Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Why kidneys fail in autosomal dominant polycystic kidney disease

Abstract

The weight of evidence gathered from studies in humans with hereditary polycystic kidney disease (PKD)1 and PKD2 disorders, as well as from experimental animal models, indicates that cysts are primarily responsible for the decline in glomerular filtration rate that occurs fairly late in the course of the disease. The processes underlying this decline include anatomic disruption of glomerular filtration and urinary concentration mechanisms on a massive scale, coupled with compression and obstruction by cysts of adjacent nephrons in the cortex, medulla and papilla. Cysts prevent the drainage of urine from upstream tributaries, which leads to tubule atrophy and loss of functioning kidney parenchyma by mechanisms similar to those found in ureteral obstruction. Cyst-derived chemokines, cytokines and growth factors result in a progression to fibrosis that is comparable with the development of other progressive end-stage renal diseases. Treatment of renal cystic disorders early enough to prevent or reduce cyst formation or slow cyst growth, before the secondary changes become widespread, is a reasonable strategy to prolong the useful function of kidneys in patients with autosomal dominant polycystic kidney disease.

Key Points

  • In patients with autosomal dominant polycystic kidney disease (ADPKD), cysts develop in a minority of cortical and medullary tubules, enlarge exponentially and compress adjacent normal parenchyma

  • Individual expanding cysts displace normal tubules, blood vessels and lymphatics, obstruct their flow and promote apoptosis, atrophy and fibrosis of functioning parenchyma

  • Owing to dichotomous branching of the ureteric bud, cysts forming in medullary collecting ducts will probably impair the function of more upstream nephrons than cysts developing in the cortex

  • Despite the pernicious loss of functioning nephrons, glomerular filtration rate (GFR) does not decline until fairly late in the course of ADPKD, probably because of compensatory hyperfiltration in surviving nephrons

  • In the third to fourth decades of life, spreading nephron obstruction, together with interstitial inflammation and fibrosis, widens the devastation of residual parenchyma, promoting the inexorable loss of renal function

  • Potential therapies that target cyst growth mechanisms and are initiated early in the disease course (stage 1 chronic kidney disease) will probably be more effective than treatments starting after GFR has declined

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: End-stage polycystic kidneys.
Figure 2: Schematic illustration of the early stages of cyst formation and enlargement.
Figure 3: Early stage cyst formation.
Figure 4: Effect of removing AVP on the development and growth of cysts in Pkhd1 rats (autosomal recessive polycystic kidney disease ortholog).
Figure 5: Evidence of tubule obstruction by cysts.
Figure 6: Topography of renal cyst formation in ADPKD.
Figure 7: How cysts decrease GFR.

Similar content being viewed by others

References

  1. Hildebrandt, F., Attanasio, M. & Otto, E. Nephronophthisis: disease mechanisms of a ciliopathy. J. Am. Soc. Nephrol. 20, 23–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Harris, P. C. & Torres, V. E. Polycystic kidney disease. Annu. Rev. Med. 60, 321–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grantham, J. J., Geiser, J. L. & Evan, A. P. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 31, 1145–1152 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Cuppage, F. E., Huseman, R. A., Chapman, A. & Grantham, J. J. Ultrastructure and function of cysts from human adult polycystic kidneys. Kidney Int. 17, 372–381 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Carone, F. A., Bacallao, R. & Kanwar, Y. S. The pathogenesis of polycystic kidney disease. Histol. Histopathol. 10, 213–221 (1995).

    CAS  PubMed  Google Scholar 

  6. Ishikawa, I. et al. Long-term natural history of acquired cystic disease of the kidney. Ther. Apher. Dial. 14, 409–416 (2010).

    Article  PubMed  Google Scholar 

  7. Grantham, J. J. Acquired cystic kidney disease. Kidney Int. 40, 143–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Dalgaard, O. Z. Bilateral polycystic disease of the kidneys; a follow-up of two hundred and eighty-four patients and their families. Acta Med. Scand. Suppl. 328, 1–255 (1957).

    CAS  PubMed  Google Scholar 

  9. Grantham, J. J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 359, 1477–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Franz, K. A. & Reubi, F. C. Rate of functional deterioration in polycystic kidney disease. Kidney Int. 23, 526–529 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Gabow, P. A. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329, 332–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Gabow, P. A. et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 41, 1311–1319 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Welling, L. W. & Grantham, J. J. in Renal Pathology: with Clinical and Functional Correlations Vol. 2 (eds Tisher, C. C. & Brenner, B. M.) 1323–1354 (J. B. Lippencott, Philadelphia, 1994).

    Google Scholar 

  14. Zeier, M. et al. Renal histology in polycystic kidney disease with incipient and advanced renal failure. Kidney Int. 42, 1259–1265 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Meijer, E. et al. Early renal abnormalities in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1091–1098 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gabow, P. A. et al. The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney Int. 35, 675–680 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Chapman, A. B., Johnson, A. M., Gabow, P. A. & Schrier, R. W. Overt proteinuria and microalbuminuria in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 5, 1349–1354 (1994).

    CAS  PubMed  Google Scholar 

  18. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Kistler, A. D. et al. Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. Kidney Int. 75, 235–241 (2009).

    Article  PubMed  Google Scholar 

  20. Sise, C. et al. Volumetric determination of progression in autosomal dominant polycystic kidney disease by computed tomography. Kidney Int. 58, 2492–2501 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. King, B. F., Reed, J. E., Bergstralh, E. J., Sheedy, P. F. 2nd & Torres, V. E. Quantification and longitudinal trends of kidney, renal cyst, and renal parenchyma volumes in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 11, 1505–1511 (2000).

    CAS  PubMed  Google Scholar 

  22. Antiga, L. et al. Computed tomography evaluation of autosomal dominant polycystic kidney disease progression: a progress report. Clin. J. Am. Soc. Nephrol. 1, 754–760 (2006).

    Article  PubMed  Google Scholar 

  23. Klahr, S. et al. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. J. Am. Soc. Nephrol. 5, 2037–2047 (1995).

    CAS  PubMed  Google Scholar 

  24. Welling, L. W. & Grantham, J. J. Physical properties of isolated perfused renal tubules and tubular basement membranes. J. Clin. Invest. 51, 1063–1075 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Madsen, K. M. & Brenner, B. M. in Anthology of the Kidney Vol. 1 (eds Tisher, C. C. & Brenner, B. M.) 661–698 (J. B. Lippencott, Philadelphia, 1994).

    Google Scholar 

  26. Taal, M. W. & Brenner, B. M. in Brenner & Rector's The Kidney Vol. 1 (ed. Brenner, B. M.) 783–819 (Saunders, Philadelphia, 2008).

    Google Scholar 

  27. Bae, K. T. & Grantham, J. J. Imaging for the prognosis of autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 6, 96–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Muskhelishvili, L., Latendresse, J. R., Kodell, R. L. & Henderson, E. B. Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. J. Histochem. Cytochem. 51, 1681–1688 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Happé, H. et al. Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Hum. Mol. Genet. 18, 2532–2542 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Chang, M. Y. et al. Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models. Nephrol. Dial. Transplant. 21, 2078–2084 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Grantham, J. J. 1992 Homer Smith Award. Fluid secretion, cellular proliferation, and the pathogenesis of renal epithelial cysts. J. Am. Soc. Nephrol. 3, 1841–1857 (1993).

    CAS  PubMed  Google Scholar 

  32. Gardner, K. D. Jr. Composition of fluid in twelve cysts of a polycystic kidney. N. Engl. J. Med. 281, 985–988 (1969).

    Article  CAS  PubMed  Google Scholar 

  33. Huseman, R., Grady, A., Welling, D. & Grantham, J. Macropuncture study of polycystic disease in adult human kidneys. Kidney Int. 18, 375–385 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. Verani, R. R. & Silva, F. G. Histogenesis of the renal cysts in adult (autosomal dominant) polycystic kidney disease: a histochemical study. Mod. Pathol. 1, 457–463 (1988).

    CAS  PubMed  Google Scholar 

  35. Sullivan, L. P., Wallace, D. P. & Grantham, J. J. Epithelial transport in polycystic kidney disease. Physiol. Rev. 78, 1165–1191 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Wallace, D. P. Cyclic AMP-mediated cyst expansion. Biochim. Biophys. Acta doi:10.1016/j.bbadis.2010.11.005.

    Article  CAS  Google Scholar 

  37. Woo, D. Apoptosis and loss of renal tissue in polycystic kidney diseases. N. Engl. J. Med. 333, 18–25 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Nagao, S. et al. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J. Am. Soc. Nephrol. 17, 2220–2227 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Park, J. Y. et al. p21 is decreased in polycystic kidney disease and leads to increased epithelial cell cycle progression: roscovitine augments p21 levels. BMC Nephrol. 8, 12 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ibrahim, S. Increased apoptosis and proliferative capacity are early events in cyst formation in autosomal-dominant, polycystic kidney disease. ScientificWorldJournal 7, 1757–1767 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Goilav, B., Satlin, L. M. & Wilson, P. D. Pathways of apoptosis in human autosomal recessive and autosomal dominant polycystic kidney diseases. Pediatr. Nephrol. 23, 1473–1482 (2008).

    Article  PubMed  Google Scholar 

  42. Edelstein, C. L. Mammalian target of rapamycin and caspase inhibitors in polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1219–1226 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Goilav, B. Apoptosis in polycystic kidney disease. Biochim. Biophys. Acta doi:10.1016/j.bbadis.2011.01.006.

    Article  CAS  Google Scholar 

  44. Thomson, R. B. et al. Histopathological analysis of renal cystic epithelia in the Pkd2WS25/– mouse model of ADPKD. Am. J. Physiol. Renal Physiol. 285, F870–F880 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Brill, S. R. et al. Immunolocalization of ion transport proteins in human autosomal dominant polycystic kidney epithelial cells. Proc. Natl Acad. Sci. USA 93, 10206–10211 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davidow, C. J., Maser, R. L., Rome, L. A., Calvet, J. P. & Grantham, J. J. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int. 50, 208–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Belibi, F. A. et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 66, 964–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Gattone, V. H. 2nd, Maser, R. L., Tian, C., Rosenberg, J. M. & Branden, M. G. Developmental expression of urine concentration-associated genes and their altered expression in murine infantile-type polycystic kidney disease. Dev. Genet. 24, 309–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, X., Gattone, V. 2nd, Harris, P. C. & Torres, V. E. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J. Am. Soc. Nephrol. 16, 846–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, X., Wu, Y., Ward, C. J., Harris, P. C. & Torres, V. E. Vasopressin directly regulates cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 19, 102–108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reeders, S. T. et al. Prenatal diagnosis of autosomal dominant polycystic kidney disease with a DNA probe. Lancet 2, 6–8 (1986).

    Article  CAS  PubMed  Google Scholar 

  52. Bae, K. T. et al. MRI-based kidney volume measurements in ADPKD: reliability and effect of gadolinium enhancement. Clin. J. Am. Soc. Nephrol. 4, 719–725 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cadnapaphornchai, M. A., Masoumi, A., Strain, J. D., McFann, K. & Schrier, R. W. Magnetic resonance imaging of kidney and cyst volume in children with ADPKD. Clin. J. Am. Soc. Nephrol. 6, 369–376 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Grantham, J. J., Chapman, A. B. & Torres, V. E. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin. J. Am. Soc. Nephrol. 1, 148–157 (2006).

    Article  PubMed  Google Scholar 

  55. Grantham, J. J., Cook, L. T., Wetzel, L. H., Cadnapaphornchai, M. A. & Bae, K. T. Evidence of extraordinary growth in the progressive enlargement of renal cysts. Clin. J. Am. Soc. Nephrol. 5, 889–896 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Harris, P. C. et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 17, 3013–3019 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Grantham, J. J. & Levine, E. Acquired cystic disease: replacing one kidney disease with another. Kidney Int. 28, 99–105 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Chapman, A. B., Johnson, A., Gabow, P. A. & Schrier, R. W. The renin-angiotensin-aldosterone system and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 323, 1091–1096 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Chapman, A. B. et al. The HALT polycystic kidney disease trials: design and implementation. Clin. J. Am. Soc. Nephrol. 5, 102–109 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Seeman, T. et al. Blood pressure and renal function in autosomal dominant polycystic kidney disease. Pediatr. Nephrol. 11, 592–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Fick-Brosnahan, G. M., Tran, Z. V., Johnson, A. M., Strain, J. D. & Gabow, P. A. Progression of autosomal-dominant polycystic kidney disease in children. Kidney Int. 59, 1654–1662 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Evan, A. P., Gardner, K. D. Jr & Bernstein, J. Polypoid and papillary epithelial hyperplasia: a potential cause of ductal obstruction in adult polycystic disease. Kidney Int. 16, 743–750 (1979).

    Article  CAS  PubMed  Google Scholar 

  63. Clapp, W. L. & Tisher, C. C. in Renal Pathology with Clinical and Functional Correlations Vol. 1 (eds Tisher, C. C. & Brenner, B. M.) 67–89 (J. B. Lippencott, Philadelphia, 1989).

    Google Scholar 

  64. Torra, R. et al. Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J. Am. Soc. Nephrol. 7, 2142–2151 (1996).

    CAS  PubMed  Google Scholar 

  65. Hateboer, N. et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353, 103–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Torra, R. et al. Increased prevalence of polycystic kidney disease type 2 among elderly polycystic patients. Am. J. Kidney Dis. 36, 728–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Brown, J. H. et al. Missense mutation in sterile α motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. J. Am. Soc. Nephrol. 16, 3517–3526 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Tanner, G. A., Gretz, N., Connors, B. A., Evan, A. P. & Steinhausen, M. Role of obstruction in autosomal dominant polycystic kidney disease in rats. Kidney Int. 50, 873–886 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Tanner, G. A. & Evan, A. P. Glomerular and proximal tubular morphology after single nephron obstruction. Kidney Int. 36, 1050–1060 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Chevalier, R. L. Obstructive nephropathy: lessons from cystic kidney disease. Nephron 84, 6–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Chevalier, R. L., Forbes, M. S. & Thornhill, B. A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 75, 1145–1152 (2009).

    Article  PubMed  Google Scholar 

  72. Klahr, S. & Morrissey, J. Obstructive nephropathy and renal fibrosis: the role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int. Suppl. S105–S112 (2003).

  73. Chevalier, R. L., Thornhill, B. A., Forbes, M. S. & Kiley, S. C. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr. Nephrol. 25, 687–697 (2010).

    Article  PubMed  Google Scholar 

  74. Torres, V. E. et al. Synthesis of renin by tubulocystic epithelium in autosomal-dominant polycystic kidney disease. Kidney Int. 42, 364–373 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Torres, V. E. et al. Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2, 112–120 (2007).

    Article  PubMed  Google Scholar 

  76. Maser, R. L., Vassmer, D., Magenheimer, B. S. & Calvet, J. P. Oxidant stress and reduced antioxidant enzyme protection in polycystic kidney disease. J. Am. Soc. Nephrol. 13, 991–999 (2002).

    CAS  PubMed  Google Scholar 

  77. Menon, V. et al. Inflammation, oxidative stress, and insulin resistance in polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 7–13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Torres, V. E. Polycystic liver disease. Contrib. Nephrol. 115, 44–52 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Nagao, S. et al. Renal activation of extracellular signal-regulated kinase in rats with autosomal-dominant polycystic kidney disease. Kidney Int. 63, 427–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Schaefer, L. et al. Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han:SPRD rat. Kidney Int. 49, 75–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Gardner, K. D. Jr, Burnside, J. S., Elzinga, L. W. & Locksley, R. M. Cytokines in fluids from polycystic kidneys. Kidney Int. 39, 718–724 (1991).

    Article  PubMed  Google Scholar 

  82. Wallace, D. P. et al. Periostin induces proliferation of human autosomal dominant polycystic kidney cells through αV-integrin receptor. Am. J. Physiol. Renal Physiol. 295, F1463–F1471 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng, D. et al. Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 14, 2588–2595 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Meijer, E. et al. Association of urinary biomarkers with disease severity in patients with autosomal dominant polycystic kidney disease: a cross-sectional analysis. Am. J. Kidney Dis. 56, 883–895.

    Article  CAS  PubMed  Google Scholar 

  85. Cowley, B. D. Jr, Ricardo, S. D., Nagao, S. & Diamond, J. R. Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int. 60, 2087–2096 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Ishikawa, I. et al. Long-term natural history of acquired cystic disease of the kidney. Ther. Apher. Dial. 14, 409–416 (2010).

    Article  PubMed  Google Scholar 

  87. Shannon, M. B., Patton, B. L., Harvey, S. J. & Miner, J. H. A hypomorphic mutation in the mouse laminin α5 gene causes polycystic kidney disease. J. Am. Soc. Nephrol. 17, 1913–1922 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Mangos, S. et al. The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis. Model Mech. 3, 354–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Nishio, S. et al. Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J. Clin. Invest. 115, 910–918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang, S. T. et al. Defining a link with autosomal-dominant polycystic kidney disease in mice with congenitally low expression of Pkd1. Am. J. Pathol. 168, 205–220 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Thivierge, C. et al. Overexpression of PKD1 causes polycystic kidney disease. Mol. Cell Biol. 26, 1538–1548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Piontek, K., Menezes, L. F., Garcia-Gonzalez, M. A., Huso, D. L. & Germino, G. G. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med. 13, 1490–1495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Park, E. Y. et al. Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J. Biol. Chem. 284, 7214–7222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Raphael, K. L. et al. Inactivation of Pkd1 in principal cells causes a more severe cystic kidney disease than in intercalated cells. Kidney Int. 75, 626–633 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Hassane, S. et al. Elevated TGFβ-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J. Pathol. 222, 21–31 (2010).

    CAS  PubMed  Google Scholar 

  97. Boulter, C. et al. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc. Natl Acad. Sci. USA 98, 12174–12179 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baert, L. Hereditary polycystic kidney disease (adult form): a microdissection study of two cases at an early stage of the disease. Kidney Int. 13, 519–525 (1978).

    Article  CAS  PubMed  Google Scholar 

  99. Qian, F., Watnick, T. J., Onuchic, L. F. & Germino, G. G. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87, 979–987 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Gattone, V. H. 2nd & Grantham, J. J. Understanding human cystic disease through experimental models. Semin. Nephrol. 11, 617–631 (1991).

    CAS  PubMed  Google Scholar 

  101. Gattone, V. H. 2nd et al. Autosomal recessive polycystic kidney disease in a murine model. A gross and microscopic description. Lab. Invest. 59, 231–238 (1988).

    PubMed  Google Scholar 

  102. Lantinga-van Leeuwen, I. S. et al. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum. Mol. Genet. 16, 3188–3196 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Rankin, C. A., Grantham, J. J. & Calvet, J. P. C-fos expression is hypersensitive to serum-stimulation in cultured cystic kidney cells from the C57BL/6J-cpk mouse. J. Cell Physiol. 152, 578–586 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Takakura, A. et al. Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum. Mol. Genet. 18, 2523–2531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Patel, V. et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum. Mol. Genet. 17, 1578–1590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Boor, P., Ostendorf, T. & Floege, J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 6, 643–656 (2010).

    Article  PubMed  Google Scholar 

  107. Zeisberg, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 21, 1819–1834 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Meijer, E. et al. Therapeutic potential of vasopressin V2 receptor antagonist in a mouse model for autosomal dominant polycystic kidney disease: optimal timing and dosing of the drug. Nephrol. Dial. Transplant. 26, 2445–2453 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Grantham, J. J., Bennett, W. M. & Perrone, R. D. mTOR inhibitors and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 364, 286–287; author reply 287–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Braun, W. E. mTOR inhibitors and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 364, 287; author reply 287–288 (2011).

    CAS  PubMed  Google Scholar 

  113. Levey, A. S. & Stevens, L. A. mTOR inhibitors and autosomal dominant polycystic kidney disease. N. Engl. J. Med. 364, 287; author reply 287–289 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank James Calvet PhD, Robin Maser PhD and Darren Wallace PhD for helpful discussions and manuscript critique.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Jared J. Grantham.

Ethics declarations

Competing interests

J. J. Grantham has been a consultant for Otsuka Pharmaceutical Group. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grantham, J., Mulamalla, S. & Swenson-Fields, K. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 7, 556–566 (2011). https://doi.org/10.1038/nrneph.2011.109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.109

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer