Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of Toll-like receptors in renal diseases

Abstract

Toll-like receptors (TLRs) have a key role in innate immunity. These receptors recognize both pathogen-associated molecular patterns and molecules that are released from damaged tissue. TLRs mediate signal transduction pathways through the activation of transcription factors that regulate the expression of proinflammatory cytokines and chemokines and are required for the development of adaptive immune responses. TLRs might have an important role in the pathogenesis of renal diseases: their exaggerated activation is associated with ischemic kidney damage, acute kidney injury, end-stage renal failure, acute tubulointerstitial nephritis, acute renal transplant rejection and delayed allograft function. As the results of previous studies concerning the role of TLRs in renal diseases are conflicting, further work is needed to determine the exact role of these receptors and to evaluate strategies to prevent TLR-mediated local inflammation. This Review discusses the evidence supporting a role for TLRs in contrasting bacterial infections and in causing or aggravating renal conditions when TLR activation leads to a harmful inflammatory response.

Key Points

  • Toll-like receptors (TLRs) are key proteins in innate immunity

  • TLRs are required for the development of adaptive immune responses

  • Overactivation of TLRs might contribute to the pathogenesis of many renal conditions, including ischemic renal damage, allograft rejection, acute kidney injury, nephritis and urinary tract infections

  • Some studies have suggested that TLR inhibitors have therapeutic potential; however, the results of these studies are often conflicting and should be confirmed in large, randomized, controlled trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signaling pathway of TLRs in kidney diseases.

Similar content being viewed by others

References

  1. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. de Groot, K. et al. Toll-like receptor 2 and renal allograft function. Am. J. Nephrol. 28, 583–588 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Schröppel, B. & He, J. C. Expression of Toll-like receptors in the kidney: their potential role beyond infection. Kidney Int. 69, 785–787 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. Shigeoka, A. A. et al. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. J. Immunol. 178, 6252–6258 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Aliprantis, A. O., Yang, R. B., Weiss, D. S., Godowski, P. & Zychlinsky, A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J. 19, 3325–3336 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawai, T. & Akira, S. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol. 17, 338–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu. Rev. Cell. Dev. Biol. 12, 393–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Svanborg, C. et al. Uropathogenic Escherichia coli as a model of host–parasite interaction. Curr. Opin. Microbiol. 9, 33–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Andrade, C. F., Waddell, T. K., Keshavjee, S. & Liu, M. Innate immunity and organ transplantation: the potential role of toll-like receptors. Am. J. Transplant. 5, 969–975 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Anders, H. J., Banas, B. & Schlondorff, D. Signaling danger: toll-like receptors and their potential roles in kidney disease. J. Am. Soc. Nephrol. 15, 854–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Smiley, S. T., King, J. A. & Hancock, W. W. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J. Immunol. 167, 2887–2894 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Powell, J. D. & Horton, M. R. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol. Res. 31, 207–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, D. et al. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Akira, S. Mammalian Toll-like receptors. Curr. Opin. Immunol. 15, 5–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Ann. Rev. Immunol. 21, 335 (2003).

    Article  CAS  Google Scholar 

  17. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Kawai, T. & Akira, S. TLR signaling. Cell Death Different. 13, 816–825 (2006).

    Article  CAS  Google Scholar 

  19. Gomari, R. P. et al. Regulation of TLR expression, a new perspective for the role of VIP in immunity. Peptides 28, 1825–1832 (2007).

    Article  CAS  Google Scholar 

  20. Ishii, K. J., Uematsu, S. & Akira, S. Toll gates for future immunotherapy. Curr. Pharm. Des. 12, 4135–4142 (2007).

    Article  Google Scholar 

  21. Beutler, B. & Hoffmann, J. Innate immunity. Curr. Opin. Immunol. 16, 1–3 (2004).

    Article  CAS  Google Scholar 

  22. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Jurk, M. et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R.-848. Nat. Immunol. 3, 499 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoebe, K. et al. Up-regulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 4, 1223–1229 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Anders, H. J. & Schlöndorff, H. Toll-like receptors: emerging concepts in kidney disease. Curr. Opin. Nephrol. Hypertens. 16, 177–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Lorenz, E., Mira, J. P., Frees, K. L. & Schartz, D. A. Relevance of mutations in the TLR4 receptor in patients with Gram-negative septic shock. Arch. Intern. Med. 162, 1028–1032 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Song, J. & Abraham, S. N. TLR-mediated immune responses in the urinary tract. Curr. Opin. Microbiol. 11, 66–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andersen-Nissen, E. et al. Cutting edge: Tlr5−/− mice are more susceptible to Escherichia coli urinary tract infection. J. Immunol. 178, 4717–4720 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Hagberg, L. et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46, 839–844 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G. & Hultgren, S. J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol. 166, 1148–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ragnarsdottir, B. et al. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J. Infect. Dis. 196, 475–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Bishop, B. L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med. 13, 625–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Song, J., Bishop, B. L., Li, G., Duncan, M. J. & Abraham, S. N. TLR4 initiated and cAMP mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1, 287–298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Song, J. et al. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells., PLoS Pathog. 3, e60 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mikhailidis, D. P., Jeremy, J. Y. & Dandona, P. Urinary bladder prostanoids--their synthesis, function and possible role in the pathogenesis and treatment of disease. J. Urol. 137, 577–582 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Chang, Y. J. et al. Induction of cyclooxygenase-2 overexpression in human gastric epithelial cells by Helicobacter pylori Involves TLR2/TLR9 and c-Src-dependent nuclear factor-κB activation. Mol. Pharmacol. 66, 1465–1477 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. El-Achkar, T. M., Plotkin, Z., Marcic, B. & Dagher, P. C. Sepsis induces an increase in thick ascending limb Cox-2 that is TLR4 dependent. Am. J. Physiol. Renal Physiol. 293, F1187–F1196 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Mrabet-Dahbi, S., Metz, M., Dudeck, A., Zuberbier, T. & Maurer, M. Murine mast cells secrete a unique profile of cytokines and prostaglandins in response to distinct TLR2 ligands. Exp. Dermatol. 18, 437–444 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Leemans, J. C. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest. 115, 2894–2903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schrier, R. W. & Wang, W. Acute renal failure and sepsis. N. Engl. J. Med. 351, 159–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Rysz, J. et al. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J. Nephrol. 20, 444–452 (2007).

    CAS  PubMed  Google Scholar 

  50. Scherberich, J. E. & Hartinger, A. Impact of Toll-like receptor signalling on urinary tract infection. Int. J. Antimicrob. Agents 31 (Suppl. 1), 118 (2008).

    Google Scholar 

  51. Fischer, H., Yamamoto, M., Akira, S., Beutler, B. & Svanborg, C. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur. J. Immunol. 36, 267–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Chassin, C. et al. Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. J. Immun. 177, 4773–4784 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Patole, P. S. et al. Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int. 68, 2582–2587 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Melican, K. et al. Bacterial infection-mediated mucosal signaling induces local renal ischaemia as a defence against sepsis. Cell. Microbiol. 10, 1987–1998 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Farr, R. W. Leptospirosis. Clin. Infect. Dis. 21, 1–6 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Werts, C. et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2, 346–352 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, C. W. et al. Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney Int. 69, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Lehmann, J. et al. Expression of human beta-defensins 1 and 2 in kidneys with chronic bacterial infection. BMC Infect. Dis. 2, 20 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Viriyakosol, S., Matthias, M. A., Swancutt, M. A., Kirkland, T. N. & Vinetz, J. M. Toll-like receptor 4 protects against lethal Leptospira interrogans serovar icterohaemorrhagiae infection and contributes to in vivo control of leptospiral burden. Infect. Immun. 74, 887–895 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Segerer, S., Mack, M., Regele, H., Kerjaschki, D. & Schlöndorff, D. Expression of the C-C chemokine receptor 5 in human kidney diseases. Kidney Int. 56, 52–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Groenveld, A. B., Tran, D. D., van der Meulen, J., Nauta, J. J. & Thijs, L. G. Acute renal failure in the intensive care unit: predisposing, complicating factors and outcome. Nephron 59, 602–610 (1991).

    Article  Google Scholar 

  62. Neveu, H., Kleinknecht, D., Brivet, F., Loirat, P. & Landais, P. Prognostic factors in acute renal failure due to sepsis: results of a prospective multicentre study. Nephrol. Dial Transplant. 11, 293–299 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Cunningham, P. N., Wang, Y., Guo, R., He, G. & Quigg, R. J. Role of Toll-Like receptor 4 in endotoxin-induced acute renal failure. J. Immunol. 172, 2629–2635 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Cunningham, P. N. et al. Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. J. Immunol. 168, 5817–5823 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Piechota, M. et al. N.-terminal brain natriuretic propeptide levels correlate with procalcitonin and C-reactive protein levels in septic patients. Cell. Mol. Biol. Lett. 12, 162–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Wolfs, T. G. et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN- and TNF-mediated up-regulation during inflammation. J. Immunol. 168, 1286–1293 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Michalek, S. M., Moore, R. N., McGhee, J. R., Rosenstreich, D. L. & Mergenhagen, S. E. The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J. Infect. Dis. 141, 55–63 (1980).

    Article  CAS  PubMed  Google Scholar 

  69. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298, 1025–1029 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Ramesh, G. & Reeves, W. B. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am. J. Physiol. Renal Physiol. 289, F166–F174 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Tsuruya, K. et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int. 63, 72–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, B., Ramesh, G., Uematsu, S., Akira, S. & Reeves, W. B. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J. Am. Soc. Nephrol. 19, 923–932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cenedeze, M. A. et al. The role of Toll-like receptor 4 in cisplatin-induced renal injury. Transplant. Proc. 39, 409–411 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Ramesh, G. & Reeves, W. B. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835–842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramesh, G. & Reeves, W. B. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am. J. Physiol. Renal Physiol. 54, F610–F618 (2003).

    Article  Google Scholar 

  76. Brown, H. J., Sacks, S. H. & Robson, M. G. Toll-like receptor 2 agonists exacerbate accelerated nephrotoxic nephritis. J. Am. Soc. Nephrol. 17, 1931–1939 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Brown, H. J. et al. Toll-like receptor 4 ligation on intrinsic renal cells contributes to the induction of antibody-mediated glomerulonephritis via CXCL1 and CXCL2. J. Am. Soc. Nephrol. 18, 1732–1739 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Anders, H. J. et al. Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB J. 18, 534–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Patole, P. S. et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol. Dial. Transplant. 21, 3062–3073 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Papadimitraki, E. D., Tzardi, M., Bertsias, G., Sotsiou, E. & Boumpas, D. T. Glomerular expression of toll-like receptor-9 in lupus nephritis but not in normal kidneys: implications for the amplification of the inflammatory response. Lupus 18, 831–835 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Wu, X. & Peng, S. L. Toll-like receptor 9 signalling protects against murine lupus. Arthritis Rheum. 54, 336–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Christensen, S. R. et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202, 321–331 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pawar, R. D. et al. Ligands to nucleic acid-specific toll-like receptors and the onset of lupus nephritis. J. Am. Soc. Nephrol. 17, 3365–3373 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Christensen, S. R., Shupe, J., Nickerson, K., Kashgarian, M., Flavell, R. A. & Shlomchik, M. J. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Pawar, R. D. et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J. Am. Soc. Nephrol. 18, 1721–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Fairhurst, A. M. et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38, 1971–1978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, B. et al. TLR4 up-regulation at protein or gene level is pathogenic for lupus-like autoimmune disease. J. Immunol. 177, 6880–6888 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Patole, P. S. et al. Viral souble- stranded RNA aggravates lupus nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigenpresenting cells. J. Am. Soc. Nephrol. 16, 1326–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Pawar, R. D. et al. Toll-like receptor-7 modulates immune complex glomerulonephritis. J. Am. Soc. Nephrol. 17, 141–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Anders, H. J. et al. Bacterial CpG-DNA aggravates immune complex glomerulonephritis: role of TLR9-mediated expression of chemokines and chemokine receptors. J. Am. Soc. Nephrol. 14, 317–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Wornle, M. et al. Novel role of Toll-like receptor 3 in hepatitis C-associated glomerulonephritis. AJP 168, 370–385 (2006).

    PubMed  PubMed Central  Google Scholar 

  92. Patole, P. S. et al. Coactivation of Toll-like receptor-3 and -7 in immune complex glomerulonephritis. J. Autoimmun. 29, 52–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Nogueira. E. et al. Toll-like receptors-related genes in kidney transplant patients with chronic allograft nephropathy and acute rejection. Intern. Immunopharm. 9, 673–676 (2009).

    Article  CAS  Google Scholar 

  94. Pratt, J. R., Basheer, S. A. & Sacks, S. H. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med. 8, 582–587 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, L. et al. TLR signals promote IL-6/IL-17-dependent transplant rejection. J. Immun. 182, 6217–6225 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Palmer, S. M. et al. Donor polymorphisms in Toll-like receptor-4 influence the development of rejection after renal transplantation. Clin. Transplant. 20, 30–36 (2006).

    Article  PubMed  Google Scholar 

  97. Goldstein, D. R., Tesar, B. M., Akira, S. & Lakkis, F. G. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J. Clin. Invest. 111, 1571–1578 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Samstein, B., Johnson, G. B. & Platt, J. L. Toll-like receptor-4 and allograft responses. Transplantation 77, 475–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Ducloux, D. et al. Relevance of Toll-like receptor-4 polymorphisms in renal transplantation. Kidney Int. 67, 2454–2461 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Krüger, B. et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl Acad. Sci. USA 106, 3390–3395 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Agrawal, M. & Swartz, R. Acute renal failure. Am. Fam. Physician 61, 2077–2088 (2000).

    CAS  PubMed  Google Scholar 

  102. Preston, R. A. & Epstein, M. Ischemic renal disease: an emerging cause of chronic renal failure and end-stage renal disease. J. Hypertens. 15, 1365–1377 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Halloran, P. F. et al. The “injury response”: a concept linking nonspecific injury, acute rejection and long-term transplant outcomes. Transplant. Proc. 29, 79–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Shen, X. D. et al. Toll-like receptor and heme oxygenase-1 signaling in hepatic ischemia/reperfusion injury. Am. J. Transplant. 5, 1793–1800 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Asea, A. et al. Novel signal transduction pathway utilized by extracellular HSP70. Role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Ugurlucan, M. et al. Aortic stiffness in diabetes mellitus-association with glutamine and heat shock protein 70 expression: a pilot study based on an experimental rodent model. Expert Opin. Ther. Targets 13, 267–274 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Bielecka-Dabrowa, A., Barylski, M., Mikhailidis, D. P., Rysz, J. & Banach, M. HSP 70 and atherosclerosis--protector or activator? Expert Opin. Ther. Targets 13, 307–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Li, M. et al. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J. Immunol. 166, 7128–7135 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Tsuboi, N. et al. Roles of Toll-like receptors in C-C chemokine production by renal tubular epithelial cells. J. Immunol. 169, 2026–2033 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Daemen, M. A. et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J. Clin. Invest. 104, 541–549 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll like receptor-2. Science 285, 736–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Takeda, K. & Akira, S. Toll receptors and pathogen resistance. Cell. Microbiol. 5, 143–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Pulskens, W. P. et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS ONE. 3, e3596 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847–2859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mkaddem, S. B. et al. Heat shock protein gp96 interacts with protein phosphatase 5 and controls toll-like receptor 2 (TLR2)-mediated activation of extracellular signal-regulated kinase (ERK) 1/2 in post-hypoxic kidney cells. J. Biol. Chem. 284, 12541–12549 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Weighardt, H. et al. Cutting edge: myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. J. Immunol. 169, 2823–2827 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Dear, J. W. et al. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney Int. 69, 832–836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yasuda, H. et al. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 294, F1050–F1058 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Rutz, M. et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 34, 2541–2550 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Hong, Z. et al. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int. Immunopharmacol. 4, 223–234 (2004).

    Article  PubMed  CAS  Google Scholar 

  122. Ertel, W., Morrison, M. H., Ayala, A. & Chaudry, I. H. Chloroquine attenuates hemorrhagic shock-induced immunosuppression and decreases susceptibility to sepsis. Arch. Surg. 127, 70–75 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Levitz, S. M., Harrison, T. S., Tabuni, A. & Liu, X. Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J. Clin. Invest. 100, 1640–1646 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Miyaji, T. et al. Ethyl pyruvate decreases sepsis-induced acute renal failure and multiple organ damage in aged mice. Kidney Int. 64, 1620–1631 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Ulloa, L. et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc. Natl Acad. Sci. USA 99, 12351–12356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yasuda, H., Yuen, P. S., Hu, X., Zhou, H. & Star, R. A. Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects. Kidney Int. 69, 1535–1542 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hotchkiss, R. S. et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl Acad. Sci. USA 96, 14541–14546 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bommhardt, U. et al. Akt decreases lymphocyte apoptosis and improves survival in sepsis. J. Immunol. 172, 7583–7591 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Hotchkiss, R. S. et al. TATBH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J. Immunol. 176, 5471–5477 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Schwulst, S. J. et al. Agonistic monoclonal antibody against CD40 receptor decreases lymphocyte apoptosis and improves survival in sepsis. J. Immunol. 177, 557–565 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Wesche-Soldato, D. E. et al. In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice. Blood 106, 2295–2301 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Miksa, M. et al. Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock 25, 586–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Bennett, W. M., DeMattos, A., Meyer, M. M., Andoh, T. & Barry, J. M. Chronic cyclosporine nephropathy: the Achilles' heel of immunosuppressive therapy. Kidney Int. 50, 1089–1100 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Ahn, K. O. et al. Influence of angiotensin II on expression of Toll-like receptor 2 and maturation of dendritic cells in chronic cyclosporine nephropathy. Exp. Transpl. 83, 938–947 (2007).

    Article  CAS  Google Scholar 

  135. Myers, B. D., Ross, J., Newton, L., Luetscher, J. & Perlroth, M. Cyclosporine-associated chronic nephropathy. N. Engl. J. Med. 311, 699–705 (1984).

    Article  CAS  PubMed  Google Scholar 

  136. Kramer, A. et al. Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system. J. Am. Soc. Nephrol. 17, 2513–2520 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Nishiyama, A. et al. Role of angiotensin II and reactive oxygen species in cyclosporine A-dependent hypertension. Hypertension 42, 754–760 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Hodgkinson, C. P. & Ye, S. Statins inhibit toll-like receptor 4-mediated lipopolysaccharide signaling and cytokine expression. Pharmacogenet. Genet. 18, 803–813 (2008).

    Article  CAS  Google Scholar 

  139. Niessner, A. et al. Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo. Atherosclerosis 189, 408–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Methe, H., Kim, J. O., Kofler, S., Nabauer, M. & Weis, M. Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arterioscler. Thromb. Vasc. Biol. 25, 1439–1445 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Coward, W. R., Marei, A., Yang, A., Vasa-Nicotera, M. M. & Chow, S. C. Statin-induced proinflammatory response in mitogen-activated peripheral blood mononuclear cells through the activation of caspase-1 and IL-18 secretion in monocytes. J. Immunol. 176, 5284–5292 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Rysz, J. et al. Nephroprotective and clinical potential of statins in dialyzed patients. Expert Opin. Ther. Targets 13, 541–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Pahan, K., Sheikh, F. G., Namboodiri, A. M. & Singh, I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest. 100, 2671–2679 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Paumelle, R. et al. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway. Circ. Res. 98, 361–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Schwarting, A. et al. Interferon-beta: a therapeutic for autoimmune lupus in MRL-Fas(lpr) mice. J. Am. Soc. Nephrol. 16, 3264–3272 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Barrat, F. J., Meeker, T., Chan, J. H., Guiducci, C. & Coffman, R. L. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 37, 3582–3586 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Froy, O., Hananela, A., Chapnika, N. & Madara, Z. Differential effect of insulin treatment on decreased levels of beta-defensins and Toll-like receptors in diabetic rats. Mol. Immunol. 44, 796–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Leon, C. G., Tory, R., Jia, J., Sivak, O. & Wasan, K. M. Discovery and development of toll-like teceptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm. Res. 25, 1751–1761 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bosshart, H. & Heinzelmann, M. Targeting bacterial endotoxin: two sides of a coin. Ann. NY Acad. Sci. 1096, 1–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Casiraghi, F. & Benigni, A. Toll-like receptors in the development of renal injury in systemic lupus erythematosus. Arch. Med. Sci. 5, S478–S491 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Banach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gluba, A., Banach, M., Hannam, S. et al. The role of Toll-like receptors in renal diseases. Nat Rev Nephrol 6, 224–235 (2010). https://doi.org/10.1038/nrneph.2010.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing