Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology and management of hypokalemia: a clinical perspective

Abstract

Potassium (K+) ions are the predominant intracellular cations. K+ homeostasis depends on external balance (dietary intake [typically 100 mmol per day] versus excretion [95% via the kidney; 5% via the colon]) and internal balance (the distribution of K+ between intracellular and extracellular fluid compartments). The uneven distribution of K+ across cell membranes means that a mere 1% shift in its distribution can cause a 50% change in plasma K+ concentration. Hormonal mechanisms (involving insulin, β-adrenergic agonists and aldosterone) modulate K+ distribution by promoting rapid transfer of K+ across the plasma membrane. Extrarenal K+ losses from the body are usually small, but can be marked in individuals with chronic diarrhea, severe burns or prolonged sweating. Under normal circumstances, the kidney's distal nephron secretes K+ and determines final urinary excretion. In patients with hypokalemia (plasma K+ concentration <3.5 mmol/l), after the exclusion of extrarenal causes, alterations in sodium ion delivery to the distal nephron, mineralocorticoid status, or a specific inherited or acquired defect in distal nephron function (each of which affects distal nephron K+ secretion), should be considered. Clinical management of hypokalemia should establish the underlying cause and alleviate the primary disorder. This Review aims to inform clinicians about the pathophysiology and appropriate treatment for hypokalemia.

Key Points

  • Hypokalemia is common and generally limited; however, the condition can be life threatening

  • Understanding the basis of potassium (K+) distribution in the body is the first step in the diagnosis of hypokalemia

  • Levels of insulin, adrenergic activity, aldosterone, Na+,K+-ATPase activity, pH and osmolality can shift the internal distribution of K+ ions

  • Extrarenal losses, such as diarrhea or excess sweating, are generally (though not always) obvious

  • Renal losses of K+ ions are often an adverse effect of therapy

  • Successful treatment of hypokalemia requires the primary cause to be established and the underlying problem to be addressed

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of K+ in the body.
Figure 2: Cellular shifts in K+.
Figure 3: Renal K+ handling.
Figure 4: K+ secretion by principal cells.
Figure 5: A clinical algorithm for investigating hypokalemia.

Similar content being viewed by others

References

  1. Paltiel, O., Salakhov, E., Ronen, I., Berg, D. & Israeli, A. Management of severe hypokalemia in hospitalized patients: a study of quality of care based on computerized databases. Arch. Intern. Med. 161, 1089–1095 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Crop, M. J., Hoorn, E. J., Lindemans, J. & Zietse, R. Hypokalaemia and subsequent hyperkalaemia in hospitalized patients. Nephrol. Dial. Transplant. 22, 3471–3477 (2007).

    Article  PubMed  Google Scholar 

  3. Widodo, D., Setiawan, B., Chen, K., Nainggolan, L. & Santoso, W. D. The prevalence of hypokalemia in hospitalized patients with infectious diseases problem at Cipto Mangunkusumo Hospital, Jakarta. Acta Med. Indones. 38, 202–205 (2006).

    PubMed  Google Scholar 

  4. Paice, B. J. et al. Record linkage study of hypokalaemia in hospitalized patients. Postgrad. Med. J. 62, 187–191 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lam, M. H., Chau, S. W. & Wing, Y. K. High prevalence of hypokalemia in acute psychiatric inpatients. Gen. Hosp. Psychiatry 31, 262–265 (2009).

    Article  PubMed  Google Scholar 

  6. Tziviskou, E. et al. Prevalence and pathogenesis of hypokalemia in patients on chronic peritoneal dialysis: one center's experience and review of the literature. Int. Urol. Nephrol. 35, 429–434 (2003).

    Article  PubMed  Google Scholar 

  7. Hawkins, R. C. Gender and age as risk factors for hypokalemia and hyperkalemia in a multiethnic Asian population. Clin. Chim. Acta 331, 171–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Toner, J. M. & Ramsay, L. E. Thiazide-induced hypokalaemia; prevalence higher in women. Br. J. Clin. Pharmacol. 18, 449–452 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sodi, R., Davison, A. S., Holmes, E., Hine, T. J. & Roberts, N. B. The phenomenon of seasonal pseudohypokalemia: effects of ambient temperature, plasma glucose and role for sodium-potassium-exchanging-ATPase. Clin. Biochem. 42, 813–818 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Greenlee, M., Wingo, C. S., McDonough, A. A., Youn, J. H. & Kone, B. C. Narrative review: evolving concepts in potassium homeostasis and hypokalemia. Ann. Intern. Med. 150, 619–625 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hibino, H. et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol. Rev. 90, 291–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Tannen, R. L. & Hallows, K. R. In Oxford Textbook of Clinical Nephrology 3rd edn Vol. 1 Ch. 2.2 (eds Davison, A. M. et al.) 241–267 (Oxford University Press, Oxford, 2005).

    Google Scholar 

  13. Therien, A. G. & Blostein, R. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 279, C541–C566 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Ewart, H. S. & Klip, A. Hormonal regulation of the Na+-K+-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am. J. Physiol. 269, C295–C311 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Vick, R. L., Todd, E. P. & Luedke, D. W. Epinephrine-induced hypokalemia: relation to liver and skeletal muscle. J. Pharmacol. Exp. Ther. 181, 139–146 (1972).

    CAS  PubMed  Google Scholar 

  16. Allon, M. & Shanklin, N. Adrenergic modulation of extrarenal potassium disposal in men with end-stage renal disease. Kidney Int. 40, 1103–1109 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Halperin, M. L. & Kamel, K. S. Potassium. Lancet 352, 135–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Wehling, M. Nongenomic aldosterone effects: the cell membrane as a specific target of mineralocorticoid action. Steroids 60, 153–156 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Mihailidou, A. S., Buhagiar, K. A. & Rasmussen, H. H. Na+ influx and Na+-K+ pump activation during short-term exposure of cardiac myocytes to aldosterone. Am. J. Physiol. 274, C175–C181 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Edwards, R., Winnie, A. P. & Ramamurthy, S. Acute hypocapneic hypokalemia: an iatrogenic anesthetic complication. Anesth. Analg. 56, 786–792 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Krapf, R., Caduff, P., Wagdi, P., Staubli, M. & Hulter, H. N. Plasma potassium response to acute respiratory alkalosis. Kidney Int. 47, 217–224 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Clemessy, J. L. et al. Hypokalaemia related to acute chloroquine ingestion. Lancet 346, 877–880 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Malik, A. R., Wolf, P. K. & Ravasia, S. Hypokalemia from risperidone and quetiapine overdose. Can. J. Psychiatry 50, 76 (2005).

    Article  PubMed  Google Scholar 

  24. Lyon, A. W. & Mayhew, W. J. Cesium toxicity: a case of self-treatment by alternate therapy gone awry. Ther. Drug Monit. 25, 114–116 (2003).

    Article  PubMed  Google Scholar 

  25. Diengott, D., Rozsa, O., Levy, N. & Muammar, S. Hypokalaemia in barium poisoning. Lancet 2, 343–344 (1964).

    Article  CAS  PubMed  Google Scholar 

  26. Pinter, A., Dorian, P. & Newman, D. Cesium-induced torsades de pointes. N. Engl. J. Med. 346, 383–384 (2002).

    Article  PubMed  Google Scholar 

  27. Wells, J. A. & Wood, K. E. Acute barium poisoning treated with hemodialysis. Am. J. Emerg. Med. 19, 175–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y. C., Tsai, W. S., Chau, T. & Lin, S.-H. Acute hypercapnic respiratory failure due to thyrotoxic periodic paralysis. Am. J. Med. Sci. 327, 264–267 (2004).

    Article  PubMed  Google Scholar 

  29. Lin, S.-H., Lin, Y.-F. & Halperin, M. L. Hypokalaemia and paralysis. QJM 94, 133–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Stedwell, R. E., Allen, K. M. & Binder, L. S. Hypokalemic paralyses: a review of the etiologies, pathophysiology, presentation, and therapy. Am. J. Emerg. Med. 10, 143–148 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Christensen, K. S. Hypokalemic paralysis in Sjøgren's syndrome secondary to renal tubular acidosis. Scand. J. Rheumatol. 14, 58–60 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Barta, Z., Miltenyi, Z., Toth, L. & Illes, A. Hypokalemic myopathy in a patient with gluten-sensitive enteropathy and dermatitis herpetiformis Duhring: a case report. World J. Gastroenterol. 11, 2039–2040 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Verner, J. V. & Morrison, A. B. Islet cell tumor and a syndrome of refractory watery diarrhea and hypokalemia. Am. J. Med. 25, 374–380 (1958).

    Article  CAS  PubMed  Google Scholar 

  34. Sato, K., Feibleman, C. & Dobson, R. L. The electrolyte composition of pharmacologically and thermally stimulated sweat: a comparative study. J. Invest. Dermatol. 55, 433–438 (1970).

    Article  CAS  PubMed  Google Scholar 

  35. Godek, S. F., Bartolozzi, A. R. & Godek, J. J. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment. Br. J. Sports Med. 39, 205–211 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bates, C. M., Baum, M. & Quigley, R. Cystic fibrosis presenting with hypokalemia and metabolic alkalosis in a previously healthy adolescent. J. Am. Soc. Nephrol. 8, 352–355 (1997).

    CAS  PubMed  Google Scholar 

  37. Wang, W. H. & Giebisch, G. Regulation of potassium (K) handling in the renal collecting duct. Pflügers Arch. 458, 157–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Ring, A. M. et al. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc. Natl Acad. Sci. USA 104, 4025–4029 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rabinowitz, L. Aldosterone and potassium homeostasis. Kidney Int. 49, 1738–1742 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Pan, Y.-J. & Young, D. B. Experimental aldosterone hypertension in the dog. Hypertension 4, 279–287 (1982).

    Article  CAS  PubMed  Google Scholar 

  41. Young, D. B. Quantitative analysis of aldosterone's role in potassium regulation. Am. J. Physiol. 255, F811–F822 (1988).

    CAS  PubMed  Google Scholar 

  42. Welling, P. A. & Ho, K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am. J. Physiol. Renal Physiol. 297, F849–F863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liapis, H., Nag, M. & Kaji, D. M. K-Cl cotransporter expression in the human kidney. Am. J. Physiol. 275, C1432–C1437 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Hropot, M., Fowler, N., Karlmark, B. & Giebisch, G. Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int. 28, 477–489 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Unwin, R. J., Walter, S. J., Giebisch, G., Capasso, G. & Shirley, D. G. Localization of diuretic effects along the loop of Henle: an in vivo microperfusion study in rats. Clin. Sci. (Lond.) 98, 481–488 (2000).

    Article  CAS  Google Scholar 

  46. Kamel, K. S., Ethier, J., Levin, A. & Halperin, M. L. Hypokalemia in the “beautiful people”. Am. J. Med. 88, 534–536 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Velazquez, H., Ellison, D. H. & Wright, F. S. Luminal influences on potassium secretion: chloride, sodium, and thiazide diuretics. Am. J. Physiol. 262, F1076–F1082 (1992).

    CAS  PubMed  Google Scholar 

  48. Amorim, J. B., Bailey, M. A., Musa-Aziz, R., Giebisch, G. & Malnic, G. Role of luminal anion and pH in distal tubule potassium secretion. Am. J. Physiol. Renal Physiol. 284, F381–F388 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, W.-H., Yue, P., Sun, P. & Lin, D.-H. Regulation and function of potassium channels in aldosterone-sensitive distal nephron. Curr. Opin. Nephrol. Hypertens. 19, 463–470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stanton, B. A. & Giebisch, G. H. In Handbook of Physiology, Section 8 Vols I and II Ch. 15 (ed. Windhager, E. E.) 813–874 (American Physiological Society, Bethseda, 1992).

    Google Scholar 

  51. Batlle, D., Moorthi, K. M., Schlueter, W. & Kurtzman, N. Distal renal tubular acidosis and the potassium enigma. Semin. Nephrol. 26, 471–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Jaeger, P., Karlmark, B. & Giebisch, G. Ammonium transport in rat cortical tubule: relationship to potassium metabolism. Am. J. Physiol. 245, F593–F600 (1983).

    CAS  PubMed  Google Scholar 

  53. Field, M. J., Stanton, B. A. & Giebisch, G. H. Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int. 25, 502–511 (1984).

    Article  CAS  PubMed  Google Scholar 

  54. Cundy, T. & Dissanayake, A. Severe hypomagnesaemia in long-term users of proton-pump inhibitors. Clin. Endocrinol. (Oxf.) 69, 338–341 (2008).

    Article  CAS  Google Scholar 

  55. Huang, C. L. & Kuo, E. Mechanism of hypokalemia in magnesium deficiency. J. Am. Soc. Nephrol. 18, 2649–2652 (2007).

    Article  PubMed  CAS  Google Scholar 

  56. Rossetti, L., Klein-Robbenhaar, G., Giebisch, G., Smith, D. & DeFronzo, R. Effect of insulin on renal potassium metabolism. Am. J. Physiol. 252, F60–F64 (1987).

    CAS  PubMed  Google Scholar 

  57. Ahloulay, M., Dechaux, M., Laborde, K. & Bankir, L. Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects. Am. J. Physiol. 269, F225–F235 (1995).

    CAS  PubMed  Google Scholar 

  58. Rabelink, T. J., Koomans, H. A., Hene, R. J. & Dorhout Mees, E. J. Early and late adjustment to potassium loading in humans. Kidney Int. 38, 942–947 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Campen, T. J., Vaughn, D. A. & Fanestil, D. D. Mineralo- and glucocorticoid effects on renal excretion of electrolytes. Pflügers Arch. 399, 93–101 (1983).

    Article  CAS  PubMed  Google Scholar 

  60. Stanton, B., Pan, L., Deetjen, H., Guckian, V. & Giebisch, G. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J. Clin. Invest. 79, 198–206 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Caló, L., Borsatti, A., Favaro, S. & Rabinowitz, L. Kaliuresis in normal subjects following oral potassium citrate intake without increased plasma potassium concentration. Nephron 69, 253–258 (1995).

    Article  PubMed  Google Scholar 

  62. Lee, F. N., Oh, G., McDonough, A. A. & Youn, J. H. Evidence for gut factor in K+ homeostasis. Am. J. Physiol. Renal Physiol. 293, F541–F547 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Michell, A. R., Debnam, E. S. & Unwin, R. J. Regulation of renal function by the gastrointestinal tract: potential role of gut-derived peptides and hormones. Annu. Rev. Physiol. 70, 379–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Morita, H., Fujiki, N., Miyahara, T., Lee, K. & Tanaka, K. Hepatoportal bumetanide-sensitive K+-sensor mechanism controls urinary K+ excretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1134–R1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Youn, J. H. & McDonough, A. A. Recent advances in understanding integrative control of potassium homeostasis. Annu. Rev. Physiol. 71, 381–401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Unwin, R., Capasso, G. & Giebisch, G. Potassium and sodium transport along the loop of Henle: effects of altered dietary potassium intake. Kidney Int. 46, 1092–1099 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Trojak, B. et al. Hypokalemia is associated with lengthening of QT interval in psychiatric patients on admission. Psychiatry Res. 169, 257–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Coca, S. G., Perazella, M. A. & Buller, G. K. The cardiovascular implications of hypokalemia. Am. J. Kidney Dis. 45, 233–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. He, F. J. & MacGregor, G. A. Fortnightly review: beneficial effects of potassium. BMJ 323, 497–501 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reddy, V. G. Potassium and anesthesia. Singapore Med. J. 39, 511–516 (1998).

    CAS  PubMed  Google Scholar 

  71. Vitez, T. S., Soper, L. E., Wong, K. C. & Soper, P. Chronic hypokalemia and intraoperative dysrhythmias. Anesthesiology 63, 130–133 (1985).

    Article  CAS  PubMed  Google Scholar 

  72. Conn, J. W. & Johnson, R. D. Kaliopenic nephropathy. Am. J. Clin. Nutr. 4, 523–528 (1956).

    Article  CAS  PubMed  Google Scholar 

  73. Arimura, Y. et al. Anorexia nervosa: an important cause of chronic tubulointerstitial nephropathy. Nephrol. Dial. Transplant. 14, 957–959 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Bock, K. D., Cremer, W. & Werner, U. Chronic hypokalemic nephropathy: a clinical study. Klin. Wochenschr. 56 (Suppl. 1), 91–96 (1978).

    Article  PubMed  Google Scholar 

  75. Reimann, D. & Gross, P. Chronic, diagnosis-resistant hypokalaemia. Nephrol. Dial. Transplant. 14, 2957–2961 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. West, M. L. et al. Development of a test to evaluate the transtubular potassium concentration gradient in the cortical collecting duct in vivo. Miner. Electrolyte Metab. 12, 226–233 (1986).

    CAS  PubMed  Google Scholar 

  77. Chacko, M., Fordtran, J. S. & Emmett, M. Effect of mineralocorticoid activity on transtubular potassium gradient, urinary [K]/[Na] ratio, and fractional excretion of potassium. Am. J. Kidney Dis. 32, 47–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Colussi, G. et al. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin. J. Am. Soc. Nephrol. 2, 454–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Unwin, R. J. & Capasso, G. Bartter's and Gitelman's syndromes: their relationship to the actions of loop and thiazide diuretics. Curr. Opin. Pharmacol. 6, 208–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, S.-H. et al. Laboratory tests to determine the cause of hypokalemia and paralysis. Arch. Intern. Med. 164, 1561–1566 (2004).

    Article  PubMed  Google Scholar 

  81. Lin, S.-H. Thyrotoxic periodic paralysis. Mayo Clin. Proc. 80, 99–105 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. J. Unwin, F. C. Luft and D. G. Shirley contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Robert J. Unwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unwin, R., Luft, F. & Shirley, D. Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol 7, 75–84 (2011). https://doi.org/10.1038/nrneph.2010.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing