Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Noninvasive imaging for assessment of calcification in chronic kidney disease

Abstract

Vascular calcification is highly prevalent in patients with chronic kidney disease and has a progressive course. Several cardiovascular and uremia-related risk factors, such as abnormalities in mineral metabolism, contribute to the development of vascular calcification, although the pathophysiological mechanisms are still unclear. The presence and extent of vascular calcification is associated with an increased risk of cardiovascular events and mortality. By contrast, patients who do not have calcification seem to have a good prognosis, with minimal or no calcification progression over an extended period of time. A number of noninvasive imaging methods are available to detect vascular calcification and may help clinicians to make therapeutic decisions. Cardiac CT remains the reference standard to detect and quantify coronary artery, aortic and cardiac valve calcification. However, the high cost of equipment, the inability to perform in-office testing and the expertise required limit its use on a routine basis. Other imaging methods, such as planar X-ray, ultrasound and echocardiography, are appropriate alternatives to evaluate vascular and valvular calcification. In this Review, we discuss the noninvasive imaging methods most frequently used to assess vascular and valvular calcification, with their advantages and limitations.

Key Points

  • The prevalence of vascular calcification increases with worsening renal function and is common in patients with advanced stages of chronic kidney disease (CKD), especially in patients with stage 5D CKD

  • Both traditional cardiovascular risk factors and uremia-related risk factors, such as abnormalities in mineral metabolism, inflammation and oxidative stress, are involved in the development of vascular calcification

  • The presence and extent of vascular calcification is predictive of cardiovascular morbidity and mortality in patients on dialysis, but its role in the early stages of CKD remains unclear

  • Cardiac CT techniques (electron beam CT and multislice CT) are the reference standards for the quantification of coronary artery, aortic and valvular calcification

  • Absence of calcification at screening is usually followed by a prolonged period of time with no or minimal progression of calcification and is associated with a good prognosis

  • Planar X-ray, vascular ultrasound and echocardiography are useful tools for screening for cardiovascular calcification, and calcification detected using these tools has been associated with an adverse prognosis

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multislice CT image of the chest of a patient receiving hemodialysis.
Figure 2: Axial multislice CT image of the heart from the patient in Figure 1.
Figure 3: Lateral lumbar X-ray from a patient undergoing hemodialysis.
Figure 4: 2D ultrasound of the left carotid artery of a patient on hemodialysis.
Figure 5: Echocardiogram of the heart in the parasternal long-axis view.
Figure 6: Example of cardiac MRI to measure aortic PWV.
Figure 7: Example of PWV measured by tonometry.

Similar content being viewed by others

References

  1. U. S. Renal Data System. 2008 USRDS Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States [online], (2009).

  2. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 9, S16–S23 (1998).

    CAS  PubMed  Google Scholar 

  3. de Jager, D. J. et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302, 1782–1789 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Chronic kidney disease and the risk of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    CAS  PubMed  Google Scholar 

  5. Muntner, P., He, J., Astor, B. C., Folsom, A. R. & Coresh, J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the Atherosclerosis Risk in Communities study. J. Am. Soc. Nephrol. 16, 529–538 (2005).

    Article  PubMed  Google Scholar 

  6. Weiner, D. E. et al. Cardiovascular outcomes and all-cause mortality: exploring the interaction between CKD and cardiovascular disease. Am. J. Kidney Dis. 48, 392–401 (2006).

    Article  PubMed  Google Scholar 

  7. Herzog, C. A., Mangrum, J. M. & Passman, R. Sudden cardiac death and dialysis patients. Semin. Dial. 21, 300–307 (2008).

    Article  PubMed  Google Scholar 

  8. Ritz, E. & Wanner, C. The challenge of sudden death in dialysis patients. Clin. J. Am. Soc. Nephrol. 3, 920–929 (2008).

    Article  PubMed  Google Scholar 

  9. Glassock, R. J., Pecoits-Filho, R. & Barberato, S. H. Left ventricular mass in chronic kidney disease and ESRD. Clin. J. Am. Soc. Nephrol. 4, S79–S91 (2009).

    Article  PubMed  Google Scholar 

  10. London, G. M. et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 18, 1731–1740 (2003).

    Article  PubMed  Google Scholar 

  11. Okuno, S. et al. Presence of abdominal aortic calcification is significantly associated with all-cause and cardiovascular mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 49, 417–425 (2007).

    Article  PubMed  Google Scholar 

  12. Adragao, T. et al. A simple vascular calcification score predicts cardiovascular risk in haemodialysis patients. Nephrol. Dial. Transplant. 19, 1480–1488 (2004).

    Article  PubMed  Google Scholar 

  13. Matsuoka, M. et al. Impact of high coronary artery calcification score (CACS) on survival in patients on chronic hemodialysis. Clin. Exp. Nephrol. 8, 54–58 (2004).

    Article  PubMed  Google Scholar 

  14. Goodman, W. G. et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N. Engl. J. Med. 342, 1478–1483 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Sigrist, M. K., Taal, M. W., Bungay, P. & McIntyre, C. W. Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2, 1241–1248 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Giachelli, C. M. Vascular calcification mechanisms. J. Am. Soc. Nephrol. 15, 2959–2964 (2004).

    Article  PubMed  Google Scholar 

  17. Shroff, R. C. et al. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J. Am. Soc. Nephrol. 21, 103–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neven, E. et al. Chondrocyte rather than osteoblast conversion of vascular cells underlies medial calcification in uremic rats. Arterioscler. Thromb. Vasc. Biol. 30, 1741–1750 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, J., Butcher, M., Zeadin, M., Politano, A. & Shaughnessy, S. G. Oxidized low-density lipoprotein promotes osteoblast differentiation in primary cultures of vascular smooth muscle cells by up-regulating Osterix expression in an Msx2-dependent manner. J. Cell. Biochem. 112, 581–588 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Mizobuchi, M. et al. Up-regulation of Cbfa 1 and Pit-1 in calcified artery of uraemic rats with severe hyperphosphataemia and secondary hyperparathyroidism. Nephrol. Dial. Transplant. 21, 911–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Byon, C. H. et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J. Biol. Chem. 283, 15319–15327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moe, S. M., Duan, D., Doehle, B. P., O'Neill, K. D. & Chen, N. X. Uremia induces the osteoblast differentiation factor Cbfa 1 in human blood vessels. Kidney Int. 63, 1003–1011 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Mizobuchi, M., Towler, D. & Slatopolsky, E. Vascular calcification: the killer of patients with chronic kidney disease. J. Am. Soc. Nephrol. 20, 1453–1464 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Schlieper, G. et al. Ultrastructural analysis of vascular calcifications in uremia. J. Am. Soc. Nephrol. 21, 689–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Westenfeld, R. et al. Fetuin-A protects against atherosclerotic calcification in CKD. J. Am. Soc. Nephrol. 20, 1264–1274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moe, S. M. & Chen, N. X. Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 19, 213–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Giachelli, C. M. The emerging role of phosphate in vascular calcification. Kidney Int. 75, 890–897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakamura, S. et al. Coronary calcification in patients with chronic kidney disease and coronary artery disease. Clin. J. Am. Soc. Nephrol. 4, 1892–1900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gross, M. L. et al. Calcification of coronary intima and media: immunohistochemistry, backscatter imaging, and X-ray analysis in renal and nonrenal patients. Clin. J. Am. Soc. Nephrol. 2, 121–134 (2007).

    Article  PubMed  Google Scholar 

  31. Schwarz, U. et al. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol. Dial. Transplant. 15, 218–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Chertow, G. M., Burke, S. K. & Raggi, P. for the Treat to Goal Working Group. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 62, 245–252 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Sigrist, M., Bungay, P., Taal, M. W. & McIntyre, C. W. Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol. Dial. Transplant. 21, 707–714 (2006).

    Article  PubMed  Google Scholar 

  34. Garland, J. S. et al. Prevalence and association of coronary artery calcification in patients with stages 3 to 5 CKD without cardiovascular disease. Am. J. Kidney Dis. 52, 849–858 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Adeney, K. L. et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J. Am. Soc. Nephrol. 20, 381–387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Russo, D., Palmiero, G., De Blasio, A. P., Balletta, M. M. & Andreucci, V. E. Coronary artery calcification in patients with CRF not undergoing dialysis. Am. J. Kidney Dis. 44, 1024–1030 (2004).

    Article  PubMed  Google Scholar 

  37. Braun, J. et al. Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am. J. Kidney Dis. 27, 394–401 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Oh, J. et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106, 100–105 (2002).

    Article  PubMed  Google Scholar 

  39. Lilien, M. R. & Groothoff, J. W. Cardiovascular disease in children with CKD or ESRD. Nat. Rev. Nephrol. 5, 229–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Wilson, A. C. & Mitsnefes, M. M. Cardiovascular disease in CKD in children: update on risk factors, risk assessment, and management. Am. J. Kidney Dis. 54, 345–360 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Coll, B. et al. Large artery calcification on dialysis patients is located in the intima and related to atherosclerosis. Clin. J. Am. Soc. Nephrol. 6, 303–310 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yoshida, H. et al. Difference in coronary artery intima and media calcification in autopsied patients with chronic kidney disease. Clin. Nephrol. 75, 1–7 (2011).

    CAS  PubMed  Google Scholar 

  43. Russo, D. et al. Progression of coronary artery calcification in predialysis patients. Am. J. Nephrol. 27, 152–158 (2007).

    Article  PubMed  Google Scholar 

  44. Stompór, T. P. et al. Trends and dynamics of changes in calcification score over the 1-year observation period in patients on peritoneal dialysis. Am. J. Kidney Dis. 44, 517–528 (2004).

    Article  PubMed  Google Scholar 

  45. Tamashiro, M. et al. Significant association between the progression of coronary artery calcification and dyslipidemia in patients on chronic hemodialysis. Am. J. Kidney Dis. 38, 64–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Bellasi, A. et al. How long is the warranty period for nil or low coronary artery calcium in patients new to hemodialysis? J. Nephrol. 22, 255–262 (2009).

    CAS  PubMed  Google Scholar 

  47. Block, G. A. et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 68, 1815–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Eller, P. et al. Impact of ENPP1 genotype on arterial calcification in patients with end-stage renal failure. Nephrol. Dial. Transplant. 23, 321–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Newman, A. B. et al. Coronary artery calcium, carotid artery wall thickness, and cardiovascular disease outcomes in adults 70 to 99 years old. Am. J. Cardiol. 101, 186–192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Folsom, A. R. et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch. Intern. Med. 168, 1333–1339 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Budoff, M. J. et al. Progression of coronary artery calcium predicts all-cause mortality. JACC Cardiovasc. Imaging 3, 1229–1236 (2010).

    Article  PubMed  Google Scholar 

  52. Raggi, P. et al. Coronary artery calcium to predict all-cause mortality in elderly men and women. J. Am. Coll. Cardiol. 52, 17–23 (2008).

    Article  PubMed  Google Scholar 

  53. Santos, R. D. et al. Thoracic aorta calcification detected by electron beam tomography predicts all-cause mortality. Atherosclerosis 209, 131–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Iribarren, C., Sidney, S., Sternfeld, B. & Browner, W. S. Calcification of the aortic arch: risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA 283, 2810–2815 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Iijima, K. et al. Aortic arch calcification detectable on chest X-ray is a strong independent predictor of cardiovascular events beyond traditional risk factors. Atherosclerosis 210, 137–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Wong, N. D. et al. Thoracic aortic calcium versus coronary artery calcium for the prediction of coronary heart disease and cardiovascular disease events. JACC Cardiovasc. Imaging 2, 319–326 (2009).

    Article  PubMed  Google Scholar 

  57. Jacobs, P. C. et al. Comparing coronary artery calcium and thoracic aorta calcium for prediction of all-cause mortality and cardiovascular events on low-dose non-gated computed tomography in a high-risk population of heavy smokers. Atherosclerosis 209, 455–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Adragão, T. et al. A plain X-ray vascular calcification score is associated with arterial stiffness and mortality in dialysis patients. Nephrol. Dial. Transplant. 24, 997–1002 (2009).

    Article  PubMed  Google Scholar 

  59. Block, G. A., Raggi, P., Bellasi, A., Kooienga, L. & Spiegel, D. M. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 71, 438–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Blacher, J., Guerin, A. P., Pannier, B., Marchais, S. J. & London, G. M. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage kidney disease. Hypertension 38, 938–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, A. Y. et al. Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: a prospective study. J. Am. Soc. Nephrol. 14, 159–168 (2003).

    Article  PubMed  Google Scholar 

  62. Watanabe, R., Lemos, M. M., Manfredi, S. R., Draibe, S. A. & Canziani, M. E. Impact of cardiovascular calcification in nondialyzed patients after 24 months of follow-up. Clin. J. Am. Soc. Nephrol. 5, 189–194 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hanada, S. et al. Assessment and significance of abdominal aortic calcification in chronic kidney disease. Nephrol. Dial. Transplant. 25, 1888–1895 (2010).

    Article  PubMed  Google Scholar 

  64. Chiu, Y. W. et al. Prevalence and prognostic significance of renal artery calcification in patients with diabetes and proteinuria. Clin. J. Am. Soc. Nephrol. 5, 2093–2100 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Becker, C. R., Schoepf, U. J. & Reiser, M. F. Methods for quantification of coronary artery calcifications with electron beam and conventional CT and pushing the spiral CT envelope: new cardiac applications. Int. J. Cardiovasc. Imaging 17, 203–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Detrano, R. C. et al. Coronary calcium measurements: effect of CT scanner type and calcium measure on rescan reproducibility—MESA study. Radiology 236, 477–484 (2005).

    Article  PubMed  Google Scholar 

  67. Stanford, W., Thompson, B. H., Burns, T. L., Heery, S. D. & Burr, M. C. Coronary artery calcium quantification at multi-detector row helical CT versus electron-beam CT. Radiology 230, 397–402 (2004).

    Article  PubMed  Google Scholar 

  68. Hurlock, G. S., Higashino, H. & Mochizuki, T. History of cardiac computed tomography: single to 320-detector row multislice computed tomography. Int. J. Cardiovasc. Imaging 25 (Suppl. 1), 31–42 (2009).

    Article  PubMed  Google Scholar 

  69. Agatston, A. S. et al. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15, 827–832 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Callister, T. Q. et al. Coronary artery disease: improved reproducibility of calcium scoring with an electron-bean CT volumetric method. Radiology 208, 807–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Rumberger, J. A. & Kaufman, L. A rosetta stone for coronary calcium risk stratification: Agatston, volume, and mass scores in 11,490 individuals. AJR Am. J. Roentgenol. 181, 743–748 (2003).

    Article  PubMed  Google Scholar 

  72. Rosen, B. D. et al. Relationship between baseline coronary calcium score and demonstration of coronary artery stenoses during follow-up. JACC Cardiovasc. Imaging 2, 1175–1183 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Haydar, A. A. et al. Coronary artery calcification is related to coronary atherosclerosis in chronic renal disease patients: a study comparing EBCT-generated coronary artery calcium scores and coronary angiography. Nephrol. Dial. Transplant. 19, 2307–2312 (2004).

    Article  PubMed  Google Scholar 

  74. Sharples, E. J. et al. Coronary artery calcification measured with electron-beam computerized tomography correlates poorly with coronary artery angiography in dialysis patients. Am. J. Kidney Dis. 43, 313–319 (2004).

    Article  PubMed  Google Scholar 

  75. Raggi, P. et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101, 850–855 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Arad, Y., Spadaro, L. A., Goodman, K., Newstein, D. & Guerci, A. D. Prediction of coronary events with electron beam computed tomography. J. Am. Coll. Cardiol. 36, 1253–1260 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Detrano, R. et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1336–1345 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Budoff, M. J. et al. Cardiovascular events with absent or minimal coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Am. Heart J. 158, 554–561 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Budoff, M. J. et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J. Am. Coll. Cardiol. 49, 1860–1870 (2007).

    Article  PubMed  Google Scholar 

  80. Greenland, P., LaBree, L., Azen, S. P., Doherty, T. M. & Detrano, R. C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291, 210–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Elias-Smale, S. E. et al. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J. Am. Coll. Cardiol. 56, 1407–1414 (2010).

    Article  PubMed  Google Scholar 

  82. Shareghi, S. et al. Prognostic significance of zero coronary calcium score on cardiac computed tomography. J. Cardiovasc. Comput. Tomogr. 1, 155–159 (2007).

    Article  PubMed  Google Scholar 

  83. Blaha, M. et al. Absence of coronary artery calcification and all-cause mortality. JACC Cardiovasc. Imaging 2, 692–700 (2009).

    Article  PubMed  Google Scholar 

  84. Kramer, H., Toto, R., Peshock, R., Cooper, R. & Victor, R. Association between chronic kidney disease and coronary artery calcification: the Dallas Heart Study. J. Am. Soc. Nephrol. 16, 507–513 (2005).

    Article  PubMed  Google Scholar 

  85. Moe, S. M. et al. Assessment of vascular calcification in ESRD patients using spiral CT. Nephrol. Dial. Transplant. 18, 1152–1158 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Shantouf, R. S. et al. Total and individual coronary artery calcium scores as independent predictors of mortality in hemodialysis patients. Am. J. Nephrol. 31, 419–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ohtake, T. et al. Impact of coronary artery calcification in hemodialysis patients: risk factors and association with prognosis. Hemodial. Int. 14, 218–225 (2010).

    Article  PubMed  Google Scholar 

  88. Taniwaki, H. et al. Aortic calcification in haemodialysis patients with diabetes mellitus. Nephrol. Dial. Transplant. 20, 2472–2478 (2005).

    Article  PubMed  Google Scholar 

  89. Temmar, M. et al. Pulse wave velocity and vascular calcification at different stages of chronic kidney disease. J. Hypertens. 28, 163–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Spiegel, D. M. et al. Coronary and aortic calcifications in patients new to dialysis. Hemodial. Int. 8, 265–272 (2004).

    Article  PubMed  Google Scholar 

  91. Eisen, A. et al. Calcification of the thoracic aorta as detected by spiral computed tomography among stable angina pectoris patients: association with cardiovascular events and death. Circulation 118, 1328–1334 (2008).

    Article  PubMed  Google Scholar 

  92. DeLoach, S. S., Joffe, M. M., Mai, X., Goral, S. & Rosas, S. E. Aortic calcification predicts cardiovascular events and all-cause mortality in renal transplantation. Nephrol. Dial. Transplant. 24, 1314–1319 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Raggi, P. et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J. Am. Coll. Cardiol. 39, 695–701 (2002).

    Article  PubMed  Google Scholar 

  94. Raggi, P., Bommer, J. & Chertow, G. M. Valvular calcification in hemodialysis patients randomized to calcium-based phosphorus binders or sevelamer. J. Heart Valve Dis. 13, 134–141 (2004).

    PubMed  Google Scholar 

  95. Raggi, P. et al. All-cause mortality in hemodialysis patients with heart valve calcification. Clin. J. Am. Soc. Nephrol. doi:10.2215/CJN.01140211.

  96. Qunibi, W. et al. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am. J. Kidney Dis. 51, 952–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Barreto, D. V. et al. Phosphate binder impact on bone remodeling and coronary calcification—results from the BRiC study. Nephron Clin. Pract. 110, c273–c283 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Raggi, P. et al. for the ADVANCE Study Group. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol. Dial. Transplant. 26, 1327–1339 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Bellasi, A. et al. Correlation of simple imaging tests and coronary artery calcium measured by computed tomography in hemodialysis patients. Kidney Int. 70, 1623–1628 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Russo, D. et al. Pulse pressure and presence of coronary artery calcification. Clin. J. Am. Soc. Nephrol. 4, 316–322 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Raggi, P. et al. Association of pulse wave velocity with vascular and valvular calcification in hemodialysis patients. Kidney Int. 71, 802–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Stompór, T. et al. Coronary artery calcification, common carotid artery intima-media thickness and aortic pulse wave velocity in patients on peritoneal dialysis. Int. J. Artif. Organs 29, 736–744 (2006).

    Article  PubMed  Google Scholar 

  103. Kauppila, L. I. et al. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132, 245–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Wilson, P. W. et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation 103, 1529–1534 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Walsh, C. R. et al. Abdominal aortic calcific deposits are associated with increased risk for congestive heart failure: the Framingham Heart Study. Am. Heart J. 144, 733–739 (2002).

    Article  PubMed  Google Scholar 

  106. Verbeke, F. et al. for the CORD Study Investigators. Prognostic value of aortic stiffness and calcification for cardiovascular events and mortality in dialysis patients: outcome of the Calcification Outcome in Renal Disease (CORD) study. Clin. J. Am. Soc. Nephrol. 6, 153–159 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ogawa, T. et al. Simple evaluation of aortic arch calcification by chest radiography in hemodialysis patients. Hemodial. Int. 13, 301–306 (2009).

    Article  PubMed  Google Scholar 

  108. Hashimoto, H. et al. Validity and usefulness of aortic arch calcification in chest X-ray. J. Atheroscler. Thromb. 16, 256–264 (2009).

    Article  PubMed  Google Scholar 

  109. Ogawa, T. et al. Progression of aortic arch calcification and all-cause and cardiovascular mortality in chronic hemodialysis patients. Int. Urol. Nephrol. 42, 187–194 (2010).

    Article  PubMed  Google Scholar 

  110. Izumi, M. et al. Switching from calcium carbonate to sevelamer hydrochloride has suppressive effects on the progression of aortic calcification in hemodialysis patients: assessment using plain chest X-ray films. Ren. Fail. 30, 952–958 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Guérin, A. P., London, G. M., Marchais, S. J. & Metivier, F. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol. Dial. Transplant. 15, 1014–1021 (2000).

    Article  PubMed  Google Scholar 

  112. Simon, A., Megnien, J. L. & Chironi, G. The value of carotid intima-media thickness for predicting cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 30, 182–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Finn, A. V., Kolodgie, F. D. & Virmani, R. Correlation between carotid intimal/medial thickness and atherosclerosis: a point of view from pathology. Arterioscler. Thromb. Vasc. Biol. 30, 177–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Hurst, R. T., Ng, D. W., Kendall, C. & Khandheria, B. Clinical use of carotid intima-media thickness: review of the literature. J. Am. Soc. Echocardiogr. 20, 907–914 (2007).

    Article  PubMed  Google Scholar 

  115. Kawamoto, R., Ohtsuka, N., Kusunoki, T. & Yorimitsu, N. An association between the estimated glomerular filtration rate and carotid atherosclerosis. Intern. Med. 47, 391–398 (2008).

    Article  PubMed  Google Scholar 

  116. Lorenz, M. W., von Kegler, S., Steinmetz, H., Markus, H. S. & Sitzer, M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke 37, 87–92 (2006).

    Article  PubMed  Google Scholar 

  117. Benedetto, F. A., Mallamaci, F., Tripepi, G. & Zoccali, C. Prognostic value of ultrasonographic measurement of carotid intima media thickness in dialysis patients. J. Am. Soc. Nephrol. 12, 2458–2464 (2001).

    CAS  PubMed  Google Scholar 

  118. Kato, A., Takita, T., Maruyama, Y., Kumagai, H. & Hishida, A. Impact of carotid atherosclerosis on long-term mortality in chronic hemodialysis patients. Kidney Int. 64, 1472–1479 (2003).

    Article  PubMed  Google Scholar 

  119. Ekart, R., Hojs, R., Hojs-Fabjan, T. & Balon, B. P. Predictive value of carotid intima media thickness in hemodialysis patients. Artif. Organs 29, 615–619 (2005).

    Article  PubMed  Google Scholar 

  120. Benedetto, F. A., Tripepi, G., Mallamaci, F. & Zoccali, C. Rate of atherosclerotic plaque formation predicts cardiovascular events in ESRD. J. Am. Soc. Nephrol. 19, 757–763 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Szeto, C. C. et al. Carotid intima media thickness predicts cardiovascular diseases in Chinese predialysis patients with chronic kidney disease. J. Am. Soc. Nephrol. 18, 1966–1972 (2007).

    Article  PubMed  Google Scholar 

  122. Zoungas, S. et al. Association of carotid intima-medial thickness and indices of arterial stiffness with cardiovascular disease outcomes in CKD. Am. J. Kidney Dis. 50, 622–630 (2007).

    Article  PubMed  Google Scholar 

  123. Ribeiro, S. et al. Cardiac valve calcification in haemodialysis patients: role of calcium-phosphate metabolism. Nephrol. Dial. Transplant. 13, 2037–2040 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, A. Y. et al. Association of inflammation and malnutrition with cardiac valve calcification in continuous ambulatory peritoneal dialysis patients. J. Am. Soc. Nephrol. 12, 1927–1936 (2001).

    CAS  PubMed  Google Scholar 

  125. Stewart, G. A. et al. Echocardiography overestimates left ventricular mass in hemodialysis patients relative to magnetic resonance imaging. Kidney Int. 56, 2248–2253 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Zimmerli, L. U. et al. Vascular function in patients with end-stage renal disease and/or coronary artery disease: a cardiac magnetic resonance imaging study. Kidney Int. 71, 68–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Grotenhuis, H. B. et al. Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J. Magn. Reson. Imaging 30, 521–526 (2009).

    Article  PubMed  Google Scholar 

  128. Mark, P. B. et al. Vascular function assessed with cardiovascular magnetic resonance predicts survival in patients with advanced chronic kidney disease. J. Cardiovasc. Magn. Reson. 10, 39 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Townsend, R. R. et al. Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am. J. Hypertens. 23, 282–289 (2010).

    Article  PubMed  Google Scholar 

  130. Sengstock, D. et al. Dominance of traditional cardiovascular risk factors over renal function in predicting arterial stiffness in subjects with chronic kidney disease. Nephrol. Dial. Transplant. 25, 853–861 (2010).

    Article  PubMed  Google Scholar 

  131. Lee, H. Y. & Oh, B. H. Aging and arterial stiffness. Circ. J. 74, 2257–2262 (2010).

    Article  PubMed  Google Scholar 

  132. Rogers, W. J. et al. Age-associated changes in regional aortic pulse wave velocity. J. Am. Coll. Cardiol. 38, 1123–1129 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Lemos, M. M. et al. Pulse wave velocity—a useful tool for cardiovascular surveillance in pre-dialysis patients. Nephrol. Dial. Transplant. 22, 3527–3532 (2007).

    Article  PubMed  Google Scholar 

  134. Haydar, A. A., Covic, A., Colhoun, H., Rubens, M. & Goldsmith, D. J. Coronary artery calcification and aortic pulse wave velocity in chronic kidney disease patients. Kidney Int. 65, 1790–1794 (2004).

    Article  PubMed  Google Scholar 

  135. Blacher, J. et al. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 99, 2434–2439 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Edwards, N. C., Steeds, R. P., Stewart, P. M., Ferro, C. J. & Townend, J. N. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J. Am. Coll. Cardiol. 54, 505–512 (2009).

    CAS  PubMed  Google Scholar 

  137. Guerin, A. P. et al. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation 103, 987–992 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 113, S1–S130 (2009).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to discussion of content for the article. C. Karohl and P. Raggi researched data to include in the manuscript, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Paolo Raggi.

Ethics declarations

Competing interests

P. Raggi has received research grants from Amgen and Genzyme Therapeutics. C. Karohl and L. D'Marco Gascón declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karohl, C., D'Marco Gascón, L. & Raggi, P. Noninvasive imaging for assessment of calcification in chronic kidney disease. Nat Rev Nephrol 7, 567–577 (2011). https://doi.org/10.1038/nrneph.2011.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing