Abstract
Potassium (K+) ions are the predominant intracellular cations. K+ homeostasis depends on external balance (dietary intake [typically 100 mmol per day] versus excretion [95% via the kidney; 5% via the colon]) and internal balance (the distribution of K+ between intracellular and extracellular fluid compartments). The uneven distribution of K+ across cell membranes means that a mere 1% shift in its distribution can cause a 50% change in plasma K+ concentration. Hormonal mechanisms (involving insulin, β-adrenergic agonists and aldosterone) modulate K+ distribution by promoting rapid transfer of K+ across the plasma membrane. Extrarenal K+ losses from the body are usually small, but can be marked in individuals with chronic diarrhea, severe burns or prolonged sweating. Under normal circumstances, the kidney's distal nephron secretes K+ and determines final urinary excretion. In patients with hypokalemia (plasma K+ concentration <3.5 mmol/l), after the exclusion of extrarenal causes, alterations in sodium ion delivery to the distal nephron, mineralocorticoid status, or a specific inherited or acquired defect in distal nephron function (each of which affects distal nephron K+ secretion), should be considered. Clinical management of hypokalemia should establish the underlying cause and alleviate the primary disorder. This Review aims to inform clinicians about the pathophysiology and appropriate treatment for hypokalemia.
Key Points
-
Hypokalemia is common and generally limited; however, the condition can be life threatening
-
Understanding the basis of potassium (K+) distribution in the body is the first step in the diagnosis of hypokalemia
-
Levels of insulin, adrenergic activity, aldosterone, Na+,K+-ATPase activity, pH and osmolality can shift the internal distribution of K+ ions
-
Extrarenal losses, such as diarrhea or excess sweating, are generally (though not always) obvious
-
Renal losses of K+ ions are often an adverse effect of therapy
-
Successful treatment of hypokalemia requires the primary cause to be established and the underlying problem to be addressed
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Paltiel, O., Salakhov, E., Ronen, I., Berg, D. & Israeli, A. Management of severe hypokalemia in hospitalized patients: a study of quality of care based on computerized databases. Arch. Intern. Med. 161, 1089–1095 (2001).
Crop, M. J., Hoorn, E. J., Lindemans, J. & Zietse, R. Hypokalaemia and subsequent hyperkalaemia in hospitalized patients. Nephrol. Dial. Transplant. 22, 3471–3477 (2007).
Widodo, D., Setiawan, B., Chen, K., Nainggolan, L. & Santoso, W. D. The prevalence of hypokalemia in hospitalized patients with infectious diseases problem at Cipto Mangunkusumo Hospital, Jakarta. Acta Med. Indones. 38, 202–205 (2006).
Paice, B. J. et al. Record linkage study of hypokalaemia in hospitalized patients. Postgrad. Med. J. 62, 187–191 (1986).
Lam, M. H., Chau, S. W. & Wing, Y. K. High prevalence of hypokalemia in acute psychiatric inpatients. Gen. Hosp. Psychiatry 31, 262–265 (2009).
Tziviskou, E. et al. Prevalence and pathogenesis of hypokalemia in patients on chronic peritoneal dialysis: one center's experience and review of the literature. Int. Urol. Nephrol. 35, 429–434 (2003).
Hawkins, R. C. Gender and age as risk factors for hypokalemia and hyperkalemia in a multiethnic Asian population. Clin. Chim. Acta 331, 171–172 (2003).
Toner, J. M. & Ramsay, L. E. Thiazide-induced hypokalaemia; prevalence higher in women. Br. J. Clin. Pharmacol. 18, 449–452 (1984).
Sodi, R., Davison, A. S., Holmes, E., Hine, T. J. & Roberts, N. B. The phenomenon of seasonal pseudohypokalemia: effects of ambient temperature, plasma glucose and role for sodium-potassium-exchanging-ATPase. Clin. Biochem. 42, 813–818 (2009).
Greenlee, M., Wingo, C. S., McDonough, A. A., Youn, J. H. & Kone, B. C. Narrative review: evolving concepts in potassium homeostasis and hypokalemia. Ann. Intern. Med. 150, 619–625 (2009).
Hibino, H. et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol. Rev. 90, 291–366 (2010).
Tannen, R. L. & Hallows, K. R. In Oxford Textbook of Clinical Nephrology 3rd edn Vol. 1 Ch. 2.2 (eds Davison, A. M. et al.) 241–267 (Oxford University Press, Oxford, 2005).
Therien, A. G. & Blostein, R. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 279, C541–C566 (2000).
Ewart, H. S. & Klip, A. Hormonal regulation of the Na+-K+-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am. J. Physiol. 269, C295–C311 (1995).
Vick, R. L., Todd, E. P. & Luedke, D. W. Epinephrine-induced hypokalemia: relation to liver and skeletal muscle. J. Pharmacol. Exp. Ther. 181, 139–146 (1972).
Allon, M. & Shanklin, N. Adrenergic modulation of extrarenal potassium disposal in men with end-stage renal disease. Kidney Int. 40, 1103–1109 (1991).
Halperin, M. L. & Kamel, K. S. Potassium. Lancet 352, 135–140 (1998).
Wehling, M. Nongenomic aldosterone effects: the cell membrane as a specific target of mineralocorticoid action. Steroids 60, 153–156 (1995).
Mihailidou, A. S., Buhagiar, K. A. & Rasmussen, H. H. Na+ influx and Na+-K+ pump activation during short-term exposure of cardiac myocytes to aldosterone. Am. J. Physiol. 274, C175–C181 (1998).
Edwards, R., Winnie, A. P. & Ramamurthy, S. Acute hypocapneic hypokalemia: an iatrogenic anesthetic complication. Anesth. Analg. 56, 786–792 (1977).
Krapf, R., Caduff, P., Wagdi, P., Staubli, M. & Hulter, H. N. Plasma potassium response to acute respiratory alkalosis. Kidney Int. 47, 217–224 (1995).
Clemessy, J. L. et al. Hypokalaemia related to acute chloroquine ingestion. Lancet 346, 877–880 (1995).
Malik, A. R., Wolf, P. K. & Ravasia, S. Hypokalemia from risperidone and quetiapine overdose. Can. J. Psychiatry 50, 76 (2005).
Lyon, A. W. & Mayhew, W. J. Cesium toxicity: a case of self-treatment by alternate therapy gone awry. Ther. Drug Monit. 25, 114–116 (2003).
Diengott, D., Rozsa, O., Levy, N. & Muammar, S. Hypokalaemia in barium poisoning. Lancet 2, 343–344 (1964).
Pinter, A., Dorian, P. & Newman, D. Cesium-induced torsades de pointes. N. Engl. J. Med. 346, 383–384 (2002).
Wells, J. A. & Wood, K. E. Acute barium poisoning treated with hemodialysis. Am. J. Emerg. Med. 19, 175–177 (2001).
Liu, Y. C., Tsai, W. S., Chau, T. & Lin, S.-H. Acute hypercapnic respiratory failure due to thyrotoxic periodic paralysis. Am. J. Med. Sci. 327, 264–267 (2004).
Lin, S.-H., Lin, Y.-F. & Halperin, M. L. Hypokalaemia and paralysis. QJM 94, 133–139 (2001).
Stedwell, R. E., Allen, K. M. & Binder, L. S. Hypokalemic paralyses: a review of the etiologies, pathophysiology, presentation, and therapy. Am. J. Emerg. Med. 10, 143–148 (1992).
Christensen, K. S. Hypokalemic paralysis in Sjøgren's syndrome secondary to renal tubular acidosis. Scand. J. Rheumatol. 14, 58–60 (1985).
Barta, Z., Miltenyi, Z., Toth, L. & Illes, A. Hypokalemic myopathy in a patient with gluten-sensitive enteropathy and dermatitis herpetiformis Duhring: a case report. World J. Gastroenterol. 11, 2039–2040 (2005).
Verner, J. V. & Morrison, A. B. Islet cell tumor and a syndrome of refractory watery diarrhea and hypokalemia. Am. J. Med. 25, 374–380 (1958).
Sato, K., Feibleman, C. & Dobson, R. L. The electrolyte composition of pharmacologically and thermally stimulated sweat: a comparative study. J. Invest. Dermatol. 55, 433–438 (1970).
Godek, S. F., Bartolozzi, A. R. & Godek, J. J. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment. Br. J. Sports Med. 39, 205–211 (2005).
Bates, C. M., Baum, M. & Quigley, R. Cystic fibrosis presenting with hypokalemia and metabolic alkalosis in a previously healthy adolescent. J. Am. Soc. Nephrol. 8, 352–355 (1997).
Wang, W. H. & Giebisch, G. Regulation of potassium (K) handling in the renal collecting duct. Pflügers Arch. 458, 157–168 (2009).
Ring, A. M. et al. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc. Natl Acad. Sci. USA 104, 4025–4029 (2007).
Rabinowitz, L. Aldosterone and potassium homeostasis. Kidney Int. 49, 1738–1742 (1996).
Pan, Y.-J. & Young, D. B. Experimental aldosterone hypertension in the dog. Hypertension 4, 279–287 (1982).
Young, D. B. Quantitative analysis of aldosterone's role in potassium regulation. Am. J. Physiol. 255, F811–F822 (1988).
Welling, P. A. & Ho, K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am. J. Physiol. Renal Physiol. 297, F849–F863 (2009).
Liapis, H., Nag, M. & Kaji, D. M. K-Cl cotransporter expression in the human kidney. Am. J. Physiol. 275, C1432–C1437 (1998).
Hropot, M., Fowler, N., Karlmark, B. & Giebisch, G. Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int. 28, 477–489 (1985).
Unwin, R. J., Walter, S. J., Giebisch, G., Capasso, G. & Shirley, D. G. Localization of diuretic effects along the loop of Henle: an in vivo microperfusion study in rats. Clin. Sci. (Lond.) 98, 481–488 (2000).
Kamel, K. S., Ethier, J., Levin, A. & Halperin, M. L. Hypokalemia in the “beautiful people”. Am. J. Med. 88, 534–536 (1990).
Velazquez, H., Ellison, D. H. & Wright, F. S. Luminal influences on potassium secretion: chloride, sodium, and thiazide diuretics. Am. J. Physiol. 262, F1076–F1082 (1992).
Amorim, J. B., Bailey, M. A., Musa-Aziz, R., Giebisch, G. & Malnic, G. Role of luminal anion and pH in distal tubule potassium secretion. Am. J. Physiol. Renal Physiol. 284, F381–F388 (2003).
Wang, W.-H., Yue, P., Sun, P. & Lin, D.-H. Regulation and function of potassium channels in aldosterone-sensitive distal nephron. Curr. Opin. Nephrol. Hypertens. 19, 463–470 (2010).
Stanton, B. A. & Giebisch, G. H. In Handbook of Physiology, Section 8 Vols I and II Ch. 15 (ed. Windhager, E. E.) 813–874 (American Physiological Society, Bethseda, 1992).
Batlle, D., Moorthi, K. M., Schlueter, W. & Kurtzman, N. Distal renal tubular acidosis and the potassium enigma. Semin. Nephrol. 26, 471–478 (2006).
Jaeger, P., Karlmark, B. & Giebisch, G. Ammonium transport in rat cortical tubule: relationship to potassium metabolism. Am. J. Physiol. 245, F593–F600 (1983).
Field, M. J., Stanton, B. A. & Giebisch, G. H. Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int. 25, 502–511 (1984).
Cundy, T. & Dissanayake, A. Severe hypomagnesaemia in long-term users of proton-pump inhibitors. Clin. Endocrinol. (Oxf.) 69, 338–341 (2008).
Huang, C. L. & Kuo, E. Mechanism of hypokalemia in magnesium deficiency. J. Am. Soc. Nephrol. 18, 2649–2652 (2007).
Rossetti, L., Klein-Robbenhaar, G., Giebisch, G., Smith, D. & DeFronzo, R. Effect of insulin on renal potassium metabolism. Am. J. Physiol. 252, F60–F64 (1987).
Ahloulay, M., Dechaux, M., Laborde, K. & Bankir, L. Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects. Am. J. Physiol. 269, F225–F235 (1995).
Rabelink, T. J., Koomans, H. A., Hene, R. J. & Dorhout Mees, E. J. Early and late adjustment to potassium loading in humans. Kidney Int. 38, 942–947 (1990).
Campen, T. J., Vaughn, D. A. & Fanestil, D. D. Mineralo- and glucocorticoid effects on renal excretion of electrolytes. Pflügers Arch. 399, 93–101 (1983).
Stanton, B., Pan, L., Deetjen, H., Guckian, V. & Giebisch, G. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J. Clin. Invest. 79, 198–206 (1987).
Caló, L., Borsatti, A., Favaro, S. & Rabinowitz, L. Kaliuresis in normal subjects following oral potassium citrate intake without increased plasma potassium concentration. Nephron 69, 253–258 (1995).
Lee, F. N., Oh, G., McDonough, A. A. & Youn, J. H. Evidence for gut factor in K+ homeostasis. Am. J. Physiol. Renal Physiol. 293, F541–F547 (2007).
Michell, A. R., Debnam, E. S. & Unwin, R. J. Regulation of renal function by the gastrointestinal tract: potential role of gut-derived peptides and hormones. Annu. Rev. Physiol. 70, 379–403 (2008).
Morita, H., Fujiki, N., Miyahara, T., Lee, K. & Tanaka, K. Hepatoportal bumetanide-sensitive K+-sensor mechanism controls urinary K+ excretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1134–R1139 (2000).
Youn, J. H. & McDonough, A. A. Recent advances in understanding integrative control of potassium homeostasis. Annu. Rev. Physiol. 71, 381–401 (2009).
Unwin, R., Capasso, G. & Giebisch, G. Potassium and sodium transport along the loop of Henle: effects of altered dietary potassium intake. Kidney Int. 46, 1092–1099 (1994).
Trojak, B. et al. Hypokalemia is associated with lengthening of QT interval in psychiatric patients on admission. Psychiatry Res. 169, 257–260 (2009).
Coca, S. G., Perazella, M. A. & Buller, G. K. The cardiovascular implications of hypokalemia. Am. J. Kidney Dis. 45, 233–247 (2005).
He, F. J. & MacGregor, G. A. Fortnightly review: beneficial effects of potassium. BMJ 323, 497–501 (2001).
Reddy, V. G. Potassium and anesthesia. Singapore Med. J. 39, 511–516 (1998).
Vitez, T. S., Soper, L. E., Wong, K. C. & Soper, P. Chronic hypokalemia and intraoperative dysrhythmias. Anesthesiology 63, 130–133 (1985).
Conn, J. W. & Johnson, R. D. Kaliopenic nephropathy. Am. J. Clin. Nutr. 4, 523–528 (1956).
Arimura, Y. et al. Anorexia nervosa: an important cause of chronic tubulointerstitial nephropathy. Nephrol. Dial. Transplant. 14, 957–959 (1999).
Bock, K. D., Cremer, W. & Werner, U. Chronic hypokalemic nephropathy: a clinical study. Klin. Wochenschr. 56 (Suppl. 1), 91–96 (1978).
Reimann, D. & Gross, P. Chronic, diagnosis-resistant hypokalaemia. Nephrol. Dial. Transplant. 14, 2957–2961 (1999).
West, M. L. et al. Development of a test to evaluate the transtubular potassium concentration gradient in the cortical collecting duct in vivo. Miner. Electrolyte Metab. 12, 226–233 (1986).
Chacko, M., Fordtran, J. S. & Emmett, M. Effect of mineralocorticoid activity on transtubular potassium gradient, urinary [K]/[Na] ratio, and fractional excretion of potassium. Am. J. Kidney Dis. 32, 47–51 (1998).
Colussi, G. et al. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin. J. Am. Soc. Nephrol. 2, 454–460 (2007).
Unwin, R. J. & Capasso, G. Bartter's and Gitelman's syndromes: their relationship to the actions of loop and thiazide diuretics. Curr. Opin. Pharmacol. 6, 208–213 (2006).
Lin, S.-H. et al. Laboratory tests to determine the cause of hypokalemia and paralysis. Arch. Intern. Med. 164, 1561–1566 (2004).
Lin, S.-H. Thyrotoxic periodic paralysis. Mayo Clin. Proc. 80, 99–105 (2005).
Author information
Authors and Affiliations
Contributions
R. J. Unwin, F. C. Luft and D. G. Shirley contributed equally to all aspects of this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Unwin, R., Luft, F. & Shirley, D. Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol 7, 75–84 (2011). https://doi.org/10.1038/nrneph.2010.175
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrneph.2010.175
This article is cited by
-
Hyperkalaemia in Cardiological Patients: New Solutions for an Old Problem
Cardiovascular Drugs and Therapy (2024)
-
Potassium and the kidney: a reciprocal relationship with clinical relevance
Pediatric Nephrology (2022)
-
Transient complete atrioventricular block and ST-segment elevation induced by coronary vasospasm due to iatrogenic hyperkalemia: a case report
Journal of Medical Case Reports (2021)
-
Restoration of dysnatremia and acute kidney injury benefits outcomes of acute geriatric inpatients
Scientific Reports (2021)
-
Prevalence of hypokalemia in older persons: results from the PolSenior national survey
European Geriatric Medicine (2021)