Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New short interfering RNA-based therapies for glomerulonephritis

Abstract

Current treatments for glomerulonephritis are not satisfactory, and the development of new therapies would be indispensable. Short interfering RNAs (siRNAs) are promising candidates for molecular therapy because of their strong and specific gene-silencing effects. Despite rapid progress in research into the therapeutic uses of siRNAs, however, many hurdles must be overcome before siRNA-based therapies can be brought to the clinic. Most in vivo studies of siRNA-based therapy have been limited to local administration or delivery to specific target organs, including the liver. Therapies based on siRNAs for patients with glomerulonephritis show promise, although tissue-specific protocols using siRNAs have not yet been established for this indication. This Review aims to provide an overview of the current challenges in siRNA-based therapy, primarily with respect to glomerular targeting. In addition, novel delivery approaches for glomerulus-targeted, siRNA-based therapies are described.

Key Points

  • Short interfering RNAs (siRNAs) are promising therapeutic tools because of their strong gene-silencing effects and high selectivity

  • Appropriate delivery vehicles are needed for the application of siRNA-based therapy

  • Glomerulus-targeted therapy is not yet established because of the lack of a definitive delivery system

  • siRNA delivery vehicles based on block copolymers are superior to previously used vehicles, owing to their stability in the bloodstream, small size, safety, and efficient drug release

  • Block copolymers are suitable as vehicles for siRNA-based therapy in the treatment of glomerulonephritis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular mechanisms of action of siRNAs and barriers to their therapeutic use in renal disease.
Figure 2: Self-assembling micelles used for siRNA delivery.
Figure 3: Characteristics of the filtration barrier that influence the delivery of siRNA-containing complexes to the kidney.

Similar content being viewed by others

References

  1. Perico, N., Benigni, A. & Remuzzi, G. Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection. Nat. Rev. Drug Discov. 7, 936–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B. & Smith, D. H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 164, 659–663 (2004).

    Article  PubMed  Google Scholar 

  3. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108, 2154–2169 (2003).

    Article  PubMed  Google Scholar 

  4. Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N. Engl. J. Med. 334, 939–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Shimizu, H. et al. siRNA-based therapy ameliorates glomerulonephritis. J. Am. Soc. Nephrol. 21, 622–633 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Imai, E., Takabatake, Y., Mizui, M. & Isaka, Y. Gene therapy in renal diseases. Kidney Int. 65, 1551–1555 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Rand, T. A., Ginalski, K., Grishin, N. V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl Acad. Sci. USA 101, 14385–14389 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Ameres, S. L., Martinez, J. & Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. Bartlett, D. W. & Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 34, 322–333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Check, E. A crucial test. Nat. Med. 11, 243–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Chappelow, A. V. & Kaiser, P. K. Neovascular age-related macular degeneration: potential therapies. Drugs 68, 1029–1036 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Akhtar, S. & Benter, I. F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117, 3623–3632 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, S. S., Garg, H., Joshi, A. & Manjunath, N. Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol. Med. 15, 491–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh, S. K. & Hajeri, P. B. siRNAs: their potential as therapeutic agents—Part II. Methods of delivery. Drug Discov. Today 14, 859–865 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi, Y., Nisikawa, M. & Takakura, Y. Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv. Drug Deliv. Rev. 61, 760–766 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Savaskan, N. E. et al. Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat. Med. 14, 629–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeVincenzo, J. et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res. 77, 225–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Hickerson, R. P. et al. Single-nucleotide-specific siRNA targeting in a dominant-negative skin model. J. Invest. Dermatol. 128, 594–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Poeck, H. et al. 5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat. Med. 14, 1256–1263 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van de Water, F. M. et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab. Dispos. 34, 1393–1397 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    CAS  PubMed  Google Scholar 

  37. Zámecník, J., Vargová, L., Homola, A., Kodet, R. & Syková, E. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumors. Neuropathol. Appl. Neurobiol. 30, 338–350 (2004).

    Article  PubMed  Google Scholar 

  38. Detzer, A., Overhoff, M., Mescalchin, A., Rompf, M. & Sczakiel, G. Phosphorothioate-stimulated cellular uptake of siRNA: a cell culture model for mechanistic studies. Curr. Pharm. Des. 14, 3666–3673 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira, S., van Rooy, I., Kranenburg, O., Storm, G. & Schiffelers, R. M. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int. J. Pharm. 331, 211–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Gilmore, I. R., Fox, S. P., Hollins, A. J. & Akhtar, S. Delivery strategies for siRNA-mediated gene silencing. Curr. Drug Deliv. 3, 147–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kawakami, S. & Hashida, M. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab. Pharmacokinet. 22, 142–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Akhtar, S. & Benter, I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliv. Rev. 59, 164–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Shen, C. Buck, A. K., Liu, X., Winkler, M. & Reske, S. N. Gene silencing by adenovirus-delivered siRNAs. FEBS Lett. 539, 111–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Maguire, A. M. et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358, 2240–2248 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, B. et al. High-capacity adenoviral vector-mediated reduction of Huntingtin aggregate load in vitro and in vivo. Hum. Gene Ther. 18, 303–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  47. Barquinero, J., Eixarch, H. & Pérez-Melgosa, M. Retroviral vectors: new applications for an old tool. Gene Ther. 11 (Suppl. 1), S3–S9 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Lambeth, L. S., Zhao, Y., Smith, L. P., Kgosana, L. & Nair, V. Targeting Marek's disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine 27, 298–306 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Suzuki, H., Tamai, N., Habu, Y., Chang, M. O. & Takaku, H. Suppression of hepatitis C virus replication by baculovirus vector-mediated short-hairpin RNA expression. FEBS Lett. 582, 3085–3089 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Martin, S. E. & Caplen, N. J. Applications of RNA interference in mammalian systems. Annu. Rev. Genomics Hum. Genet. 8, 81–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lewis, D. L. & Wolff, J. A. Systemic siRNA delivery via hydrodynamic intravascular injection. Adv. Drug Deliv. Rev. 59, 115–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Giladi, H. et al. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther. 8, 769–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Klein, C. et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology 125, 9–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Morrissey, D. V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Sebestyén, M. G. et al. Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules. J. Gene Med. 8, 852–873 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. Yuan, H. et al. Effects of cholesterol-tagged small interfering RNAs targeting 12/15-lipoxygenase on parameters of diabetic nephropathy in a mouse model of type 1 diabetes. Am. J. Physiol. Renal Physiol. 295, F605–F617 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Moore, V. A., Dunnion, D. J., Brown, T., Irwin, W. J. & Akhtar, S. Interaction of oligonucleotide-conjugates with the dipeptide transporter system in Caco-2 cells. Biochem. Pharmacol. 53, 1223–1228 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105, 11915–11920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26, 431–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Geisbert, T. W. et al. Postexposure protection of guinea pigs against a lethal Ebola virus challenge is conferred by RNA interference. J. Infect. Dis. 193, 1650–1657 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Ma, Z. et al. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 330, 755–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Hollins, A. J., Omidi, Y., Benter, I. F. & Akhtar, S. Toxicogenomics of drug delivery systems: exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J. Drug Target. 15, 83–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Rust, D. M. & Jameson, G. The novel lipid delivery system of amphotericin B: drug profile and relevance to clinical practice. Oncol. Nurs. Forum 25, 35–48 (1998).

    CAS  PubMed  Google Scholar 

  66. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Putnam, D. Polymers for gene delivery across length scales. Nat. Mater. 5, 439–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Lungwitz, U., Breunig, M., Blunk, T. & Göpferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60, 247–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Zintchenko, A., Philipp, A., Dehshahri, A. & Wagner, E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug. Chem. 19, 1448–1455 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F. & Aigner, A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12, 461–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl Acad. Sci. USA 101, 8676–8681 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kichler, A. Gene transfer with modified polyethylenimines. J. Gene Med. 6 (Suppl. 1), S3–S10 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Kircheis, R., Wightman, L. & Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev. 53, 341–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Sato, A. et al. Polymer brush-stabilized polyplex for a siRNA carrier with long circulatory half-life. J. Control. Release 122, 209–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, S. H., Jeong, J. H., Lee, S. H., Kim, S. W. & Park, T. G. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release 129, 107–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Bae, Y. & Kataoka, K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv. Drug Deliv. Rev. 61, 768–784 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Nishiyama, N. & Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112, 630–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Harada-Shiba, M. et al. Polyion complex micelles as vectors in gene therapy—pharmacokinetics and in vivo gene transfer. Gene Ther. 9, 407–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Harada, A., Togawa, H. & Kataoka, K. Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)-poly(L-lysine) block copolymers. Eur. J. Pharm. Sci. 13, 35–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Akagi, D. et al. Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther. 14, 1029–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  82. Jain, R. K. et al. Angiogenesis in brain tumors. Nat. Rev. Neurosci. 8, 610–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Dreher, M. R. et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl Cancer Inst. 98, 335–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Matsumoto, S. et al. Environment-responsive block copolymer micelles with a disulfide crosslinked core for enhanced siRNA delivery. Biomacromolecules 10, 119–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, H. J. et al. Introduction of stearoyl moieties into a biocompatible cationic polyaspartamide derivative, PAsp(DET), with endosomal escaping function for enhanced siRNA-mediated gene knockdown. J. Control. Release 145, 141–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Takemoto, H. et al. Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 31, 8097–8105 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Matsumura, Y. et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer 91, 1775–1781 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hamaguchi, T. et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer 97, 170–176 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Minchin, R. Nanomedicine: sizing up targets with nanoparticles. Nat. Nanotechnol. 3, 12–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Jiang, W., Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Kriz, W., Elger, M., Lemley, K. & Sakai, T. Structure of the glomerular mesangium: a biomechanical interpretation. Kidney Int. Suppl. 30, S2–S9 (1990).

    CAS  PubMed  Google Scholar 

  92. Isaka, Y. et al. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-β or platelet-derived growth factor gene into the rat kidney. J. Clin. Invest. 92, 2597–2601 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maeshima, Y. et al. Inhibition of mesangial cell proliferation by E2F decoy oligodeoxynucleotide in vitro and in vivo. J. Clin. Invest. 101, 2589–2597 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tomita, N. et al. In vivo administration of a nuclear transcription factor-κB decoy suppresses experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 11, 1244–1252 (2000).

    CAS  PubMed  Google Scholar 

  95. Takabatake, Y. et al. Exploring RNA interference as a therapeutic strategy for renal disease. Gene Ther. 12, 965–973 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Mukai, H., Kawakami, S. & Hashida, M. Renal press-mediated transfection method for plasmid DNA and siRNA to the kidney. Biochem. Biophys. Res. Commun. 372, 383–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Tuffin, G., Waelti, E., Huwyler, J., Hammer, C. & Marti, H. P. Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J. Am. Soc. Nephrol. 16, 3295–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Asgeirsdóttir, S. A. et al. Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes. Am. J. Physiol. Renal Physiol. 294, F554–F561 (2008).

    Article  PubMed  CAS  Google Scholar 

  99. Robbins, M. et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum. Gene Ther. 19, 991–999 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Judge, A. & MacLachan, I. Overcoming the innate immune response to small interfering RNA. Hum. Gene Ther. 19, 111–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Takahashi, Y., Nishikawa, M., Suehara, T., Takiguchi, N. & Takakura, Y. Gene silencing of β-catenin in melanoma cells retards their growth but promotes the formulation of pulmonary metastasis in mice. Int. J. Cancer 123, 2315–2320 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, P. Y. et al. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14, 263–274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oba, M. et al. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells prossessing αvβ3 and αvβ5 integrins. Bioconjung. Chem. 18, 1415–1423 (2007).

    Article  CAS  Google Scholar 

  105. Krishna, M. & Narang, H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell. Mol. Life Sci. 65, 3525–3544 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Kreidberg, J. A. siRNA therapy for glomerulonephritis. J. Am. Soc. Nephrol. 21, 549–551 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Hori, S. Kaname, K. Kataoka, and N. Nishiyama for useful advice and criticism during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Contributions

H. Shimizu wrote the article and provided a substantial contribution to discussions of the content. T. Fujita provided substantial contributions to discussion of the content, as well as to reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Toshiro Fujita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, H., Fujita, T. New short interfering RNA-based therapies for glomerulonephritis. Nat Rev Nephrol 7, 407–415 (2011). https://doi.org/10.1038/nrneph.2011.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.61

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research