Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The implications and management of septic acute kidney injury

Abstract

Sepsis is the most common and severe cause of morbidity and mortality among critically ill patients. Multiple organ dysfunction syndrome often complicates sepsis, leading to a worse prognosis that is proportional to the severity and number of damaged organs. Acute kidney injury (AKI) also complicates sepsis, with a linear relationship between the severity of kidney damage and sepsis prognosis. The management of sepsis and septic AKI involves intensive proactive preventive measures, medical and extracorporeal treatment of established sepsis, support of failing organs and rehabilitation of the residual effects left by this devastating syndrome. Unfortunately, although some innovations in the clinical management of sepsis are now available, their beneficial effects on renal function are still uncertain. The aim of this Review is to provide an update on the current state of interventions in sepsis-related AKI. Prevention, pharmacological support and extracorporeal blood purification for septic AKI will be reviewed and discussed.

Key Points

  • Sepsis has a complex pathophysiology and typically causes multiple organ dysfunction

  • Sepsis-related acute kidney injury (AKI) is an independent risk factor for mortality

  • Potential medical interventions in sepsis-related AKI have not yet been adequately validated in routine clinical practice

  • Current recommendations are that adequate resuscitation by early goal-directed therapy should be provided together with pharmacological support (vasopressor and diuretics), avoiding fluid overload

  • In patients with severe septic AKI, extracorporeal blood purification should be provided in order to support renal function and to manage fluid overload; optimal timing of renal replacement therapy has not yet been defined

  • The currently recommended dose for continuous renal replacement therapies is 25 ml/kg/h, and higher doses have not been associated with improved survival; however, such therapies should be carefully monitored and underdosing avoided

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ronco, C., Kellum, J. A., Bellomo, R. & House, A. A. Potential interventions in sepsis-related acute kidney injury. Clin. J. Am. Soc. Nephrol. 3, 531–544 (2008).

    Article  CAS  Google Scholar 

  2. Bernard, B. et al. Antibiotic prophylaxis for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding: a meta-analysis. Hepatology 29, 1655–1661 (1999).

    Article  CAS  Google Scholar 

  3. Sharma, V. K. & Howden, C. W. Prophylactic antibiotic administration reduces sepsis and mortality in acute necrotizing pancreatitis: a meta-analysis. Pancreas 22, 28–31 (2001).

    Article  CAS  Google Scholar 

  4. Tablan, O. C. et al. Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm. Rep. 53, 1–36 (2004).

    PubMed  Google Scholar 

  5. Finfer, S. et al. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 360, 1283–1297 (2009).

    Article  Google Scholar 

  6. de Jonge, E. et al. Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 362, 1011–1016 (2003).

    Article  CAS  Google Scholar 

  7. de Smet, A. M. et al. Decontamination of the digestive tract and oropharynx in ICU patients. N. Engl. J. Med. 360, 20–31 (2009).

    Article  CAS  Google Scholar 

  8. Heyland, D. K. et al. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286, 944–953 (2001).

    Article  CAS  Google Scholar 

  9. Foxwell, A. R., Cripps, A. W. & Dear, K. B. Haemophilus influenzae oral whole cell vaccination for preventing acute exacerbations of chronic bronchitis. Cochrane Database of Systematic Reviews Issue 4. Art. No.: CD001958 doi:10.1002/14651858.CD001958.pub2 (2006).

  10. Douzinas, E. E. et al. Prevention of infection in multiple trauma patients by high-dose intravenous immunoglobulins. Crit. Care Med. 28, 8–15 (2000).

    Article  CAS  Google Scholar 

  11. Needham, D. M., Truong, A. D. & Fan, E. Technology to enhance physical rehabilitation of critically ill patients. Crit. Care Med. 37, S436–S441 (2009).

    Article  Google Scholar 

  12. Bagshaw, S. M. et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 35, 871–881 (2009).

    Article  Google Scholar 

  13. Zahar, J. R. et al. Inappropriate prescribing of aminoglycosides: risk factors and impact of an antibiotic control team. J. Antimicrob. Chemother. 58, 651–656 (2006).

    Article  CAS  Google Scholar 

  14. Mueller, C. et al. Incidence of contrast nephropathy in patients receiving comprehensive intravenous and oral hydration. Swiss Med. Wkly 135, 286–290 (2005).

    PubMed  Google Scholar 

  15. Langenberg, C., Bagshaw, S. M., May, C. N. & Bellomo, R. The histopathology of septic acute kidney injury: a systematic review. Crit. Care 12, R38 (2008).

    Article  Google Scholar 

  16. Redfors, B., Bragadottir, G., Sellgren, J., Swärd, K. & Ricksten, S. E. Acute renal failure is NOT an “acute renal success”—a clinical study on the renal oxygen supply/demand relationship in acute kidney injury. Crit. Care Med. 38, 1695–1701 (2010).

    Article  Google Scholar 

  17. Wan, L., Bellomo, R., Di Giantomasso, D. & Ronco, C. The pathogenesis of septic acute renal failure. Curr. Opin. Crit. Care 9, 496–502 (2003).

    Article  Google Scholar 

  18. Dellinger, R. P. et al. for the Surviving Sepsis Campaign Management Guidelines Committee. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit. Care Med. 32, 858–873 (2004).

    Article  Google Scholar 

  19. Rivers, E. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345, 1368–1377 (2001).

    Article  CAS  Google Scholar 

  20. Payen, D. et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit. Care 12, R74 (2008).

    Article  Google Scholar 

  21. Bouchard, J. et al. for the Program to Improve Care in Acute Renal Disease (PICARD) Study Group. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 76, 422–427 (2009).

    Article  Google Scholar 

  22. Bellomo, R., Wan, L. & May, C. Vasoactive drugs and acute kidney injury. Crit. Care Med. 36, S179–S186 (2008).

    Article  CAS  Google Scholar 

  23. Russell, J. A. et al. for the VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N. Engl. J. Med. 358, 877–887 (2008).

    Article  CAS  Google Scholar 

  24. Gordon, A. C. et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 36, 83–91 (2010).

    Article  CAS  Google Scholar 

  25. Cruz, D. N., Bagshaw, S. M., Ronco, C. & Ricci, Z. Acute kidney injury: classification and staging. Contrib. Nephrol. 164, 24–32 (2010).

    Article  Google Scholar 

  26. Ricci, Z., Cruz, D. N. & Ronco, C. Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat. Rev. Nephrol. doi:10.1038/nrneph.2011.14.

    Article  CAS  Google Scholar 

  27. DeTorrente, A. et al. Effects of furosemide and acetylcholine in norepinephrine-induced acute renal failure. Am. J. Physiol. 235, F131–F136 (1978).

    CAS  Google Scholar 

  28. Cantarovich, F., Rangoonwala, B., Lorenz, H., Verho, M. & Esnault, V. L. High-dose furosemide for established ARF: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Am. J. Kidney Dis. 44, 402–409 (2004).

    Article  CAS  Google Scholar 

  29. Uchino, S. et al. for the Beginning and Ending Supportive Therapy for the Kidney (B. E. S. T. Kidney) Investigators. Diuretics and mortality in acute renal failure. Crit. Care Med. 32, 1669–1677 (2004).

    Article  Google Scholar 

  30. Lameire, N., Vanholder, R. & Van Biesen, W. Loop diuretics for patients with acute renal failure: helpful or harmful? JAMA 288, 2599–2601 (2002).

    Article  Google Scholar 

  31. Bagshaw, S. M., Gibney, R. T., McAlister, F. A. & Bellomo, R. The SPARK Study: a phase II randomized blinded controlled trial of the effect of furosemide in critically ill patients with early acute kidney injury. Trials 11, 50 (2010).

    Article  Google Scholar 

  32. Favia, I., Garisto, C., Rossi, E., Picardo, S. & Ricci, Z. Fluid management in pediatric intensive care. Contrib. Nephrol. 164, 217–226 (2010).

    Article  Google Scholar 

  33. Morelli, A. et al. Prophylactic fenoldopam for renal protection in sepsis: a randomised, double-blind, placebo-controlled pilot trial. Crit. Care Med. 33, 2451–2456 (2005).

    Article  CAS  Google Scholar 

  34. Tumlin, J. A. et al. Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am. J. Kidney Dis. 46, 26–34 (2005).

    Article  CAS  Google Scholar 

  35. Landoni, G. et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J. Cardiothorac. Vasc. Anesth. 22, 27–33 (2008).

    Article  CAS  Google Scholar 

  36. Bellomo, R. How to feed patients with renal dysfunction. Blood Purif. 20, 296–230 (2002).

    Article  CAS  Google Scholar 

  37. Btaiche, I. F., Mohammad, R. A., Alaniz, C. & Mueller, B. A. Amino acid requirements in critically ill patients with acute kidney injury treated with continuous renal replacement therapy. Pharmacotherapy 28, 600–613 (2008).

    Article  CAS  Google Scholar 

  38. Liu, K. D. et al. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin. J. Am. Soc. Nephrol. 1, 915–919 (2006).

    Article  CAS  Google Scholar 

  39. Bagshaw, S. M., Cruz, D. N., Gibney, R. T. & Ronco, C. A proposed algorithm for initiation of renal replacement therapy in adult critically ill patients. Crit. Care 13, 317 (2009).

    Article  Google Scholar 

  40. Uchino, S. What is 'BEST' RRT practice? Contrib. Nephrol. 165, 244–250 (2010).

    Article  Google Scholar 

  41. Ostermann, M. & Chang, R. W. Correlation between parameters at initiation of renal replacement therapy and outcome in patients with acute kidney injury. Crit. Care 13, R175 (2009).

    Article  Google Scholar 

  42. Vinsonneau, C. et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet 368, 379–385 (2006).

    Article  Google Scholar 

  43. RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 361, 1627–1638 (2009).

  44. VA/NIH Acute Renal Failure Trial Network. Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med. 359, 7–20 (2008).

  45. Kellum, J. A. & Ronco, C. Dialysis: results of RENAL—what is the optimal CRRT target dose? Nat. Rev. Nephrol. 6, 191–192 (2010).

    Article  Google Scholar 

  46. Vesconi, S. et al. for the DOse REsponse Multicentre International collaborative Initiative (DO-RE-MI Study Group). Delivered dose of renal replacement therapy and mortality in critically ill patients with acute kidney injury. Crit. Care 13, R57 (2009).

    Article  Google Scholar 

  47. Ronco, C. Recent evolution of renal replacement therapy in the critically ill patient. Crit. Care 10, 123 (2006).

    Article  Google Scholar 

  48. Honore, P. M., Joannes-Boyau, O., Boer, W. & Collin, V. High-volume hemofiltration in sepsis and SIRS: current concepts and future prospects. Blood Purif. 28, 1–11 (2009).

    Article  Google Scholar 

  49. Ricci, Z. et al. Practice patterns in the management of acute renal failure in the critically ill patient: an international survey. Nephrol. Dial. Transplant. 21, 690–696 (2006).

    Article  Google Scholar 

  50. Cole, L. et al. A phase II randomized, controlled trial of continuous hemofiltration in sepsis. Crit. Care Med. 30, 100–106 (2002).

    Article  CAS  Google Scholar 

  51. Payen, D. et al. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit. Care Med. 37, 803–810 (2009).

    Article  Google Scholar 

  52. Van Wert, R., Friedrich, J. O., Scales, D. C., Wald, R., Adhikari, N. K. for the University of Toronto Acute Kidney Injury Research Group. High-dose renal replacement therapy for acute kidney injury: systematic review and meta-analysis. Crit. Care Med. 38, 1360–1369 (2010).

    Article  Google Scholar 

  53. Morgera, S. et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit. Care Med. 34, 2099–2104 (2006).

    Article  CAS  Google Scholar 

  54. Morgera, S. et al. Renal replacement therapy with high-cutoff hemofilters: impact of convection and diffusion on cytokine clearances and protein status. Am. J. Kidney Dis. 43, 444–453 (2004).

    Article  CAS  Google Scholar 

  55. Naka, T., Haase, M. & Bellomo, R. 'Super high-flux' or 'high cut-off' hemofiltration and hemodialysis. Contrib. Nephrol. 166, 181–189 (2010).

    Article  CAS  Google Scholar 

  56. Ronco, C., Piccinni, P. & Kellum, J. Rationale of extracorporeal removal of endotoxin in sepsis: theory, timing and technique. Contrib. Nephrol. 167, 25–23 (2010).

    Article  CAS  Google Scholar 

  57. De Nitti, C. et al. Choosing new adsorbents for endogenous ultrapure infusion fluid: performances, safety and flow distribution. Int. J. Artif. Organs 24, 765–776 (2001).

    Article  CAS  Google Scholar 

  58. Kellum, J. A., Song, M. & Venkataraman, R. Hemoadsorption removes tumor necrosis factor, interleukin-6, and interleukin-10, reduces nuclear factor-κB DNA binding, and improves short-term survival in lethal endotoxemia. Crit. Care Med. 32, 801–805 (2004).

    Article  CAS  Google Scholar 

  59. Hanasawa, K. et al. Selective removal of endotoxin from the blood by extracorporeal hemoperfusion with polymyxin B immobilized fiber. Prog. Clin. Biol. Res. 264, 337–341 (1988).

    CAS  PubMed  Google Scholar 

  60. Cruz, D. N. et al. Effectiveness of polymyxin B-immobilized fiber column in sepsis: a systematic review. Crit. Care 11, R47 (2007).

    Article  Google Scholar 

  61. Vincent, J. L. et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock 23, 400–405 (2005).

    Article  CAS  Google Scholar 

  62. Cruz, D. N. et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 301, 2445–2452 (2009).

    Article  CAS  Google Scholar 

  63. Kida, Y. Polymyxin B hemoperfusion and mortality in abdominal septic shock. JAMA 302, 1969; author reply 1969–1970 (2009).

    Article  CAS  Google Scholar 

  64. Kellum, J. A. & Uchino, S. International differences in the treatment of sepsis: are they justified? JAMA 301, 2496–2497 (2009).

    Article  CAS  Google Scholar 

  65. Bellomo, R., Tetta, C. & Ronco, C. Coupled plasma filtration adsorption. Intensive Care Med. 29, 1222–1228 (2003).

    Article  Google Scholar 

  66. Formica, M. et al. Hemodynamic response to coupled plasmafiltration-adsorption in human septic shock. Intensive Care Med. 29, 703–708 (2003).

    Article  Google Scholar 

  67. Cantaluppi, V. et al. Protective effect of resin adsorption on septic plasma-induced tubular injury. Crit. Care 14, R4 (2010).

    Article  Google Scholar 

  68. Ronco, C. & Ricci, Z. Renal replacement therapies: physiological review. Intensive Care Med. 34, 2139–2146 (2008).

    Article  Google Scholar 

  69. Ricci, Z. & Ronco, C. Year in review 2008: critical care—nephrology. Crit. Care 13, 227 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z. Ricci, Angelo Polito and Andrea Polito researched data for this article. C. Ronco and Andrea Polito made a substantial contribution to discussion of the content. Z. Ricci and Angelo Polito wrote the article, and C. Ronco reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Claudio Ronco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricci, Z., Polito, A., Polito, A. et al. The implications and management of septic acute kidney injury. Nat Rev Nephrol 7, 218–225 (2011). https://doi.org/10.1038/nrneph.2011.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing