Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anemia in children with chronic kidney disease

Abstract

Anemia is a common comorbidity in children with chronic kidney disease (CKD). This condition is associated with multiple adverse clinical consequences and its management is a core component of nephrology care. Increased morbidity and mortality, increased risk of cardiovascular disease and decreased quality of life have been associated with anemia of CKD in children. Although numerous complex factors interact in the development of this anemia, erythropoietin deficiency and iron dysregulation (including iron deficiency and iron-restricted erythropoiesis) are the primary causes. In addition to iron supplementation, erythropoietin-stimulating agents (ESAs) can effectively treat this anemia, but there are important differences in ESA dose requirements between children and adults. Also, hyporesponsiveness to ESA therapy is a common problem in children with CKD. Although escalating ESA doses to target increased hemoglobin values in adults has been associated with adverse outcomes, no studies have demonstrated this association in children. The question of appropriate target hemoglobin levels in children, and the approach by which to achieve these levels, remains under debate. Randomized, controlled studies are needed to evaluate whether normalization of hemoglobin concentrations is beneficial to children, and whether this practice is associated with increased risks.

Key Points

  • Anemia, in particular anemia that is poorly responsive to treatment, is very common in children with chronic kidney disease (CKD) and end-stage renal disease

  • Adverse effects of anemia in this population include the development of left ventricular hypertrophy, increased risk of hospitalization and mortality, progression of kidney disease and decreased quality of life

  • Iron-restricted erythropoiesis has a key role in the development of CKD-associated anemia and is mediated in part by inflammation and the iron-regulatory protein hepcidin

  • Erythropoietin-stimulating agents (ESAs) and iron supplementation remain the mainstays of therapy for the anemia of CKD in children, with children demonstrating higher ESA dosing requirements than adults

  • The question of the appropriate target hemoglobin level in children remains under debate, and randomized, controlled studies are needed in children with CKD to evaluate the risks and benefits of targeting normalization of hemoglobin levels

  • Regarding the safety and efficacy of escalating ESA doses, the identification of pathways beyond erythropoietin deficiency is needed to develop other safe, nontoxic clinical interventions to treat the anemia of CKD

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mitsnefes, M. M. et al. Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study. J. Pediatr. 149, 671–675 (2006).

    Article  Google Scholar 

  2. Schaefer, F. Cardiac disease in children with mild-to-moderate chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 17, 292–297 (2008).

    Article  Google Scholar 

  3. Amaral, S. et al. Association of mortality and hospitalization with achievement of adult hemoglobin targets in adolescents maintained on hemodialysis. J. Am. Soc. Nephrol. 17, 2878–2885 (2006).

    Article  Google Scholar 

  4. Furth, S. L. et al. The association of anemia and hypoalbuminemia with accelerated decline in GFR among adolescents with chronic kidney disease. Pediatr. Nephrol. 22, 265–271 (2007).

    Article  Google Scholar 

  5. Wühl, E. & Schaefer, F. Therapeutic strategies to slow chronic kidney disease progression. Pediatr. Nephrol. 23, 705–716 (2008).

    Article  Google Scholar 

  6. Filler, G., Mylrea, K., Feber, J. & Wong, H. How to define anemia in children with chronic kidney disease? Pediatr. Nephrol. 22, 702–707 (2007).

    Article  Google Scholar 

  7. Staples, A. O. et al. Anemia and risk of hospitalization in pediatric chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 48–56 (2009).

    Article  Google Scholar 

  8. Gerson, A. et al. Anemia and health-related quality of life in adolescents with chronic kidney disease. Am. J. Kidney Dis. 44, 1017–1023 (2004).

    Article  Google Scholar 

  9. Hollowell, J. G. et al. Hematological and iron-related analytes—reference data for persons aged 1 year and over: United States, 1988–94. Vital Health Stat. 11 247, 1–156 (2005).

    Google Scholar 

  10. Jackson, R. T. Separate hemoglobin standards for blacks and whites: a critical review of the case for separate and unequal hemoglobin standards. Med. Hypotheses 32, 181–189 (1990).

    Article  CAS  Google Scholar 

  11. Atkinson, M. A. et al. Hemoglobin differences by race in children with CKD. Am. J. Kidney Dis. 55, 1009–1017 (2010).

    Article  CAS  Google Scholar 

  12. KDOQI: National Kidney Foundation. KDOQI clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease. Am. J. Kidney Dis. 47 (Suppl. 3), S11–S145 (2006).

  13. Atkinson, M. A., Martz, K., Warady, B. A. & Neu, A. M. Risk for anemia in pediatric chronic kidney disease patients: a report of NAPRTCS. Pediatr. Nephrol. 25, 1699–1706 (2010).

    Article  Google Scholar 

  14. Slickers, J., Duquette, P., Hooper, S. & Gipson, D. Clinical predictors of neurocognitive deficits in children with chronic kidney disease. Pediatr. Nephrol. 22, 565–572 (2007).

    Article  Google Scholar 

  15. Seikaly, M. G., Salhab, N., Gipson, D., Yiu, V. & Stablein, D. Stature in children with chronic kidney disease: analysis of NAPRTCS database. Pediatr. Nephrol. 21, 793–799 (2006).

    Article  Google Scholar 

  16. Amaral, S. et al. Serum albumin level and risk for mortality and hospitalization in adolescents on hemodialysis. Clin. J. Am. Soc. Nephrol. 3, 759–767 (2008).

    Article  CAS  Google Scholar 

  17. Warady, B. A. & Ho, M. Morbidity and mortality in children with anemia at initiation of dialysis. Pediatr. Nephrol. 18, 1055–1062 (2003).

    Article  Google Scholar 

  18. Mitsnefes, M. et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J. Am. Soc. Nephrol. 21, 137–144 (2010).

    Article  CAS  Google Scholar 

  19. Matteucci, M. C. et al. for the Escape Trial Group. Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J. Am. Soc. Nephrol. 17, 218–226 (2006).

    Article  Google Scholar 

  20. Gouva, C., Nikolopoulos, P., Ioannidis, J. P. & Siamopoulos, K. C. Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int. 66, 753–760 (2004).

    Article  Google Scholar 

  21. Staples, A. O. et al. Association between clinical risk factors and progression of chronic kidney disease in children. Clin. J. Am. Soc. Nephrol. 5, 2172–2179 (2010).

    Article  CAS  Google Scholar 

  22. Boehm, M. Early erythropoietin therapy is associated with improved growth in children with chronic kidney disease. Pediatr. Nephrol. 22, 1189–1193 (2007).

    Article  Google Scholar 

  23. Nangaku, M. & Eckardt, K. U. Pathogenesis of renal anemia. Semin. Nephrol. 26, 261–268 (2006).

    Article  CAS  Google Scholar 

  24. Goodnough, L. T., Nemeth, E. & Ganz, T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood 116, 4754–4761 (2010).

    Article  CAS  Google Scholar 

  25. Ooi, C. L., Lepage, N., Nieuwenhuys, E., Sharma, A. P. & Filler, G. Pediatric reference intervals for soluble transferrin receptor and transferrin receptor-ferritin index. World J. Pediatr. 5, 122–126 (2009).

    Article  CAS  Google Scholar 

  26. Looker, A. C., Dallman, P. R., Carroll, M. D., Gunter, E. W. & Johnson, C. L. Prevalence of iron deficiency in the United States. JAMA 277, 973–976 (1997).

    Article  CAS  Google Scholar 

  27. Braun, J., Lindner, K., Schreiber, M., Heidler, R. A. & Hörl, W. H. Percentage of hypochromic red blood cells as predictor of erythropoietic and iron response after i.v. iron supplementation in maintenance haemodialysis patients. Nephrol. Dial. Transplant. 12, 1173–1181 (1997).

    Article  CAS  Google Scholar 

  28. Kalantar-Zadeh, K., Kalantar-Zadeh, K. & Lee, G. H. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin. J. Am. Soc. Nephrol. 1 (Suppl. 1), S9–S18 (2006).

    Article  CAS  Google Scholar 

  29. Sharma, A. P., McKenna, A. M., Lepage, N., Nieuwenhuys, E. & Filler, G. Relationships among serum iron, inflammation, and body mass index in children. Adv. Pediatr. 56, 135–144 (2009).

    Article  Google Scholar 

  30. Girndt, M. et al. Influence of cytokine gene polymorphisms on erythropoetin dose requirements in chronic haemodialysis patients. Nephrol. Dial. Transplant. 22, 3586–3592 (2007).

    Article  CAS  Google Scholar 

  31. Goldstein, S. L., Leung, J. C. & Silverstein, D. M. Pro- and anti-inflammatory cytokines in chronic pediatric dialysis patients: effect of aspirin. Clin. J. Am. Soc. Nephrol. 1, 979–986 (2006).

    Article  CAS  Google Scholar 

  32. Pecoits-Filho, R., Sylvestre, L. C. & Stenvinkel, P. Chronic kidney disease and inflammation in pediatric patients: from bench to playground. Pediatr. Nephrol. 20, 714–720 (2005).

    Article  Google Scholar 

  33. Sylvestre, L. C. et al. The malnutrition and inflammation axis in pediatric patients with chronic kidney disease. Pediatr. Nephrol. 22, 864–873 (2007).

    Article  Google Scholar 

  34. Malyszko, J. & Mysliwiec, M. Hepcidin in anemia and inflammation in chronic kidney disease. Kidney Blood Press. Res. 30, 15–30 (2007).

    Article  CAS  Google Scholar 

  35. Roy, C. N. & Andrews, N. C. Anemia of inflammation: the hepcidin link. Curr. Opin. Hematol. 12, 107–111 (2005).

    Article  CAS  Google Scholar 

  36. Swinkels, D. W. & Wetzels, J. F. Hepcidin: a new tool in the management of anaemia in patients with chronic kidney disease? Nephrol. Dial. Transplant. 23, 2450–2453 (2008).

    Article  CAS  Google Scholar 

  37. Kemna, E. H., Tjalsma, H., Willems, H. L. & Swinkels, D. W. Hepcidin: from discovery to differential diagnosis. Haematologica 93, 90–97 (2008).

    Article  CAS  Google Scholar 

  38. Means, R. T. Hepcidin and cytokines in anaemia. Hematology 9, 357–362 (2004).

    Article  CAS  Google Scholar 

  39. Nemeth, E. Targeting the hepcidin-ferroportin axis in the diagnosis and treatment of anemias. Adv. Hematol. 2010, 750643 (2010).

    Article  Google Scholar 

  40. Zaritsky, J. et al. Hepcidin—a potential novel biomarker for iron status in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1051–1056 (2009).

    Article  CAS  Google Scholar 

  41. Bamgbola, O. F. & Kaskel, F. Role of folate deficiency on erythropoietin resistance in pediatric and adolescent patients on chronic dialysis. Pediatr. Nephrol. 20, 1622–1629 (2005).

    Article  Google Scholar 

  42. Greenbaum, L. A. Anemia in children with chronic kidney disease. Adv. Chronic Kidney Dis. 12, 385–396 (2005).

    Article  Google Scholar 

  43. Kruse, A., Uehlinger, D. E., Gotch, F., Kotanko, P. & Levin, N. W. Red blood cell lifespan, erythropoiesis and hemoglobin control. Contrib. Nephrol. 161, 247–254 (2008).

    Article  Google Scholar 

  44. Rao, D. S., Shih, M. S. & Mohini, R. Effect of serum parathyroid hormone and bone marrow fibrosis on the response to erythropoietin in uremia. N. Engl. J. Med. 328, 171–175 (1993).

    Article  CAS  Google Scholar 

  45. Koshy, S. M. & Geary, D. F. Anemia in children with chronic kidney disease. Pediatr. Nephrol. 23, 209–219 (2008).

    Article  Google Scholar 

  46. Smith, L. B. et al. Secondary hyperparathyroidism and anemia in children treated by hemodialysis. Am. J. Kidney Dis. 55, 326–334 (2010).

    Article  CAS  Google Scholar 

  47. Fadrowski, J. J. et al. Hemoglobin decline in children with chronic kidney disease: baseline results from the Chronic Kidney Disease in Children Prospective Cohort Study. Clin. J. Am. Soc. Nephrol. 3, 457–462 (2008).

    Article  CAS  Google Scholar 

  48. Cruzado, J. M., Rico, J. & Grinyó, J. M. The renin angiotensin system blockade in kidney transplantation: pros and cons. Transpl. Int. 21, 304–313 (2008).

    Article  CAS  Google Scholar 

  49. Collins, A. J. et al. Excerpts from the United States Renal Data System 2007 annual data report. Am. J. Kidney Dis. 51 (Suppl. 1), S1–S320 (2008).

    Google Scholar 

  50. Covic, A. et al. Biosimilars and biopharmaceuticals: what the nephrologists need to know—a position paper by the ERA-EDTA Council. Nephrol. Dial. Transplant. 23, 3731–3737 (2008).

    Article  Google Scholar 

  51. Port, R. E. & Mehls, O. Erythropoietin dosing in children with chronic kidney disease: based on body size or on hemoglobin deficit? Pediatr. Nephrol. 24, 435–437 (2009).

    Article  Google Scholar 

  52. Bamgbola, O. F., Kaskel, F. J. & Coco, M. Analyses of age, gender and other risk factors of erythropoietin resistance in pediatric and adult dialysis cohorts. Pediatr. Nephrol. 24, 571–579 (2009).

    Article  Google Scholar 

  53. Port, R. E., Kiepe, D., Van Guilder, M., Jelliffe, R. W. & Mehls, O. Recombinant human erythropoietin for the treatment of renal anaemia in children: no justification for bodyweight-adjusted dosage. Clin. Pharmacokinet. 43, 57–70 (2004).

    Article  CAS  Google Scholar 

  54. Foley, R. N. Erythropoietin: physiology and molecular mechanisms. Heart Fail. Rev. 13, 405–414 (2008).

    Article  CAS  Google Scholar 

  55. Warady, B. A., Arar, M. Y., Lerner, G., Nakanishi, A. M. & Stehman-Breen, C. Darbepoetin alfa for the treatment of anemia in pediatric patients with chronic kidney disease. Pediatr. Nephrol. 21, 1144–1152 (2006).

    Article  Google Scholar 

  56. Schmitt, C. P., Nau, B., Brummer, C., Rosenkranz, J. & Schaefer, F. Increased injection pain with darbepoetin-alpha compared to epoetin-beta in paediatric dialysis patients. Nephrol. Dial. Transplant. 21, 3520–3524 (2006).

    Article  CAS  Google Scholar 

  57. Singh, A. K. et al. for the CHOIR Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  Google Scholar 

  58. Drüeke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    Article  Google Scholar 

  59. Keithi-Reddy, S. R. & Singh, A. K. Hemoglobin target in chronic kidney disease: a pediatric perspective. Pediatr. Nephrol. 24, 431–434 (2009).

    Article  Google Scholar 

  60. Kwack, C. & Balakrishnan, V. S. Managing erythropoietin hyporesponsiveness. Semin. Dial. 19, 146–151 (2006).

    Article  Google Scholar 

  61. Rossert, J., Gassmann-Mayer, C., Frei, D. & McClellan, W. Prevalence and predictors of epoetin hyporesponsiveness in chronic kidney disease patients. Nephrol. Dial. Transplant. 22, 794–800 (2007).

    Article  Google Scholar 

  62. Bennett, C. L. et al. Long-term outcome of individuals with pure red cell aplasia and antierythropoietin antibodies in patients treated with recombinant epoetin: a follow-up report from the Research on Adverse Drug Events and Reports (RADAR) Project. Blood 106, 3343–3347 (2005).

    Article  CAS  Google Scholar 

  63. Morgan, H. E., Gautam, M. & Geary, D. F. Maintenance intravenous iron therapy in pediatric hemodialysis patients. Pediatr. Nephrol. 16, 779–783 (2001).

    Article  CAS  Google Scholar 

  64. Morgan, H. E., Holt, R. C., Jones, C. A. & Judd, B. A. Intravenous iron treatment in paediatric chronic kidney disease patients not on erythropoietin. Pediatr. Nephrol. 22, 1963–1965 (2007).

    Article  Google Scholar 

  65. Agarwal, R. Iron, oxidative stress, and clinical outcomes. Pediatr. Nephrol. 23, 1195–1199 (2008).

    Article  Google Scholar 

  66. Fishbane, S. Upper limit of serum ferritin: misinterpretation of the 2006 KDOQI anemia guidelines. Semin. Dial. 21, 217–220 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. A. Atkinson and S. L. Furth contributed equally to discussion of content for the article, researching data to include in the manuscript and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Meredith A. Atkinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, M., Furth, S. Anemia in children with chronic kidney disease. Nat Rev Nephrol 7, 635–641 (2011). https://doi.org/10.1038/nrneph.2011.115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing