Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mineral and bone disorders in children with chronic kidney disease

Abstract

As children with chronic kidney disease (CKD) have a long lifespan, optimal control of bone and mineral homeostasis is essential not only for the prevention of debilitating skeletal complications and for achieving adequate growth but also for preserving long-term cardiovascular health. As the growing skeleton is highly dynamic and at particular risk of deterioration, close control of bone and mineral homeostasis is required in children with CKD. However, assessment of bone disease is hampered by the limited validity of biochemical parameters—major controversy exists on key issues such as parathyroid hormone target ranges and the lack of useful imaging techniques. The role of newly discovered factors in bone and mineral homeostasis, such as fibroblast growth factor 23, is not yet established. Even though scientific evidence is limited in children with CKD, ergocalciferol or cholecalciferol supplementation and the use of calcium-free phosphate binders is recommended. The new drug cinacalcet is highly promising; however, pediatric experience is still limited to observational data and the effect of cinacalcet on longitudinal growth and pubertal development is unknown. Randomized, controlled trials are underway, including studies of cinacalcet pharmacokinetics and pharmacodynamics in infants.

Key Points

  • Chronic kidney disease (CKD) mineral and bone disorder (MBD) is highly dynamic in growing children and requires close monitoring of age-dependent target values and repeated therapeutic adaptations

  • The validity of biochemical and imaging tools in children with CKD is uncertain

  • Ergocalciferol or cholecalciferol supplementation is advised in children who have CKD and a 25-hydroxyvitamin D level of <75 nmol/l

  • In children, sevelamer carbonate and paricalcitol or doxercalciferol should improve control of CKD-MBD; however, this effect has not been conclusively demonstrated

  • Cinacalcet could help control bone and mineral homeostasis in children with CKD; however, caution is advised until the results of current pediatric clinical research trials are available

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The age-dependent calcium and phosphate percentiles in the plasma of healthy children.
Figure 2: The relative distribution of 890 pediatric patients on peritoneal dialysis with regard to mean serum levels of calcium, phosphate and iPTH above (blue), within (yellow) and below (green) target values as recommended by KDOQI.
Figure 3: Clinical and/or radiological symptoms and/or raised levels of calcium Ă— phosphate product according to serum levels of iPTH in 890 children on peritoneal dialysis.
Figure 4: Cinacalcet affects various levels of parathyroid gland function, which explains the powerful action on PTH secretion even in advanced states of parathyroid gland autonomy.
Figure 5: Serum levels of PTH and calcium Ă— phosphate product in 17 children following parathyroidectomy (left, those on dialysis with a functioning graft, right, those who subsequently received a transplant).

Similar content being viewed by others

References

  1. Moe, S. et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 69, 1945–1953 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Borzych, D. et al. The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int. 78, 1295–1304 (2010).

    Article  PubMed  Google Scholar 

  3. Oh, J. et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106, 100–105 (2002).

    Article  PubMed  Google Scholar 

  4. Goodman, W. G. et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N. Engl. J. Med. 342, 1478–1483 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. McDonald, S. P. & Craig, J. C. Long-term survival of children with end-stage renal disease. N. Engl. J. Med. 350, 2654–2662 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Shroff, R. et al. Vitamin D deficiency is associated with short stature and may influence blood pressure control in paediatric renal transplant recipients. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-011-1920-z.

  7. Gwinner, W. et al. Early calcification of renal allografts detected by protocol biopsies: causes and clinical implications. Am. J. Transplant. 5, 1934–1941 (2005).

    Article  PubMed  Google Scholar 

  8. Ramirez, J. A. et al. The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int. 30, 753–759 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Bushinsky, D. A. Contribution of intestine, bone, kidney, and dialysis to extracellular fluid calcium content. Clin. J. Am. Soc. Nephrol. 5 (Suppl. 1), S12–S22 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Soldin, S. J., Brugnara, C. & Wong, E. C. (eds) Pediatric reference ranges (AACC-Press, Washington, 2003).

    Google Scholar 

  11. National Kidney Foundation. KDOQI Clinical Practice Guidelines for Nutrition in Children with CKD: 2008 Update. Am. J. Kidney Dis. 53 (Suppl. 2), S1–S124 (2009).

  12. Brodehl, J. Assessment and interpretation of the tubular threshold for phosphate in infants and children. Pediatr. Nephrol. 8, 645 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Clayton, B. E., Jenkins, P. & Round, J. M. (eds) Paediatric chemical pathology: clinical tests and references ranges (Blackwell Scientific, Oxford 1980).

    Google Scholar 

  14. Sitzmann, F. C. in Pädiatrie (ed. Sitzmann, F. C.), 193 (Hippokrates Verlag, Stuttgart, 1995).

    Google Scholar 

  15. Häusler, M., Schäfer, C., Osterwinter, C. & Jahnen-Dechent, W. The physiologic development of fetuin-a serum concentrations in children. Pediatr. Res. 66, 660–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Wigger, M. et al. Fetuin-A serum concentrations in healthy children. Ann. Clin. Biochem. 46, 511–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Picca, S. et al. Parathyroid hormone levels in pubertal uremic adolescents treated with growth hormone. Pediatr. Nephrol. 19, 71–76 (2004).

    Article  PubMed  Google Scholar 

  18. Bhan, I. et al. Post-transplant hypophosphatemia: tertiary 'hyper-phosphatoninism'? Kidney Int. 70, 1486–1494 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Klaus, G. et al. Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr. Nephrol. 21, 151–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Salusky, I. B. et al. Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int. 45, 253–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Gal-Moscovici, A. & Popovtzer, M. M. New worldwide trends in presentation of renal osteodystrophy and its relationship to parathyroid hormone levels. Clin. Nephrol. 63, 284–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. John, M. R. et al. A novel immunoradiometric assay detects full-length human PTH but not amino-terminally truncated fragments: implications for PTH measurements in renal failure. J. Clin. Endocrinol. Metab. 84, 4287–4290 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Salusky, I. B. et al. Similar predictive value of bone turnover using first- and second-generation immunometric PTH assays in pediatric patients treated with peritoneal dialysis. Kidney Int. 63, 1801–1808 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Wesseling-Perry, K. et al. Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols. Pediatr. Nephrol. 24, 1355–1361 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Slatopolsky, E. et al. A novel mechanism for skeletal resistance in uremia. Kidney Int. 58, 753–761 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Waller, S. C., Ridout, D., Cantor, T. & Rees, L. Parathyroid hormone and growth in children with chronic renal failure. Kidney Int. 67, 2338–2345 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Cantor, T., Yang, Z., Caraiani, N. & Ilamathi, E. Lack of comparability of intact parathyroid hormone measurements among commercial assays for end-stage renal disease patients: implication for treatment decisions. Clin. Chem. 52, 1771–1776 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Gardham, C. et al. Variability of parathyroid hormone and other markers of bone mineral metabolism in patients receiving hemodialysis. Clin. J. Am. Soc. Nephrol. 5, 1261–1267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 113, S1–S130 (2009).

  30. National Kidney Foundation. K/DOQI Clinical Practice guidelines for bone metabolism and disease in children with chronic kidney disease. Am. J. Kidney Dis. 46 (Suppl. 1), 1–122 (2005).

  31. Kuizon, B. D. et al. Diminished linear growth during intermittent calcitriol therapy in children undergoing CCPD. Kidney Int. 53, 205–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Schmitt, C. P., Ardissino, G., Testa, S., Claris-Appiani, A. & Mehls, O. Growth in children with chronic renal failure on intermittent versus daily calcitriol. Pediatr. Nephrol. 18, 440–444 (2003).

    PubMed  Google Scholar 

  33. Waller, S. C., Ridout, D., Cantor, T. & Rees, L. Parathyroid hormone and growth in children with chronic renal failure. Kidney Int. 67, 2338–2345 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Waller, S., Shroff, R., Freemont, A. J. & Rees, L. Bone histomorphometry in children prior to commencing renal replacement therapy. Pediatr. Nephrol. 23, 1523–1529 (2008).

    Article  PubMed  Google Scholar 

  35. Cansick, J., Waller, S., Ridout, D. & Rees, L. Growth and PTH in prepubertal children on long-term dialysis. Pediatr. Nephrol. 22, 1349–1354 (2007).

    Article  PubMed  Google Scholar 

  36. Fischbach, M. et al. Daily on line haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol. Dial. Transplant. 25, 867–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Salusky, I. B. et al. Intermittent calcitriol therapy in secondary hyperparathyroidism: a comparison between oral and intraperitoneal administration. Kidney Int. 54, 907–914 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Bakkaloglu, S. A. et al. Value of the new bone classification system in pediatric renal osteodystrophy. Clin. J. Am. Soc. Nephrol. 5, 1860–1866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salusky, I. B. et al. Sevelamer controls parathyroid hormone-induced bone disease as efficiently as calcium carbonate without increasing serum calcium levels during therapy with active vitamin D sterols. J. Am. Soc. Nephrol. 16, 2501–2508 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Piscitelli, J., Cabansag, M. R. & Silverstein, D. M. Correlation among markers of renal osteodystrophy in pediatric hemodialysis patients. J. Pediatr. Endocrinol. Metab. 12, 879–886 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Christoforidis, A. et al. Comparative study of quantitative ultrasonography and dual-energy X-ray absorptiometry for evaluating renal osteodystrophy in children with chronic kidney disease. J. Bone Miner. Metab. 29, 321–327 (2011).

    Article  PubMed  Google Scholar 

  42. Siomou, E. et al. Serum osteoprotegerin, RANKL and fibroblast growth factor-23 in children with chronic kidney disease. Pediatr. Nephrol. 26, 1105–1114 (2011).

    Article  PubMed  Google Scholar 

  43. Ziólkowska, H. et al. Bone biopsy results and serum bone turnover parameters in uremic children. Acta Paediatr. 89, 666–671 (2000).

    Article  PubMed  Google Scholar 

  44. Fahrleitner-Pammer, A. et al. Bone markers predict cardiovascular events in chronic kidney disease. J. Bone Miner. Res. 23, 1850–1858 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Baber, U. et al. Non-traditional risk factors predict coronary calcification in chronic kidney disease in a population-based cohort. Kidney Int. 73, 615–621 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Mohandas, R. & Segal, M. S. Endothelial progenitor cells and endothelial vesicles—what is the significance for patients with chronic kidney disease. Blood Purif. 29, 158–162 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bacchetta, J. et al. The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease. J. Clin. Endocrinol. Metab. 95, 1741–1748 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. van Husen, M. et al. Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int. 78, 200–206 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petkovich, M. & Jones, G. CYP24A1 and kidney disease. Curr. Opin. Nephrol. Hypertens. 20, 337–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Wesseling-Perry, K. et al. Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism. Kidney Int. 79, 112–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Larsson, T., Nisbeth, U., Ljunggren, O., Jüppner, H. & Jonsson, K. B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64, 2272–2279 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wolf, M. et al. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J. Am. Soc. Nephrol. 22, 956–966 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119, 2545–2552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanbay, M. et al. Fibroblast growth factor 23 and fetuin A are independent predictors for the coronary artery disease extent in mild chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1780–1786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Manghat, P. et al. Association of bone turnover markers and arterial stiffness in pre-dialysis chronic kidney disease (CKD). Bone 48, 1127–1132 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Wesseling-Perry, K., Tsai, E. W., Ettenger, R. B., JĂĽppner, H. & Salusky, I. B. Mineral abnormalities and long-term graft function in pediatric renal transplant recipients: a role for FGF-23? Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfr126.

  59. Wesseling-Perry, K. et al. Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J. Clin. Endocrinol. Metab. 94, 511–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Russo, D. & Battaglia, Y. Clinical significance of FGF-23 in patients with CKD. Int. J. Nephrol. 2011, 364890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schönau, E. The peak bone mass concept: is it still relevant? Pediatr. Nephrol. 19, 825–831 (2004).

    Article  PubMed  Google Scholar 

  62. Weber, L. T. & Mehls, O. Limitations of dual x-ray absorptiometry in children with chronic kidney disease. Pediatr. Nephrol. 25, 3–5 (2010).

    Article  PubMed  Google Scholar 

  63. Bacchetta, J. et al. Bone assessment in children with chronic kidney disease: data from two new bone imaging techniques in a single-center pilot study. Pediatr. Nephrol. 26, 587–595 (2011).

    Article  PubMed  Google Scholar 

  64. Leonard, M. B. et al. Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J. Clin. Endocrinol. Metab. 95, 1681–1689 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ziólkowska, H. et al. Bone biopsy results and serum bone turnover parameters in uremic children. Acta Paediatr. 89, 666–671 (2000).

    Article  PubMed  Google Scholar 

  66. Salusky, I. B. et al. Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int. 45, 253–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Glorieux, F. H. et al. Normative data for iliac bone histomorphometry in growing children. Bone 26, 103–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. LaClair, R. E. et al. Prevalence of calcidiol deficiency in CKD: a cross-sectional study across latitudes in the United States. Am. J. Kidney Dis. 45, 1026–1033 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Hari, P. et al. Vitamin D insufficiency and effect of cholecalciferol in children with chronic kidney disease. Pediatr. Nephrol. 25, 2483–2488 (2010).

    Article  PubMed  Google Scholar 

  70. Ali, F. N., Arguelles, L. M., Langman, C. B. & Price, H. E. Vitamin D deficiency in children with chronic kidney disease: uncovering an epidemic. Pediatrics 123, 791–796 (2009).

    Article  PubMed  Google Scholar 

  71. Shroff, R. et al. Vitamin D deficiency is associated with short stature and may influence blood pressure control in paediatric renal transplant recipients. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-011-1920-z.

  72. Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Matias, P. J. et al. Cholecalciferol supplementation in hemodialysis patients: effects on mineral metabolism, inflammation, and cardiac dimension parameters. Clin. J. Am. Soc. Nephrol. 5, 905–911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Menon, S., Valentini, R. P., Hidalgo, G., Peschansky, L. & Mattoo, T. K. Vitamin D insufficiency and hyperparathyroidism in children with chronic kidney disease. Pediatr. Nephrol. 23, 1831–1836 (2008).

    Article  PubMed  Google Scholar 

  75. Shroff, R. et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J. Am. Soc. Nephrol. 19, 1239–1246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jones, G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 88, 582S–586S (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Teng, M. et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N. Engl. J. Med. 349, 446–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Tentori, F. et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int. 70, 1858–1865 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Nuijten, M., Andress, D. L., Marx, S. E., Curry, A. S. & Sterz, R. Cost effectiveness of paricalcitol versus a non-selective vitamin D receptor activator for secondary hyperparathyroidism in the UK: a chronic kidney disease markov model. Clin. Drug Investig. 30, 545–557 (2010).

    Article  PubMed  Google Scholar 

  80. Sprague, S. M., Llach, F., Amdahl, M., Taccetta, C. & Batlle, D. Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int. 63, 1483–1490 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Llach, F. et al. Suppression of parathyroid hormone secretion in hemodialysis patients by a novel vitamin D analogue: 19-nor-1,25-dihydroxyvitamin D2. Am. J. Kidney Dis. 32 (2 Suppl. 2), S48–S54 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Palmer, S. C. et al. Vitamin D compounds for people with chronic kidney disease requiring dialysis. Cochrane Database of Systematic Reviews Issue 7. Art. No.: CD005633. doi:10.1002/14651858.CD005633.pub2 (2009).

  83. Palmer, S. C. et al. Vitamin D compounds for people with chronic kidney disease not requiring dialysis. Cochrane Database of Systematic Reviews Issue 7 Art. No.: CD008175 doi:10.1002/14651858.CD008175 (2009).

  84. Finch, J. L., Brown, A. J. & Slatopolsky, E. Differential effects of 1,25-dihydroxy-vitamin D3 and 19-nor-1,25-dihydroxy-vitamin D2 on calcium and phosphorus resorption in bone. J. Am. Soc. Nephrol. 10, 980–985 (1999).

    CAS  PubMed  Google Scholar 

  85. Brown, A. J., Finch, J. & Slatopolsky, E. Differential effects of 19-nor-1,25-dihydroxyvitamin D(2) and 1,25-dihydroxyvitamin D(3) on intestinal calcium and phosphate transport. J. Lab. Clin. Med. 139, 279–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Mizobuchi, M., Finch, J. L., Martin, D. R. & Slatopolsky, E. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 72, 709–715 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Becker, L. E. et al. Effect of paricalcitol and calcitriol on aortic wall remodeling in uninephrectomized ApoE knockout mice. Am. J. Physiol. Renal Physiol. 300, F772–F782 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Repo, J. M. et al. Paricalcitol aggravates perivascular fibrosis in rats with renal insufficiency and low calcitriol. Kidney Int. 72, 977–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Greenbaum, L. A. et al. Intravenous paricalcitol for treatment of secondary hyperparathyroidism in children on hemodialysis. Am. J. Kidney Dis. 49, 814–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Seeherunvong, W. et al. Paricalcitol versus calcitriol treatment for hyperparathyroidism in pediatric hemodialysis patients. Pediatr. Nephrol. 21, 1434–1439 (2006).

    Article  PubMed  Google Scholar 

  91. Tsuruoka, S., Wakaumi, M., Sugimoto, K., Saito, T. & Fujimura, A. Chronotherapy of high-dose active vitamin D3 in haemodialysis patients with secondary hyperparathyroidsm: a repeated dosing study. Br. J. Clin. Pharmacol. 55, 531–537 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pieper, A. K. et al. A randomized crossover trial comparing sevelamer with calcium acetate in children with CKD. Am. J. Kidney Dis. 47, 625–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Gonzalez, E., Schomberg, J., Amin, N., Salusky, I. B. & Zaritsky, J. Sevelamer carbonate increases serum bicarbonate in pediatric dialysis patients. Pediatr. Nephrol. 25, 373–375 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chertow, G. M., Burke, S. K. & Raggi, P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 62, 245–252 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Kakuta, T. et al. Effect of sevelamer and calcium-based phosphate binders on coronary artery calcification and accumulation of circulating advanced glycation end products in hemodialysis patients. Am. J. Kidney Dis. 57, 422–431 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Block, G. A., Raggi, P., Bellasi, A., Kooienga, L. & Spiegel, D. M. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 71, 438–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Navaneethan, S. D., Palmer, S. C., Craig, J. C., Elder, G. J. & Strippoli, G. F. Benefits and harms of phosphate binders in CKD: a systematic review of randomized controlled trials. Am. J. Kidney Dis. 54, 619–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Hutchison, A. J., Barnett, M. E., Krause, R. J. & Siami, G. A. Lanthanum carbonate treatment, for up to 6 years, is not associated with adverse effects on the liver in patients with chronic kidney disease stage 5 receiving hemodialysis. Clin. Nephrol. 71, 286–295 (2009).

    CAS  PubMed  Google Scholar 

  99. Lacour, B. et al. Chronic renal failure is associated with increased tissue deposition of lanthanum after 28-day oral administration. Kidney Int. 67, 1062–1069 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Davis, R. L. & Abraham, J. L. Lanthanum deposition in a dialysis patient. Nephrol. Dial. Transplant. 24, 3247–3250 (2009).

    Article  PubMed  Google Scholar 

  101. Spasovski, G. B. et al. Evolution of bone and plasma concentration of lanthanum in dialysis patients before, during 1 year of treatment with lanthanum carbonate and after 2 years of follow-up. Nephrol. Dial. Transplant. 21, 2217–2224 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Strippoli, G. F., Tong, A., Palmer, S. C., Elder, G. & Craig, J. C. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database of Systematic Reviews Issue 18 Art. No.: CD006254 doi:10.1002/14651858.CD006254 (2006).

  103. Meola, M., Petrucci, I. & Barsotti, G. Long-term treatment with cinacalcet and conventional therapy reduces parathyroid hyperplasia in severe secondary hyperparathyroidism. Nephrol. Dial. Transplant. 24, 982–989 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Raggi, P. et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol. Dial. Transplant. 26, 1327–1339 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Muscheites, J. et al. Cinacalcet for secondary hyperparathyroidism in children with end-stage renal disease. Pediatr. Nephrol. 23, 1823–1829 (2008).

    Article  PubMed  Google Scholar 

  106. Silverstein, D. M. et al. Cinacalcet is efficacious in pediatric dialysis patients. Pediatr. Nephrol. 23, 1817–1822 (2008).

    Article  PubMed  Google Scholar 

  107. Bacchetta, J. et al. Precocious puberty and unlicensed paediatric drugs for severe hyperparathyroidism. Nephrol. Dial. Transplant. 24, 2595–2598 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. European Medicines Agency European Assessment Report MIMPARA [online], (2009).

  109. Wu, S., Palese, T., Mishra, O. P., Delivoria-Papadopoulos, M. & De Luca, F. Effects of Ca2+ sensing receptor activation in the growth plate. FASEB J. 18, 143–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Rodriguez, L., Cheng, Z., Chen, T. H., Tu, C. & Chang, W. Extracellular calcium and parathyroid hormone-related peptide signaling modulate the pace of growth plate chondrocyte differentiation. Endocrinology 146, 4597–4608 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Schmitt, C. P. et al. Intermittent administration of parathyroid hormone (1–37) improves growth and bone mineral density in uremic rats. Kidney Int. 57, 1484–1492 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, K. et al. Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology 137, 5109–5118 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Lanske, B. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663–666 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Garner, S. C., Pi, M., Tu, Q. & Quarles, L. D. Rickets in cation-sensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology 142, 3996–4005 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Kos, C. H. et al. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J. Clin. Invest. 111, 1021–1028 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tu, Q. et al. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J. Clin. Invest. 111, 1029–1037 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mittelman, S. D. et al. A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone. J. Clin. Endocrinol. Metab. 91, 2474–2479 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Burren, C. P., Curley, A., Christie, P., Rodda, C. P. & Thakker, R. V. A family with autosomal dominant hypocalcaemia with hypercalciuria (ADHH): mutational analysis, phenotypic variability and treatment challenges. J. Pediatr. Endocrinol. Metab. 18, 689–699 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Uckun-Kitapci, A., Underwood, L. E., Zhang, J. & Moats-Staats, B. A novel mutation (E767K) in the second extracellular loop of the calcium sensing receptor in a family with autosomal dominant hypocalcemia. Am. J. Med. Genet. 132, 125–129 (2005).

    Article  Google Scholar 

  120. Nakagawa, K. et al. Cinacalcet does not affect longitudinal growth but increases body weight gain in experimental uraemia. Nephrol. Dial. Transplant. 23, 2761–2767 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Platt, C. et al. Middle-term use of cinacalcet in paediatric dialysis patients. Pediatr. Nephrol. 25, 143–148 (2010).

    Article  PubMed  Google Scholar 

  122. DrugLib.com Well-designed clinical trials related to Sensipar (cinacalcet) [online], (2011).

  123. Henley, C. 3rd et al. Discovery of a calcimimetic with differential effects on parathyroid hormone and calcitonin secretion. J. Pharmacol. Exp. Ther. 337, 681–691 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Oh, J. et al. Stimulation of the calcium-sensing receptor stabilizes the podocyte cytoskeleton, improves cell survival, and reduces toxin-induced glomerulosclerosis. Kidney Int. 80, 483–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Finch, J. L. et al. Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease. Am. J. Physiol. Renal Physiol. 298, F1315–F1322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cunningham, J., Locatelli, F. & Rodriguez, M. Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin. J. Am. Soc. Nephrol. 6, 913–921 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Schaefer, B. et al. Long-term control of parathyroid hormone and calcium-phosphate metabolism after parathyroidectomy in children with chronic kidney disease. Nephrol. Dial. Transplant. 25, 2590–2595 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Claus Peter Schmitt.

Ethics declarations

Competing interests

C. P. Schmitt has been a consultant and speaker for Amgen and is a patent holder/applicant with Amgen. C. P. Schmitt has received grant/research support from Amgen and Fresenius. O. Mehls declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, C., Mehls, O. Mineral and bone disorders in children with chronic kidney disease. Nat Rev Nephrol 7, 624–634 (2011). https://doi.org/10.1038/nrneph.2011.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing