Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effect of race and genetics on vitamin D metabolism, bone and vascular health

Abstract

The pathophysiology of chronic kidney disease–mineral and bone disorder accounts for an inverse relationship between bone mineralization and vascular calcification in progressive nephropathy. Inverse associations between bone mineral density (BMD) and calcified atherosclerotic plaque are also observed in individuals of European and African ancestry without nephropathy, suggesting a mechanistic link between these processes that is independent of kidney disease. Despite lower dietary calcium intake and serum 25-hydroxyvitamin D (25(OH)D) concentrations, African Americans have higher BMD and develop osteoporosis less frequently than do European Americans. Moreover, despite having more risk factors for cardiovascular disease, African Americans have a lower incidence and severity of calcified atherosclerotic plaque formation than do European Americans. Strikingly, evidence is now revealing that serum 25(OH)D and/or 1,25 dihydroxyvitamin D levels associate positively with atherosclerosis but negatively with BMD in African Americans; by contrast, vitamin D levels associate negatively with atherosclerosis and positively with BMD in individuals of European ancestry. Biologic phenomena, therefore, seem to contribute to population-specific differences in vitamin D metabolism, bone and vascular health. Genetic and mechanistic approaches used to explore these differences should further our understanding of bone–blood vessel relationships and explain how African ancestry protects from osteoporosis and calcified atherosclerotic plaque, provided that access of African Americans to health care is equivalent to individuals of European ethnic origin. Ultimately, in our opinion, a new mechanistic understanding of the relationships between bone mineralization and vascular calcification will produce novel approaches for disease prevention in aging populations.

Key Points

  • Inverse relationships exist between bone mineral density (BMD) and calcified atherosclerotic plaque in individuals of European and African ancestry without nephropathy

  • African Americans have higher BMD and develop osteoporosis less often than do European Americans, despite lower serum 25-hydroxyvitamin D levels and dietary calcium intake

  • European Americans have higher incidence rates and severity of calcified atherosclerotic plaque relative to African Americans despite fewer cardiovascular disease risk factors

  • Inherited phenomena are likely to contribute to population-specific differences in vitamin D metabolism, vascular calcification, and bone mineralization

  • Molecular genetic approaches will enhance our understanding of bone and vascular health

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationships between bone and vascular calcium and phosphate deposition and dependence upon the environment, ethnicity, sex, and genetic factors.
Figure 2: Proposed mechanistic links between metabolic bone disease, atherosclerosis, and vascular calcification.

Similar content being viewed by others

References

  1. Hruska, K. A. et al. Cardiovascular risk in chronic kidney disease (CKD): the CKD-mineral bone disorder (CKD-MBD). Pediatr. Nephrol. 25, 769–778 (2010).

    Article  PubMed  Google Scholar 

  2. Isakova, T. et al. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J. Am. Soc. Nephrol. 19, 615–623 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson, J., Barnett, E. & Nordin, B. E. The relation between osteoporosis and aortic calcification. Br. J. Radiol. 37, 910–912 (1964).

    Article  CAS  PubMed  Google Scholar 

  4. Elkeles, A. A comparative radiological study of calcified atheroma in males and females over 50 years of age. Lancet 273, 714–715 (1957).

    Article  CAS  PubMed  Google Scholar 

  5. Browner, W. S. et al. Association between low bone density and stroke in elderly women. The study of osteoporotic fractures. Stroke 24, 940–946 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Kiel, D. P. et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif. Tissue Int. 68, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Marcovitz, P. A. et al. Usefulness of bone mineral density to predict significant coronary artery disease. Am. J. Cardiol. 96, 1059–1063 (2005).

    Article  PubMed  Google Scholar 

  8. Ness, J. & Aronow, W. S. Comparison of prevalence of atherosclerotic vascular disease in postmenopausal women with osteoporosis or osteopenia versus without osteoporosis or osteopenia. Am. J. Cardiol. 97, 1427–1428 (2006).

    Article  PubMed  Google Scholar 

  9. Silverman, S. L. et al. Comparison of fracture, cardiovascular event, and breast cancer rates at 3 years in postmenopausal women with osteoporosis. J. Am. Geriatr. Soc. 52, 1543–1548 (2004).

    Article  PubMed  Google Scholar 

  10. Tanko, L. B. et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J. Bone Miner. Res. 20, 1912–1920 (2005).

    Article  PubMed  Google Scholar 

  11. Schulz, E. et al. Aortic calcification and the risk of osteoporosis and fractures. J. Clin. Endocrinol. Metab. 89, 4246–4253 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Carr, J. J. et al. Calcified atherosclerotic plaque and bone mineral density in type 2 diabetes: the diabetes heart study. Bone 42, 43–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Divers, J. et al. Relationships between calcified atherosclerotic plaque and bone mineral density in African Americans with type 2 diabetes. J. Bone Miner. Res. 26, 1554–1560 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Hofbauer, L. C. et al. Vascular calcification and osteoporosis-—from clinical observation towards molecular understanding. Osteoporos. Int. 18, 251–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Luo, G. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Speer, M. Y. et al. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J. Exp. Med. 196, 1047–1055 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schafer, C. et al. The serum protein α-2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Invest. 112, 357–366 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abedin, M. et al. Relation of osteoprotegerin to coronary calcium and aortic plaque (from the Dallas Heart Study). Am. J. Cardiol. 99, 513–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Doherty, T. M. et al. Genetic determinants of arterial calcification associated with atherosclerosis. Mayo Clin. Proc. 79, 197–210 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Abedin, M., Tintut, Y. & Demer, L. L. Vascular calcification: mechanisms and clinical ramifications. Arterioscler. Thromb. Vasc. Biol. 24, 1161–1170 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Demer, L. L. & Tintut, Y. Mineral exploration: search for the mechanism of vascular calcification and beyond: the 2003 Jeffrey M. Hoeg Award lecture. Arterioscler. Thromb. Vasc. Biol. 23, 1739–1743 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Giachelli, C. M. et al. Regulation of vascular calcification: roles of phosphate and osteopontin. Circ. Res. 96, 717–722 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Demer, L. L. Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int. J. Epidemiol. 31, 737–741 (2002).

    Article  PubMed  Google Scholar 

  26. Irving, J. T. & Wuthier, R. E. Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin. Orthop. Relat. Res. 56, 237–260 (1968).

    Article  CAS  PubMed  Google Scholar 

  27. Cotmore, J. M., Nichols, G. Jr & Wuthier, R. E. Phospholipid-calcium phosphate complex: enhanced calcium migration in the presence of phosphate. Science 172, 1339–1341 (1971).

    Article  CAS  PubMed  Google Scholar 

  28. Ennever, J., Vogel, J. J. & Riggan, L. J. Calcification by proteolipid from atherosclerotic aorta. Atherosclerosis 35, 209–213 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Register, T. C., McLean, F. M., Low, M. G. & Wuthier, R. E. Roles of alkaline phosphatase and labile internal mineral in matrix vesicle-mediated calcification. Effect of selective release of membrane-bound alkaline phosphatase and treatment with isosmotic pH 6 buffer. Biol. Chem. 261, 9354–9360 (1986).

    CAS  Google Scholar 

  30. Shanahan, C. M. et al. Expression of mineralisation-regulating proteins in association with human vascular calcification. Z. Kardiol. 89 (Suppl. 2), 63–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Burton, D. G., Matsubara, H. & Ikeda, K: Pathophysiology of vascular calcification: pivotal role of cellular senescence in vascular smooth muscle cells. Exp. Gerontol. 45, 819–824 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Giachelli, C. M. Vascular calcification mechanisms. J. Am. Soc. Nephrol. 15, 2959–2964 (2004).

    Article  PubMed  Google Scholar 

  33. Ellam, T. J. & Chico, T. J. Phosphate: the new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis 220, 310–318 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Aloia, J. F. et al. Optimal vitamin D status and serum parathyroid hormone concentrations in African American women. Am. J. Clin. Nutr. 84, 602–609 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Acheson, L. S. Bone density and the risk of fractures: should treatment thresholds vary by race? JAMA 293, 2151–2154 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Aloia, J. F. African Americans, 25-hydroxyvitamin D, and osteoporosis: a paradox. Am. J. Clin. Nutr. 88, 545S–550S (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Rostand, S. G. Vitamin D, blood pressure, and African Americans: toward a unifying hypothesis. Clin. J. Am. Soc. Nephrol. 5, 1697–1703 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. George, A. et al. Racial differences in bone mineral density in older men. J. Bone Miner. Res. 18, 2238–2244 (2003).

    Article  PubMed  Google Scholar 

  39. Looker, A. C., Melton, L. J. III, Borrud, L. G. & Shepherd, J. A. Lumbar spine bone mineral density in US adults: demographic patterns and relationship with femur neck skeletal status. Osteoporos. Int. 23, 1351–1360 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Ross, A. C. et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 96, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Shapses, S. A. & Manson, J. E. Vitamin D and prevention of cardiovascular disease and diabetes: why the evidence falls short. JAMA 305, 2565–2566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ross, A. C., Taylor, C. L. & Yaktine, A. L. (Eds) Dietary reference intakes for calcium and vitamin D (The National Academies Press, Washington DC, 2011).

  43. Bell, N. H. et al. Evidence for alteration of the vitamin D-endocrine system in blacks. J. Clin. Invest. 76, 470–473 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bell, N. H. et al. Demonstration of a difference in urinary calcium, not calcium absorption, in black and white adolescents. J. Bone Miner. Res. 8, 1111–1115 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Hustmyer, F. G., DeLuca, H. F. & Peacock, M. ApaI, BsmI, EcoRV and TaqI polymorphisms at the human vitamin D receptor gene locus in Caucasians, blacks and Asians. Hum. Mol. Genet. 2, 487 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Freedman, B. I. et al. Vitamin D, adiposity, and calcified atherosclerotic plaque in African Americans. J. Clin. Endocrinol. Metab. 95, 1076–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Detrano, R. et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1336–1345 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Agarwal, S. et al. Coronary calcium score and prediction of all-cause mortality in diabetes: the diabetes heart study. Diabetes Care 34, 1219–1224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aloia, J. F., Talwar, S. A., Pollack, S. & Yeh, J. A randomized controlled trial of vitamin D3 supplementation in African American women. Arch. Intern. Med. 165, 1618–1623 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cauley, J. A. et al. Serum 25 hydroxyvitamin D and clinical fracture risk in a multiethnic cohort of women: the Women's health initiative (WHI). J. Bone Miner. Res. 26, 2378–2388 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Davies, M. R. & Hruska, K. A. Pathophysiological mechanisms of vascular calcification in end-stage renal disease. Kidney Int. 60, 472–479 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Wolf, M. et al. Impact of activated vitamin D and race on survival among hemodialysis patients. J. Am. Soc. Nephrol. 19, 1379–1388 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kalantar-Zadeh, K. et al. Impact of race on hyperparathyroidism, mineral disarrays, administered vitamin D mimetic, and survival in hemodialysis patients. J. Bone Miner. Res. 25, 2724–2734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dent, C. E., Engelbrecht, H. E. & Godfrey, R. C. Osteoporosis of lumbar vertebrae and calcification of abdominal aorta in women living in Durban. Br. Med. J. 4, 76–79 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Newby, P. K. et al. Race and region are associated with nutrient intakes among black and white men in the United States. J. Nutr. 141, 296–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Swallow, D. M. Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 37, 197–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Cosman, F. et al. Resistance to bone resorbing effects of PTH in black women. J. Bone Miner. Res. 12, 958–966 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Stamatelou, K. K. et al. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).

    Article  PubMed  Google Scholar 

  60. Gutierrez, O. M. et al. Racial differences in postprandial mineral ion handling in health and in chronic kidney disease. Nephrol. Dial. Transplant. 25, 3970–3977 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yokoyama, K. et al. Apa I polymorphism in the vitamin D receptor gene may affect the parathyroid response in Japanese with end-stage renal disease. Kidney Int. 53, 454–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Shao, J. S. et al. Teriparatide (human parathyroid hormone (1–34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptor-deficient mice. J. Biol. Chem. 278, 50195–50202 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Newman, A. B. et al. Racial differences in coronary artery calcification in older adults. Arterioscler. Thromb. Vasc. Biol. 22, 424–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Freedman, B. I. et al. The impact of ethnicity and sex on subclinical cardiovascular disease: the Diabetes Heart Study. Diabetologia 48, 2511–2518 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Bild, D. E. et al. Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 111, 1313–1320 (2005).

    Article  PubMed  Google Scholar 

  67. Carnethon, M. R. et al. Racial/ethnic differences in subclinical atherosclerosis among adults with diabetes: the Multiethnic Study of Atherosclerosis. Diabetes Care 28, 2768–2770 (2005).

    Article  PubMed  Google Scholar 

  68. Budoff, M. J. et al. Ethnic differences of the presence and severity of coronary atherosclerosis. Atherosclerosis 187, 343–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. American Diabetes Association. http://www.diabetes.org

  70. Young, B. A., Maynard, C. & Boyko, E. J. Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care 26, 2392–2399 (2003).

    Article  PubMed  Google Scholar 

  71. Karter, A. J. et al. Ethnic disparities in diabetic complications in an insured population. JAMA 287, 2519–2527 (2002).

    Article  PubMed  Google Scholar 

  72. Young, B. A. et al. Racial and ethnic differences in incident myocardial infarction in end-stage renal disease patients: The USRDS. Kidney Int. 69, 1691–1698 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Buckalew, V. M. Jr & Freedman, B. I. Effects of race on albuminuria and risk of cardiovascular and kidney disease. Expert Rev. Cardiovasc. Ther. 9, 245–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Collins, A. J. et al. United States Renal Data System. USRDS 2011 Annual Data Report: Atlas of chronic kidney disease and end-stage renal disease in the United States. Am. J. Kidney Dis. 59 (Suppl. 1), e1–e420 (2012).

    Google Scholar 

  75. Kucirka, L. M. et al. Association of race and age with survival among patients undergoing dialysis. JAMA 306, 620–626 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Buckalew, V. M. & Freedman, B. I. Reappraisal of the impact of race on survival in patients on dialysis. Am. J. Kidney Dis. 55, 1102–1110 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jain, T. et al. African Americans and Caucasians have a similar prevalence of coronary calcium in the Dallas Heart Study. J. Am. Coll. Cardiol. 44, 1011–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Wagenknecht, L. E. et al. Correlates of coronary artery calcified plaque in blacks and whites with type 2 diabetes. Ann. Epidemiol. 21, 34–41 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wassel, C. L. et al. Genetic ancestry is associated with subclinical cardiovascular disease in African-Americans and Hispanics from the multi-ethnic study of atherosclerosis. Circ. Cardiovasc. Genet. 2, 629–636 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Divers, J. et al. Ethnic differences in the relationship between pericardial adipose tissue and coronary artery calcified plaque: African-American-diabetes heart study. J. Clin. Endocrinol. Metab. 95, 5382–5389 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Divers, J. et al. Ethnic differences in the relationship between albuminuria and calcified atherosclerotic plaque: the African American-diabetes heart study. Diabetes Care 33, 131–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shen, H. et al. Association of the vitamin D metabolism gene CYP24A1 with coronary artery calcification. Arterioscler. Thromb. Vasc. Biol. 30, 2648–2654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Freedman, B. I. et al. Bone morphogenetic protein 7 (BMP7) gene polymorphisms are associated with inverse relationships between vascular calcification and BMD: the Diabetes Heart Study. J. Bone Miner. Res. 24, 1719–1727 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith, M. W. et al. A high-density admixture map for disease gene discovery in african americans. Am. J. Hum. Genet. 74, 1001–1013 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Divers, J., Moossavi, S., Langefeld, C. D. & Freedman, B. I. Genetic admixture: a tool to identify diabetic nephropathy genes in African Americans. Ethn. Dis. 18, 384–388 (2008).

    PubMed  Google Scholar 

  87. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Freedman, B. I. et al. The Apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J. Am. Soc. Nephrol. 21, 1422–1426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ferguson, R., Grim, C. E. & Opgenorth, T. J. A familial risk of chronic renal failure among blacks on dialysis? J. Clin. Epidemiol. 41, 1189–1196 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Freedman, B. I., Spray, B. J., Tuttle, A. B. & Buckalew, V. M. Jr. The familial risk of end-stage renal disease in African Americans. Am. J. Kidney Dis. 21, 387–393 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Razzaque, M. S. The dualistic role of vitamin D in vascular calcifications. Kidney Int. 79, 708–714 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank D. W. Bowden, C. D. Langefeld, J. Divers, J. J. Carr, and N. Allred for their assistance with this work. This project was funded in part by NIH grant DK071891.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the article.

Corresponding author

Correspondence to Barry I. Freedman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, B., Register, T. Effect of race and genetics on vitamin D metabolism, bone and vascular health. Nat Rev Nephrol 8, 459–466 (2012). https://doi.org/10.1038/nrneph.2012.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing