharma, S., Sirin, Y. & Susztak, K. The story of Notch and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 20, 56–61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Purow, B. Notch inhibition as a promising new approach to cancer therapy. Adv. Exp. Med. Biol. 727, 305–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Araya, C. et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatr. Nephrol. 3, 3 (2009).

    Google Scholar 

  145. Assadi, F. Neonatal nephrotic syndrome associated with placental transmission of proinflammatory cytokines. Pediatr. Nephrol. 26, 469–471 (2011).

    Article  PubMed  Google Scholar 

  146. Jiang, H. K., Luo, G. & Jiang, H. Interleukin-18 expression in peripheral blood mononuclear cells in children with steroid-resistant nephrotic syndrome [Chinese]. Zhongguo Dang Dai Er Ke Za Zhi 11, 337–340 (2009).

    CAS  PubMed  Google Scholar 

  147. Kanai, T. et al. Elevated serum interleukin-7 level in idiopathic steroid-sensitive nephrotic syndrome. Pediatr. Int. 53, 906–909 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Souto, M. F. et al. Immune mediators in idiopathic nephrotic syndrome: evidence for a relation between interleukin 8 and proteinuria. Pediatr. Res. 64, 637–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. van den Berg, J. G. & Weening, J. J. Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin. Sci. 107, 125–136 (2004).

    Article  CAS  Google Scholar 

  150. Yap, H. K. et al. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J. Am. Soc. Nephrol. 10, 529–537 (1999).

    CAS  PubMed  Google Scholar 

  151. Jiang, H. K., Jiang, H., Luo, G. & Sun, G. L. Interleukin-13 expression before and after pulse treatment with methylprednisolone in children with steroid-responsive nephrotic syndrome [Chinese]. Zhongguo Dang Dai Er Ke Za Zhi 9, 533–536 (2007).

    CAS  PubMed  Google Scholar 

  152. Tain, Y. L., Chen, T. Y. & Yang, K. D. Implications of serum TNF-β and IL-13 in the treatment response of childhood nephrotic syndrome. Cytokine 21, 155–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Lai, K. W. et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J. Am. Soc. Nephrol. 18, 1476–1485 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Chakrabarti, A., Chen, A. W. & Varner, J. D. A review of the mammalian unfolded protein response. Biotechnol. Bioeng. 108, 2777–2793 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Markan, S. et al. Up regulation of the GRP-78 and GADD-153 and down regulation of Bcl-2 proteins in primary glomerular diseases: a possible involvement of the ER stress pathway in glomerulonephritis. Mol. Cell. Biochem. 324, 131–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Ito, N. et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab. Invest. 91, 1584–1595 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Cybulsky, A. V. et al. Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J. Biol. Chem. 277, 41342–41351 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Kitamura, M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am. J. Physiol. Renal Physiol. 295, F323–F334 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Henderson, J. M., Alexander, M. P. & Pollak, M. R. Patients with ACTN4 mutations demonstrate distinctive features of glomerular injury. J. Am. Soc. Nephrol. 20, 961–968 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cybulsky, A. V. & Kennedy, C. R. Podocyte injury associated with mutant α-actinin-4. J. Signal Transduct. 2011, 563128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu, X. L. et al. Defective trafficking of nephrin missense mutants rescued by a chemical chaperone. J. Am. Soc. Nephrol. 15, 1731–1738 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Ehrnhoefer, D. E. et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet. 15, 2743–2751 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Mishra, O. P. et al. Antioxidant status of children with idiopathic nephrotic syndrome. Pediatr. Nephrol. 26, 251–256 (2011).

    Article  PubMed  Google Scholar 

  165. Pavlova, E. L., Lilova, M. I. & Savov, V. M. Oxidative stress in children with kidney disease. Pediatr. Nephrol. 20, 1599–1604 (2005).

    Article  PubMed  Google Scholar 

  166. Kamireddy, R. et al. Oxidative stress in pediatric nephrotic syndrome. Clin. Chim. Acta 325, 147–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Ece, A. et al. Paraoxonase, total antioxidant response, and peroxide levels in children with steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 20, 1279–1284 (2005).

    Article  PubMed  Google Scholar 

  168. Ghodake, S. R. et al. Role of free radicals and antioxidant status in childhood nephrotic syndrome. Indian J. Nephrol. 21, 37–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Agardh, C. D., Stenram, U., Torffvit, O. & Agardh, E. Effects of inhibition of glycation and oxidative stress on the development of diabetic nephropathy in rats. J. Diabetes Complications 16, 395–400 (2002).

    Article  PubMed  Google Scholar 

  170. Sawant, S. U., Chandran, S., Almeida, A. F. & Rajan, M. G. Correlation between oxidative stress and thyroid function in patients with nephrotic syndrome. Int. J. Nephrol. 2011, 256420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Duann, P. et al. Superoxide dismutase mimetic preserves the glomerular capillary permeability barrier to protein. J. Pharmacol. Exp. Ther. 316, 1249–1254 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Nakakura, H., Ashida, A., Hirano, K. & Tamai, H. Oxidative stress in a rat model of nephrosis can be quantified by electron spin resonance. Pediatr. Nephrol. 19, 266–270 (2004).

    Article  PubMed  Google Scholar 

  173. Marshall, C. B., Pippin, J. W., Krofft, R. D. & Shankland, S. J. Puromycin aminonucleoside induces oxidant-dependent DNA damage in podocytes in vitro and in vivo. Kidney Int. 70, 1962–1973 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Vega-Warner, V., Ransom, R. F., Vincent, A. M., Brosius, F. C. & Smoyer, W. E. Induction of antioxidant enzymes in murine podocytes precedes injury by puromycin aminonucleoside. Kidney Int. 66, 1881–1889 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Kinugasa, S. et al. Selective albuminuria via podocyte albumin transport in puromycin nephrotic rats is attenuated by an inhibitor of NADPH oxidase. Kidney Int. 80, 1328–1338 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Alvarez, B., Carballal, S., Turell, L. & Radi, R. Formation and reactions of sulfenic acid in human serum albumin. Methods Enzymol. 473, 117–136 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Candiano, G. et al. The oxido-redox potential of albumin methodological approach and relevance to human diseases. J. Proteomics 73, 188–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Bruschi, M. et al. Analysis of the oxido-redox status of plasma proteins. Technology advances for clinical applications. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 879, 1338–1344 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Lee, H. S. et al. Dietary antioxidant inhibits lipoprotein oxidation and renal injury in experimental focal segmental glomerulosclerosis. Kidney Int. 51, 1151–1159 (1997).

    Article  CAS  PubMed  Google Scholar 

  180. Matsumura, H., Ashida, A., Hirano, K., Nakakura, H. & Tamai, H. Protective effect of radical scavenger edaravone against puromycin nephrosis. Clin. Nephrol. 66, 405–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Tahzib, M., Frank, R., Gauthier, B., Valderrama, E. & Trachtman, H. Vitamin E treatment of focal segmental glomerulosclerosis: results of an open-label study. Pediatr. Nephrol. 13, 649–652 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Kestilä, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  PubMed  Google Scholar 

  183. Chiang, C. K. & Inagi, R. Glomerular diseases: genetic causes and future therapeutics. Nat. Rev. Nephrol. 6, 539–554 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. McCarthy, H. J. & Saleem, M. A. Genetics in clinical practice: nephrotic and proteinuric syndromes. Nephron Exp. Nephrol. 118, e1–e8 (2011).

    Article  PubMed  Google Scholar 

  185. Pei, Y. INF2 is another piece of the jigsaw puzzle for FSGS. J. Am. Soc. Nephrol. 22, 197–199 (2011).

    Article  PubMed  Google Scholar 

  186. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hasselbacher, K. et al. Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. Kidney Int. 70, 1008–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Santin, S. et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 6, 1139–1148 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hinkes, B. G. et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119, e907–e919 (2007).

    Article  PubMed  Google Scholar 

  190. Schlondorff, J., Del Camino, D., Carrasquillo, R., Lacey, V. & Pollak, M. R. TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am. J. Physiol. Cell. Physiol. 296, C558–C569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dryer, S. E. & Reiser, J. TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am. J. Physiol. Renal Physiol. 299, F689–F701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bensman, A. & Niaudet, P. Non-immunologic mechanisms of calcineurin inhibitors explain its antiproteinuric effects in genetic glomerulopathies. Pediatr. Nephrol. 25, 1197–1199 (2010).

    Article  PubMed  Google Scholar 

  193. Nijenhuis, T. et al. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am. J. Pathol. 179, 1719–1732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gipson, D. S. et al. Differential risk of remission and ESRD in childhood FSGS. Pediatr. Nephrol. 21, 344–349 (2006).

    Article  PubMed  Google Scholar 

  195. Redmond, E. M., Guha, S., Walls, D. & Cahill, P. A. Investigational Notch and Hedgehog inhibitors—therapies for cardiovascular disease. Expert Opin. Investig. Drugs 20, 1649–1664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Woolf, A. S. & Pitera, J. E. in Pediatric Nephrology (eds Avner, E. D., Harmon, W. E., Niaudet, P. & Yoshikawa, N.) 3–3 (Lippincott Williams & Wilkins, Philadelphia, 2009).

    Book  Google Scholar 

  197. Kopan, R., Cheng, H. T. & Surendran, K. Molecular insights into segmentation along the proximal-distal axis of the nephron. J. Am. Soc. Nephrol. 18, 2014–2020 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Chen, L. & Al-Awqati, Q. Segmental expression of Notch and Hairy genes in nephrogenesis. Am. J. Physiol. Renal Physiol. 288, F939–F952 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491–502 (2001).

    CAS  PubMed  Google Scholar 

  200. Cheng, H. T. et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 134, 801–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Cheng, H. T. & Kopan, R. The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. Kidney Int. 68, 1951–1952 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to William E. Smoyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenbaum, L., Benndorf, R. & Smoyer, W. Childhood nephrotic syndrome—current and future therapies. Nat Rev Nephrol 8, 445–458 (2012). https://doi.org/10.1038/nrneph.2012.115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing