Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelial activation and circulating markers of endothelial activation in kidney disease

Abstract

The recognition of a central role for the endothelium in the development of kidney disease or the development of vascular lesions in patients with established renal dysfunction has led to the emergence of methods to test different aspects of endothelium function, including in endothelium injury and repair. Endothelial-cell activation is associated with the shedding of components of the glycocalyx, adhesion molecules and endothelial microparticles into the circulation. This process may eventually result in the detachment of endothelial cells and recruitment of circulating myeloid and progenitor cells that are involved in vascular remodeling and repair. Circulating markers of endothelium activation may therefore represent novel markers of vessel wall injury. This Review describes the biology of these circulating markers of vessel wall injury, the methodologies used to measure them, and their possible relevance to patients with kidney disease.

Key Points

  • Endothelial-cell activation precedes and may stimulate the development of atherosclerotic lesions

  • The very specialized and variable phenotypes of the kidney endothelium contribute to its tendency to be a target organ in systemic disease

  • Activation of endothelial cells is accompanied by the formation and shedding of membrane microparticles and leukocyte adhesion molecules

  • Circulating CD146+ endothelial cells have been described in conditions that are associated with extensive endothelium injury

  • CD34+ progenitor cells are recruited to sites of endothelial injury and their kinetics can potentially be used as a biomarker of vascular injury

  • The clinical value of circulating markers of endothelial activation will depend on the development of standardized protocols for their measurement and insight into their quantitative relationship with clinical outcome

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The endothelium at a molecular level.
Figure 2: The process of endothelial-cell activation.
Figure 3: A scanning electron micrograph of CD34+ cells that were passed over tumor necrosis factor-stimulated endothelium.
Figure 4: The endothelial-cell repair processes orchestrated by circulating cells.

Similar content being viewed by others

References

  1. Deanfield, J. E., Halcox, J. P. & Rabelink, T. J. Endothelial function and dysfunction: testing and clinical relevance. Circulation 115, 1285–1295 (2007).

    Article  PubMed  Google Scholar 

  2. Csiszar, A. et al. Regulation of bone morphogenetic protein-2 expression in endothelial cells: role of nuclear factor-κB activation by tumor necrosis factor-α, H2O2, and high intravascular pressure. Circulation 111, 2364–2372 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Demer, L. L., Tintut, Y. & Parhami, F. Novel mechanisms in accelerated vascular calcification in renal disease patients. Curr. Opin. Nephrol. Hypertens. 11, 437–443 (2002).

    Article  PubMed  Google Scholar 

  4. Shao, J. S., Cheng, S. L., Sadhu, J. & Towler, D. A. Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55, 579–592 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Haraldsson, B., Nyström, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pannabecker, T. L. & Dantzler, W. H. Three-dimensional architecture of inner medullary vasa recta. Am. J. Physiol. Renal Physiol. 290, F1355–F1366 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Moffat, D. B. The fine structure of the blood vessels of the renal medulla with particular reference to the control of the medullary circulation. J. Ultrastruct. Res. 19, 532–545 (1967).

    Article  CAS  PubMed  Google Scholar 

  9. Nangaku, M. & Couser, W. G. Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin. Exp. Nephrol. 9, 183–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Okuda, T. et al. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem. 281, 10230–10235 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Govers, R. & Rabelink, T. J. Cellular regulation of endothelial nitric oxide synthase. Am. J. Physiol. Renal Physiol. 280, F193–F206 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Stamler, J. S., Lamas, S. & Fang, F. C. Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Rabelink, T. J. & Luscher, T. F. Endothelial nitric oxide synthase: host defense enzyme of the endothelium? Arterioscler. Thromb. Vasc. Biol. 26, 267–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Selemidis, S., Sobey, C. G., Wingler, K., Schmidt, H. H. & Drummond, G. R. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol. Ther. 120, 254–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Wever, R. M., van Dam, T., van Rijn, H. J., de Groot, F. & Rabelink, T. J. Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase. Biochem. Biophys. Res. Commun. 237, 340–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Werner, E. R., Gorren, A. C., Heller, R., Werner-Felmayer, G. & Mayer, B. Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Exp. Biol. Med. (Maywood) 228, 1291–1302 (2003).

    Article  CAS  Google Scholar 

  17. Chalupsky, K. & Cai, H. Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 102, 9056–9061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Crabtree, M. J., Tatham, A. L., Hale, A. B., Alp, N. J. & Channon, K. M. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J. Biol. Chem. 284, 28128–28136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ryter, S. W., Alam, J. & Choi, A. M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Topper, J. N., Cai, J., Falb, D. & Gimbrone, M. A. Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl Acad. Sci. USA 93, 10417–10422 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hojo, Y. et al. Fluid shear stress attenuates hydrogen peroxide-induced c-Jun NH2-terminal kinase activation via a glutathione reductase-mediated mechanism. Circ. Res. 91, 712–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Cai, H. & Harrison, D. G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840–844 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Baylis, C. Nitric oxide deficiency in chronic kidney disease. Am. J. Physiol. Renal Physiol. 294, F1–F9 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Dimmeler, S., Haendeler, J., Rippmann, V., Nehls, M. & Zeiher, A. M. Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett. 399, 71–74 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Dekker, R. J. et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood 100, 1689–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, X. L. et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278, 703–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Fledderus, J. O. et al. KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 1339–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Kraft, A. D., Johnson, D. A. & Johnson, J. A. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J. Neurosci. 24, 1101–1112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaengel, K., Genové, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Díaz-Flores, L. et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol. 24, 909–969 (2009).

    PubMed  Google Scholar 

  31. Yao, D. et al. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J. Biol. Chem. 282, 31038–31045 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, J. X. & Stinnett, A. Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice. Arterioscler. Thromb. Vasc. Biol. 28, 1606–1613 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, K. W., Lip, G. Y. & Blann, A. D. Plasma angiopoietin-1, angiopoietin-2, angiopoietin receptor tie-2, and vascular endothelial growth factor levels in acute coronary syndromes. Circulation 110, 2355–2360 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Pfister, F. et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57, 2495–2502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferrario, F. & Rastaldi, M. P. Histopathological atlas of renal diseases: diabetic nephropathy. J. Nephrol. 19, 1–5 (2006).

    PubMed  Google Scholar 

  36. Hidai, C., Kawana, M., Kitano, H. & Kokubun, S. Discoidin domain of Del1 protein contributes to its deposition in the extracellular matrix. Cell Tissue Res. 330, 83–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Weinbaum, S., Tarbell, J. M. & Damiano, E. R. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9, 121–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Tarbell, J. M. & Ebong, E. E. The endothelial glycocalyx: a mechano-sensor and -transducer. Sci. Signal 1, pt8 (2008).

    Article  PubMed  Google Scholar 

  39. Henry, C. B. & Duling, B. R. TNF-α increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 279, H2815–H2823 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Mulivor, A. W. & Lipowsky, H. H. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 286, H1672–H1680 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Fitzgerald, M. L., Wang, Z., Park, P. W., Murphy, G. & Bernfield, M. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J. Cell Biol. 148, 811–824 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Colburn, P., Kobayashi, E. & Buonassisi, V. Depleted level of heparan sulfate proteoglycan in the extracellular matrix of endothelial cell cultures exposed to endotoxin. J. Cell Physiol. 159, 121–130 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Bruegger, D. et al. Shedding of the endothelial glycocalyx during cardiac surgery: on-pump versus off-pump coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg. 138, 1445–1447 (2009).

    Article  PubMed  Google Scholar 

  44. Wang, J. B. et al. Insulin increases shedding of syndecan-1 in the serum of patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 86, 83–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Bardin, N. et al. Soluble CD146, a novel endothelial marker, is increased in physiopathological settings linked to endothelial junctional alteration. Thromb. Haemost. 90, 915–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Blankenberg, S. et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 104, 1336–1342 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Frijns, C. J. et al. Soluble adhesion molecules reflect endothelial cell activation in ischemic stroke and in carotid atherosclerosis. Stroke 28, 2214–2218 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Harrington, E. O., Stefanec, T., Newton, J. & Rounds, S. Release of soluble E-selectin from activated endothelial cells upon apoptosis. Lung 184, 259–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hwang, S. J. et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 96, 4219–4225 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Tzoulaki, I. et al. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation 112, 976–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Arici, M. et al. Association of mineral metabolism with an increase in cellular adhesion molecules: another link to cardiovascular risk in maintenance haemodialysis? Nephrol. Dial. Transplant. 21, 999–1005 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Malatino, L. S. et al. Circulating E-selectin as a risk marker in patients with end-stage renal disease. J. Intern. Med. 262, 479–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. May, A. E. et al. Engagement of glycoprotein IIb/IIIa (αIIbβ3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 106, 2111–2117 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. de Boer, H. C. et al. Fibrin and activated platelets cooperatively guide stem cells to a vascular injury and promote differentiation towards an endothelial cell phenotype. Arterioscler. Thromb. Vasc. Biol. 26, 1653–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Langer, H. F. et al. Platelet-induced differentiation of endothelial progenitor cells. Semin. Thromb. Hemost. 33, 136–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Massberg, S. et al. Platelets secrete stromal cell-derived factor 1α and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J. Exp. Med. 203, 1221–1233 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. von Hundelshausen, P. & Weber, C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ. Res. 100, 27–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Hugel, B., Martínez, M. C., Kunzelmann, C. & Freyssinet, J. M. Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20, 22–27 (2005).

    CAS  Google Scholar 

  59. Leventis, P. A. & Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. doi:10.101146/annurev.biophys.093008.131234.

  60. Morel, O. et al. Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler. Thromb. Vasc. Biol. 26, 2594–2604 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Combes, V. et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J. Clin. Invest. 104, 93–102 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leroyer, A. S. et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J. Am. Coll. Cardiol. 49, 772–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Sapet, C. et al. Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 108, 1868–1876 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Simoncini, S. et al. TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation. Circ. Res. 104, 943–951 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Sabatier, F. et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 99, 3962–3970 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Duval, A. et al. Endothelial dysfunction in systemic lupus patients with low disease activity: evaluation by quantification and characterization of circulating endothelial microparticles, role of anti-endothelial cell antibodies. Rheumatology (Oxford) doi:10.1093/rheumatology/keq041.

  67. Mallat, Z. et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101, 841–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Erdbruegger, U. et al. Diagnostic role of endothelial microparticles in vasculitis. Rheumatology (Oxford) 47, 1820–1825 (2008).

    Article  CAS  Google Scholar 

  69. Koga, H. et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J. Am. Coll. Cardiol. 45, 1622–1630 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Amabile, N. et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J. Am. Soc. Nephrol. 16, 3381–3388 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Faure, V. et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J. Thromb. Haemost. 4, 566–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Al-Massarani, G. et al. Kidney transplantation decreases the level and procoagulant activity of circulating microparticles. Am. J. Transplant. 9, 550–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Amabile, N., Boulanger, C. M., Guerin, A. P., Tedgui, A. & London, G. M. Circulating endothelial microparticles: a novel biomarker for prediction of subsequent death and cardiovascular events in end-stage renal disease [abstract 4871]. Circulation 120, S1010 (2009).

    Google Scholar 

  74. Mancuso, P. et al. Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin. Cancer Res. 15, 267–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Blann, A. D. et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb. Haemost. 93, 228–235 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Woywodt, A. et al. Circulating endothelial cells as markers for ANCA-associated small-vessel vasculitis. Lancet 361, 206–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Elshal, M. F., Khan, S. S., Takahashi, Y., Solomon, M. A. & McCoy, J. P. Jr. CD146 (Mel-CAM), an adhesion marker of endothelial cells, is a novel marker of lymphocyte subset activation in normal peripheral blood. Blood 106, 2923–2924 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Sorrentino, A. et al. Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp. Hematol. 36, 1035–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Woywodt, A. et al. Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J. Thromb. Haemost. 4, 671–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Koç, M., Bihorac, A. & Segal, M. S. Circulating endothelial cells as potential markers of the state of the endothelium in hemodialysis patients. Am. J. Kidney Dis. 42, 704–712 (2003).

    Article  PubMed  Google Scholar 

  81. Woywodt, A. et al. Elevated numbers of circulating endothelial cells in renal transplant recipients. Transplantation 76, 1–4 (2003).

    Article  PubMed  Google Scholar 

  82. Woywodt, A. et al. Circulating endothelial cells are a novel marker of cyclosporine-induced endothelial damage. Hypertension 41, 720–723 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Mohamed, A. S. et al. Circulating endothelial cells in renal transplant recipients. Transplant. Proc. 37, 2387–2390 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Al-Massarani, G. et al. Impact of immunosuppressive treatment on endothelial biomarkers after kidney transplantation. Am. J. Transplant. 8, 2360–2367 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Hristov, M. & Weber, C. Endothelial progenitor cells in vascular repair and remodeling. Pharmacol. Res. 58, 148–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Rookmaaker, M. B. et al. Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am. J. Pathol. 163, 553–562 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li, J., Deane, J. A., Campanale, N. V., Bertram, J. F. & Ricardo, S. D. Blockade of p38 mitogen-activated protein kinase and TGF-β1/Smad signaling pathways rescues bone marrow-derived peritubular capillary endothelial cells in adriamycin-induced nephrosis. J. Am. Soc. Nephrol. 17, 2799–2811 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Walter, D. H. et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105, 3017–3024 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Foteinos, G., Hu, Y., Xiao, Q., Metzler, B. & Xu, Q. Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation 117, 1856–1863 (2008).

    Article  PubMed  Google Scholar 

  91. Tepper, O. M. et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105, 1068–1077 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Purhonen, S. et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc. Natl Acad. Sci. USA 105, 6620–6625 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Perry, T. E. et al. Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovasc. Res. 84, 317–325 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aicher, A., Heeschen, C. & Dimmeler, S. The role of NOS3 in stem cell mobilization. Trends Mol. Med. 10, 421–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Madlambayan, G. J. et al. Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger. Blood 114, 4310–4319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hirschi, K. K., Ingram, D. A. & Yoder, M. C. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28, 1584–1595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl Acad. Sci. USA 97, 3422–3427 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Urbich, C. et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108, 2511–2516 (2003).

    Article  PubMed  Google Scholar 

  100. Loomans, C. J. et al. Angiogenic murine endothelial progenitor cells are derived from a myeloid bone marrow fraction and can be identified by endothelial NO synthase expression. Arterioscler. Thromb. Vasc. Biol. 26, 1760–1767 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Schaper, W. Collateral circulation: past and present. Basic Res. Cardiol. 104, 5–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Prokopi, M. et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 114, 723–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. & Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl Acad. Sci. USA 102, 1076–1081 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Rookmaaker, M. B. et al. CD34+ cells home, proliferate, and participate in capillary formation, and in combination with CD34 cells enhance tube formation in a 3-dimensial matrix. Arterioscler. Thromb. Vasc. Biol. 25, 1843–1850 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    CAS  PubMed  Google Scholar 

  108. Pelosi, E. et al. Identification of the hemangioblast in postnatal life. Blood 100, 3203–3208 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Fadini, G. P. et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur. Heart J. 27, 2247–2255 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Bahlmann, F. H. et al. Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int. 64, 1648–1652 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. de Groot, K. et al. Uremia causes endothelial progenitor cell deficiency. Kidney Int. 66, 641–646 (2004).

    Article  PubMed  Google Scholar 

  112. de Groot, K. et al. Kidney graft function determines endothelial progenitor cell number in renal transplant recipients. Transplantation 79, 941–945 (2005).

    Article  PubMed  Google Scholar 

  113. Rodríguez-Ayala, E. et al. Imbalance between detached circulating endothelial cells and endothelial progenitor cells in chronic kidney disease. Blood Purif. 24, 196–202 (2006).

    Article  PubMed  Google Scholar 

  114. Surdacki, A. et al. Association between endothelial progenitor cell depletion in blood and mild-to-moderate renal insufficiency in stable angina. Nephrol. Dial. Transplant. 23, 2265–2273 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Westerweel, P. E. et al. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells. Am. J. Physiol. Renal Physiol. 292, F1132–F1140 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Krenning, G. et al. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. Am. J. Physiol. Renal Physiol. 296, F1314–F1322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dimmeler, S. & Zeiher, A. M. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J. Mol. Med. 82, 671–677 (2004).

    Article  PubMed  Google Scholar 

  118. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aicher, A. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med. 9, 1370–1376 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Murphy, C. et al. Vascular dysfunction and reduced circulating endothelial progenitor cells in young healthy UK South Asian men. Arterioscler. Thromb. Vasc. Biol. 27, 936–942 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Heiss, C. et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J. Am. Coll. Cardiol. 45, 1441–1448 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ton J. Rabelink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabelink, T., de Boer, H. & van Zonneveld, A. Endothelial activation and circulating markers of endothelial activation in kidney disease. Nat Rev Nephrol 6, 404–414 (2010). https://doi.org/10.1038/nrneph.2010.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.65

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research