Managing kidney disease with blood-pressure control

Abstract

The progression of chronic kidney disease (CKD) is largely independent of the underlying kidney disorder once renal function has fallen below a critical level. Hypertension is an independent risk factor for disease progression in both adult and pediatric patients with kidney disorders. Increasing evidence from clinical trials indicates that the rate of CKD progression can be lowered by pharmacological interventions. Nephroprotective strategies currently focus on the blockade of the renin–angiotensin system. Angiotensin-converting-enzyme inhibitors and angiotensin-receptor blockers provide efficient control not only of blood pressure, but also of proteinuria, an effect associated with improved long-term nephroprotection compared with other antihypertensive drug classes. In addition, evidence for an additional nephroprotective advantage of tight blood-pressure control towards the low–normal range in young patients and patients with proteinuria is emerging. In this Review, we describe the role of hypertension in CKD and discuss the therapeutic principle of the prevention of CKD progression with antihypertensive agents.

Key Points

  • Hypertension and proteinuria are the most important independent risk factors for disease progression in both adult and pediatric patients with chronic kidney disease (CKD)

  • Pharmacological intervention can slow the rate of renal-disease progression

  • Blockade of the renin–angiotensin system should be the first-line pharmacological intervention in progressive CKD

  • Tight blood-pressure control exerts a beneficial effect on CKD progression in patients with proteinuria

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Effect of residual proteinuria on renal survival in pediatric CKD.
Figure 2: Effect of strict blood-pressure control on renal survival.
Figure 3: Late proteinuria escape despite persistent blood-pressure control owing to partial secondary resistance to ACE inhibition.

References

  1. 1

    Klag, M. J. et al. Blood pressure and end-stage renal disease in men. N. Engl. J. Med. 334, 13–18 (1996).

  2. 2

    Iseki, K., Ikemiya, Y., Iseki, C. & Takishita, S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 63, 1468–1474 (2003).

  3. 3

    Locatelli, F. et al. Proteinuria and blood pressure as causal components of progression to end-stage renal failure. Northern Italien Cooperative Study Group. Nephrol. Dial. Transplant. 11, 461–467 (1996).

  4. 4

    Remuzzi, G., Benigni, A. & Remuzzi, A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J. Clin. Invest. 116, 288–296 (2006).

  5. 5

    Ardissino, G. et al. Epidemiology of chronic renal failure in children: Data from the ItalKid Project. Pediatrics 111, e382–e387 (2003).

  6. 6

    Celedón, C. G., Bitsor, M. & Tullus, K. Progression of chronic renal failure in children with dysplastic kidneys. Pediatr. Nephrol. 22, 1014–1020 (2007).

  7. 7

    Hostetter, T. H., Olson, J. L., Rennke, H. G., Venkatachalam, M. A. & Brenner, B. M. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol. 241, F85–F93 (1981).

  8. 8

    Zandi-Nejad, K., Luyckx, V. A. & Brenner, B. M. Adult hypertension and kidney disease: the role of fetal programming. Hypertension 47, 502–508 (2006).

  9. 9

    Takano, T. & Brady, H. R. The endothelium in glomerular inflammation. Curr. Opin. Nephrol. Hypertens. 4, 277–286 (1995).

  10. 10

    Malek, A. M., Greene, A. L. & Izumo, S. Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Proc. Natl Acad. Sci. USA 90, 5999–6003 (1993).

  11. 11

    Lee, L. K., Meyer, T. W., Pollock, A. S. & Lovett, D. H. Endothelial cell injury initiates glomerular sclerosis in the rat remnant kidney. J. Clin. Invest. 96, 953–964 (1995).

  12. 12

    Remuzzi, G. & Bertani, T. Pathophysiology of progressive nephropathies. N. Engl. J. Med. 339, 1448–1456 (1998).

  13. 13

    Olbricht, C. J., Cannon, L. K., Garg, L. C. & Tisher, C. C. Activities of cathepsins B and L in isolated nephron segments from proteinuric and nonproteinuric rats. Am. J. Physiol. 250, F1055–F1062 (1986).

  14. 14

    Peterson, J. C. et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann. Intern. Med. 123, 754–762 (1995).

  15. 15

    Hirschberg, R. & Wang, S. Proteinuria and growth factors in the development of tubulointerstitial injury and scarring in kidney disease. Curr. Opin. Nephrol. Hypertens. 14, 43–52 (2005).

  16. 16

    Wang, S. N., Lapage, J. & Hirschberg, R. Glomerular ultrafiltration and apical tubular action of IGF-1, TGF-β, and HGF in nephrotic syndrome. Kidney Int. 56, 1247–1251 (1999).

  17. 17

    Wang, S. N. & Hirschberg, R. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis. Am. J. Physiol. Renal Physiol. 278, F554–F560 (2000).

  18. 18

    Donadelli, R. et al. Protein traffic activates NF-κB gene signaling and promotes MCP-1-dependent interstitial inflammation. Am. J. Kidney Dis. 36, 1226–1241 (2000).

  19. 19

    Morigi, M. et al. Protein overload-induced NF-κB activation in proximal tubular cells requires H2O2 through a PKC-dependent pathway. J. Am. Soc. Nephrol. 13, 1179–1189 (2002).

  20. 20

    Zoja, C. et al. Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. Am. J. Kidney Dis. 26, 934–941 (1995).

  21. 21

    Kees-Folts, D., Sadow, J. L. & Schreiner, G. F. Catabolism of albumin is associated with the release of an inflammatory lipid. Kidney Int. 45, 1697–1709 (1994).

  22. 22

    Zoja, C. et al. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-κB activation. Kidney Int. 53, 1608–1615 (1998).

  23. 23

    Schalenkamp, M. A. & Danser, A. H. Angiotensin II production and distribution in the kidney: I. A kinetic model. Kidney Int. 69, 1543–1552 (2006).

  24. 24

    Schalenkamp, M. A. & Danser, A. H. Angiotensin II production and distribution in the kidney—II. Model-based analysis of experimental data. Kidney Int. 69, 1553–1557 (2006).

  25. 25

    Navar, L. G. & Nishiyama, A. Why are angiotensin concentrations so high in the kidney? Curr. Opin. Nephrol. Hypertens. 13, 107–115 (2004).

  26. 26

    Schmitz, D. & Berk, B. C. Angiotensin II signal transduction stimulation of multiple mitogen activated protein kinase pathways. Trends Endocrinol. Metab. 8, 261–266 (1997).

  27. 27

    Nitschke, R. et al. Angiotensin II increases the intracellular calcium activity in podocytes of the intact glomerulus. Kidney Int. 57, 41–49 (2000).

  28. 28

    Bohrer, M. P., Deen, W. M., Robertson, C. R. & Brenner, B. M. Mechanism of the angiotensin II-induced proteinuria in the rat. Am. J. Physiol. 233, F13–F21 (1977).

  29. 29

    Yoshioka, T. et al. Role of antiotensin II in overt functional proteinuria. Kidney Int. 52, 687–693 (1997).

  30. 30

    Taal, M. W., Omer, S. A., Nadim, M. K. & Mackenzie, H. S. Cellular and molecular mediators in common pathway mechanisms of chronic renal disease progression. Curr. Opin. Nephrol. Hypertens. 9, 323–331 (2000).

  31. 31

    Taal, M. W. et al. Mechanisms underlying renoprotection during renin-angiotensin system blockade. Am. J. Physiol. Renal Physiol. 280, F343–F355 (2001).

  32. 32

    Converse, R. L. et al. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 327, 1912–1918 (1992).

  33. 33

    Hausberg, M. et al. Sympathetic nerve activity in end-stage renal disease. Circulation 165, 1974–1979 (2002).

  34. 34

    Bakris, G. L. et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am. J. Kidney Dis. 36, 646–661 (2000).

  35. 35

    Bakris, G. L. et al. Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch. Intern. Med. 15, 1555–1565 (2003).

  36. 36

    Ohkubo, T. et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J. Hypertens. 20, 2183–2189 (2002).

  37. 37

    Ligtenberg, G. et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N. Engl. J. Med. 340, 1321–1328 (1999).

  38. 38

    Kimura, G., Dohi, Y. & Fukuda, M. Salt sensitivity and circadian rhythm of blood pressure: the keys to connect CKD with cardiovascular events. Hypertens. Res. 33, 515–520 (2010).

  39. 39

    Jacob, P., Hartung, R., Bohlender, J. & Stein, G. Utility of 24-h ambulatory blood pressure measurement in a routine clinical setting of patients with chronic renal disease. J. Hum. Hypertens. 18, 745–751 (2004).

  40. 40

    Timio, M. et al. 'Non-dipper' hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin. Nephrol. 43, 382–387 (1995).

  41. 41

    Agarwal, R., Kariyanna, S. S. & Light, R. P. Prognostic value of circadian blood pressure variation in chronic kidney disease. Am. J. Nephrol. 30, 547–553 (2009).

  42. 42

    Tarver-Carr, M., Brancati, F., Eberhardt, M. & Powe, N. Proteinuria and the risk of chronic kidney disease (CKD) in the United States. J. Am. Soc. Nephrol. 11, 168A (2000).

  43. 43

    Hoy, W. E., Wang, Z., vanBuynder, P., Baker, P. R. & Mathews, J. D. The natural history of renal disease in Autralian Aborigines. Part, I. Changes in albuminuria and glomerular filtration rate over time. Kidney Int. 60, 243–248 (2001).

  44. 44

    Iseki, K., Kinjo, K., Iseki, C. & Takishita, S. Relationship between predicted creatinine clearance and proteinuria and the risk of devolping ESRD in Okinawa, Japan. Am. J. Kidney Dis. 44, 806–814 (2004).

  45. 45

    Risdon, R. A., Sloper, J. C. & de Wardener, H. E. Relationship between renal function and histological changes found in renal biopsy specimens from patients with persistant glomerular nephritis. Lancet 2, 363–366 (1968).

  46. 46

    Remuzzi, G., Ruggenenti, P. & Perico, N. Chronic renal disease: renoprotective benefits of renin-angiotensin system inhibition. Ann. Intern. Med. 136, 604–615 (2002).

  47. 47

    Ruggenenti, P. et al. Proteinuria predicts end-stage renal failure in non-diabetic chronic nephropathies. The “Gruppo Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney Int. Suppl. 63, S54–S57 (1997).

  48. 48

    Wingen, A. M., Fabian-Bach, C., Schaefer, F. & Mehls, O. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European Study Group of Nutritional Treatment of Chronic Renal Failure in Childhood. Lancet 349, 1117–1123 (1997).

  49. 49

    Ardissino, G. et al. Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Pediatr. Nephrol. 19, 172–177 (2004).

  50. 50

    The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349, 1857–1863 (1997).

  51. 51

    Wright, J. T. Jr et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: Results from the AASK trial. JAMA 288, 2421–2431 (2003).

  52. 52

    Remuzzi, G., Ruggenenti, P. & Benigni, A. Understanding the nature of renal disease progression. Kidney Int. 51, 2–15 (1997).

  53. 53

    Ruggenenti, P., Perna, A. & Remuzzi, G. Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int. 63, 2254–2261 (2003).

  54. 54

    ESCAPE Trial Group; Wühl, E. et al. Strict blood pressure control and renal failure progression in children. N. Engl. J. Med. 361, 1639–1650 (2009).

  55. 55

    Jafar, T. H. et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann. Intern. Med. 135, 73–87 (2001).

  56. 56

    Ruggenenti, P., Schieppati, A. & Remuzzi, G. Progression, remission, regression of chronic renal diseases. Lancet 357, 1601–1608 (2001).

  57. 57

    Sarnak, M. J. et al. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann. Intern. Med. 142, 342–351 (2005).

  58. 58

    Chobanian, A. V. et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289, 2560–2571 (2003).

  59. 59

    European Society of Hypertension–European Society of Cardiology Guidelines Committee. 2003 European Society of Hypertension–European Society of Cardiology guidelines for the management of arterial hypertension. J. Hypertens. 21, 1011–1053 (2003).

  60. 60

    Klahr, S., Levy, A. D. & Beck, G. J. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. N. Engl. J. Med. 330, 877–884 (1994).

  61. 61

    Ruggenenti, P. et al. Blood pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicenter, randomized controlled trial. Lancet 365, 939–946 (2005).

  62. 62

    Wright, J. T. Jr et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA 288, 2421–2431 (2002).

  63. 63

    Appel, L. J. et al. Intensified blood-pressure control in hypertensive chronic kidney disease. N. Engl. J. Med. 363, 918–929 (2010).

  64. 64

    Schrier, R. W., Estacio, R. O., Mehler, P. S. & Hiatt, W. R. Appropriate blood pressure control in hypertensive and normotensive type 2 diabetes mellitus: a summary of the ABCD trial. Nat. Clin. Pract. Nephrol. 3, 428–438 (2008).

  65. 65

    Gimpel, C. et al. Superior consistency of ambulatory blood pressure monitoring in children: implications for clinical trials. J. Hypertens. 27, 1568–1574 (2009).

  66. 66

    Yusuf, S. et al. Renal outcomes with telmisartan, ramipril, or both, in patients at high vascular risk (The ONTARGET Study): a multicenter, randomized, double-blind, controlled trial. N. Engl. J. Med. 358, 1547–1559 (2008).

  67. 67

    Schrier, R. W., Estacio, R. O., Esler, A. & Mehler, P. Effects of agressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 61, 1086–1097 (2002).

  68. 68

    Nakao, N. et al. Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): a randomised controlled trial. Lancet 361, 117–124 (2003).

  69. 69

    Gansevoort, R. T., de Zeeuw, D. & de Jong, P. E. ACE inhibitors and proteinuria. Pharm. World Sci. 18, 204–210 (1996).

  70. 70

    Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

  71. 71

    Lewis, E. J., Hunsicker, L. G., Raymond, P. B. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

  72. 72

    Ross, S. D., Akhras, K. S., Zhang, S., Rozinsky, M. & Nalysnyk, L. Discontinuation of antihypertensive drugs due to adverse events: a systematic review and meta-analysis. Pharmacotherapy 21, 940–953 (2001).

  73. 73

    Viberti, G., Mogensen, C. E., Groop, L. C. & Pauls, J. F. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA 271, 275–279 (1994).

  74. 74

    Parving, H. H., Hommel, E. & Smidt, U. M. Protection of kidney function and decrease in albuminuria by captopril in insulin-dependent diabetics with nephropathy. BMJ 297, 1086–1091 (1988).

  75. 75

    Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N. Engl. J. Med. 334, 939–945 (1996).

  76. 76

    Parving, H. H., Andersen, A. R., Smidt, U. M. & Svendsen, P. A. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1, 1175–1179 (1983).

  77. 77

    Zucchelli, P. et al. Long-term comparison between captopril and nifidepin in the progression of renal insufficiency. Kidney Int. 42, 452–458 (1992).

  78. 78

    Kamper, A. L., Strandgaard, S. & Leyssac, P. Effect of enalapril on the progression of chronic renal failure: a randomized controlled trial. Am. J. Hypertens. 5, 423–430 (1992).

  79. 79

    van Essen, G. G. et al. Are angiotensin converting enzyme inhibitors superior to beta blockers in retarding progressive renal function decline? Kidney Int. Suppl. 63, S58–S62 (1997).

  80. 80

    Hannedouche, T. et al. Randomised controlled trial of enalapril and beta blockers in non-diabetic chronic renal failure. BMJ 309, 833–837 (1994).

  81. 81

    Bannister, K. M., Weaver, A., Clarkson, A. R. & Woodroffe, A. J. Effect of angiotensin converting enzyme and calcium channel inhibition on progression of IgA nephropathy. Contrib. Nephrol. 111, 184–192 (1995).

  82. 82

    Ihle, B. U. et al. Angiotensin-converting-enzyme inhibition in non-diabetic progresive renal insufficiency: a controlled double-blind trial. Am. J. Kidney Dis. 27, 489–495 (1996).

  83. 83

    Ruggenenti, P. et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 354, 359–364 (1999).

  84. 84

    Casas, J. P. et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 366, 2026–2033 (2005).

  85. 85

    Mooser, V. et al. Reactive hyperreninemia is a major determinant of plasma angiotensin II during ACE inhibition. J. Cardiovasc. Pharmacol. 15, 276–282 (1990).

  86. 86

    van den Meiracker, A. H. et al. Partial escape of agiotensin converting enzyme (ACE) inhibition during prolonged ACE inhibitor treatment: does it exist and does it affect the antihypertensive response? J. Hypertens. 10, 803–812 (1992).

  87. 87

    Shiigai, T. & Shichiri, M. Late escape from the antiproteinuric effect of ACE inhibitors in nondiabetic renal disease. Am. J. Kidney Dis. 37, 477–483 (2001).

  88. 88

    Bomback, A. S. & Klemmer, P. J. The incidence and implications of aldosterone breakthrough. Nat. Clin. Pract. Nephrol. 3, 486–492 (2007).

  89. 89

    Burgess, E. et al. Supramaximal dose of candesartan in proteinuric kidney disease. J. Am. Soc. Nephrol. 20, 893–900 (2009).

  90. 90

    Bakris, G. L. & Weir, M. R. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch. Int. Med. 160, 685–693 (2000).

  91. 91

    Navaneethan, S. D., Nigwekar, S. U., Sehgal, A. R. & Strippoli, G. F. M. Aldosterone antagonists for preventing the progression of chronic kidney disease: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 4, 542–551 (2009).

  92. 92

    Oparil, S. et al. Efficacy and safety of combined use of aliskiren and valsartan in patients with hypertension: a randomized, double-blind trial. Lancet 370, 221–229 (2007).

  93. 93

    Parving, H. H. et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).

  94. 94

    Wilmer, W. A. et al. Management of glomerular proteinuria: a commentary. J. Am. Soc. Nephrol. 14, 3217–3232 (2003).

  95. 95

    Marchi, F. & Ciriello, G. Efficacy of carvedilol in mild to moderate essential hypertension and effects on microalbuminuria: a multicenter, randomized, open-label, controlled study versus atenolol. Adv. Ther. 12, 212–221 (1995).

  96. 96

    Fassbinder, W., Quarder, O. & Waltz, A. Treatment with carvedilol is associated with a significant reduction in microalbuminuria: a multicenter randomized study. Int. J. Clin. Pract. 53, 519–522 (1999).

  97. 97

    Dhaun, N. et al. Blood pressure independent reduction in proteinuria and arterial stiffness after acute endothelin-a receptor antagonism in chronic kidney disease. Hypertension 54, 113–119 (2009).

  98. 98

    Bakris, G. L. et al. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomized controlled trial. Lancet 375, 1173–1181 (2010).

  99. 99

    Doulton, T. W., He, F. J. & MacGregor, F. A. Systemic review of combined angiotensin-converting enzyme inhibition and angiotensin receptor blockade in hypertension. Hypertension 45, 880–886 (2005).

  100. 100

    Campbell, R. et al. Effects of combined ACE inhibitor and angiotensin II antagonist treatment in human chronic nephropathies. Kidney Int. 63, 1094–1103 (2003).

  101. 101

    MacKinnon, M. et al. Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data. Am. J. Kidney Dis. 48, 8–20 (2006).

  102. 102

    Hermida, R. C., Calvo, C., Ayala, D. E. & Lopez, J. E. Decrease in urinary albumin excretion associated with the normalization of nocturnal blood pressure in hypertensive subjects. Hypertension 46, 960–968 (2005).

  103. 103

    Muntner, P., Coresh, J., Clinton Smith, J., Eckfeldt, J. & Klag, M. J. Plasma lipids and risk of developing renal dysfunction: the Atherosclerosis Risk in Communities Study. Kidney Int. 58, 293–301 (2000).

  104. 104

    de Brito-Ashurst, I., Varagunam, M., Raftery, M. J. & Yaqoob, M. M. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 20, 2075–2084 (2009).

  105. 105

    Ritz, E., Gross, M. L. & Dikow, R. Role of calcium-phosphorous disorders in the progression of renal failure. Kidney Int. 68 (Suppl. 99), S66–S70 (2005).

  106. 106

    Fliser, D., Bahlmann, F. H. & Haller, H. EPO: renoprotection beyond anemia correction. Pediatr. Nephrol. 21, 1785–1789 (2006).

  107. 107

    Wright, J. T. J. et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease. JAMA 288, 2421–2431 (2002).

  108. 108

    Maschio, G. et al. Effect of angiotensin-converting-enzme inhibitor benazepril on the progression of chronic renal insufficiency. N. Engl. J. Med. 334, 939–945 (1996).

  109. 109

    Hou, F. F. et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med. 354, 131–140 (2006).

  110. 110

    Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

  111. 111

    Jafar, T. H. et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-meta-analysis. Ann. Intern. Med. 139, 244–252 (2003).

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Both authors contributed equally to researching, discussing, writing, editing and reviewing data for this article.

Correspondence to Franz Schaefer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wühl, E., Schaefer, F. Managing kidney disease with blood-pressure control. Nat Rev Nephrol 7, 434–444 (2011). https://doi.org/10.1038/nrneph.2011.73

Download citation

Further reading