Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atherosclerosis in chronic kidney disease: the role of macrophages

Abstract

Patients with chronic kidney disease (CKD) are at increased risk of atherosclerotic cardiovascular disease and loss of renal parenchyma accelerates atherosclerosis in animal models. Macrophages are central to atherogenesis because they regulate cholesterol traffic and inflammation in the arterial wall. CKD influences macrophage behavior at multiple levels, rendering them proatherogenic. Even at normal creatinine levels, macrophages from uninephrectomized Apoe−/− mice are enriched in cholesterol owing to downregulation of cholesterol transporter ATP-binding cassette subfamily A member 1 levels and activation of nuclear factor κB, which leads to impaired cholesterol efflux. Interestingly, treatment with an angiotensin-II-receptor blocker (ARB) improves these effects. Moreover, atherosclerotic aortas from Apoe−/− mice transplanted into renal-ablated normocholesterolemic recipients show plaque progression and increased macrophage content instead of the substantial regression seen in recipient mice with intact kidneys. ARBs reduce atherosclerosis development in mice with partial renal ablation. These results, combined with the clinical benefits of angiotensin-converting-enzyme (ACE) inhibitors and ARBs in patients with CKD, suggest an important role for the angiotensin system in the enhanced susceptibility to atherosclerosis seen across the spectrum of CKD. The role of macrophages could explain why these therapies may be effective in end-stage renal disease, one of the few conditions in which statins show no clinical benefit.

Key Points

  • Even subtle chronic kidney disease (CKD) increases the risk of cardiovascular events in humans and worsens atherosclerosis in experimental models

  • CKD-associated inflammatory and oxidant stress promotes the infiltration and trapping of circulating monocytes in the arterial intima

  • CKD promotes the formation of foam cells by downregulating cholesterol efflux through activation of nuclear factor κB and repression of cholesterol transporter ATP-binding cassette subfamily A member 1

  • CKD modifies lipoproteins and makes them more susceptible to scavenging by macrophages and less capable of acting as acceptors of cellular cholesterol

  • Systemic and macrophage angiotensin II actions contribute to the enhanced susceptibility of patients with CKD to atherosclerosis

  • Treatment with antagonists and inhibitors of angiotensin II might be of particular value in the prevention of cardiovascular disease in patients with CKD

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential pathways by which CKD modulates the accumulation of arterial macrophages.
Figure 2: Potential mechanisms by which CKD modulates macrophage lipid handling.

Similar content being viewed by others

References

  1. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32 (Suppl.), S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Mann, J. F., Gerstein, H. C., Pogue, J., Bosch, J. & Yusuf, S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann. Intern. Med. 134, 629–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Muntner, P., He, J., Hamm, L., Loria, C. & Whelton, P. K. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J. Am. Soc. Nephrol. 13, 745–753 (2002).

    PubMed  Google Scholar 

  4. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hillege, H. L. et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 106, 1777–1782 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Glass, C. K. & Witztum, J. L. Atherosclerosis: the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Huo, Y. & Ley, K. Adhesion molecules and atherogenesis. Acta Physiol. Scand. 173, 35–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Peters, W. & Charo, I. F. Involvement of chemokine receptor 2 and its ligand, monocyte chemoattractant protein-1, in the development of atherosclerosis: lessons from knockout mice. Curr. Opin. Lipidol. 12, 175–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Smith, J. D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci. USA 92, 8264–8268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mach, F. et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40–CD40 ligand signaling in atherosclerosis. Proc. Natl Acad. Sci. USA 94, 1931–1936 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta, S. et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pinderski, L. J. et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ. Res. 90, 1064–1071 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Endemann, G. et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268, 11811–11816 (1993).

    CAS  PubMed  Google Scholar 

  15. Kodama, T. et al. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature 343, 531–535 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Babaev, V. R. et al. Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler. Thromb. Vasc. Biol. 20, 2593–2599 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Overton, C. D., Yancey, P. G., Major, A. S., Linton, M. F. & Fazio, S. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ. Res. 100, 670–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Yancey, P. G. et al. Importance of different pathways of cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 712–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Cuchel, M. & Rader, D. J. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 113, 2548–2555 (2006).

    Article  PubMed  Google Scholar 

  20. Yancey, P. G., Yu, H., Linton, M. F. & Fazio, S. A pathway-dependent on ApoE, ApoAI, and ABCA1 determines formation of buoyant high-density lipoprotein by macrophage foam cells. Arterioscler. Thromb. Vasc. Biol. 27, 1123–1131 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Linton, M. F., Atkinson, J. B. & Fazio, S. Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 267, 1034–1037 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Fazio, S. et al. Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc. Natl Acad. Sci. USA 94, 4647–4652 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trogan, E. et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl Acad. Sci. USA 103, 3781–3786 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Erbay, E. et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat. Med. 15, 1383–1391 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Babaev, V. R. et al. Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis. Cell. Metab. 8, 492–501 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Yancey, P. G. et al. Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler. Thromb. Vasc. Biol. 30, 787–795 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Amann, K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1599–1605 (2008).

    Article  PubMed  Google Scholar 

  30. Miyagi, M. et al. Impact of renal function on coronary plaque composition. Nephrol. Dial. Transplant. 25, 175–181 (2010).

    Article  PubMed  Google Scholar 

  31. Nicholls, S. J. et al. Comparison of coronary atherosclerotic volume in patients with glomerular filtration rates ≤60 versus >60 ml/min/1.73 m2: a meta-analysis of intravascular ultrasound studies. Am. J. Cardiol. 99, 813–816 (2007).

    Article  PubMed  Google Scholar 

  32. Rigatto, C. et al. Atheroma progression in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 291–298 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Bro, S. et al. Chronic renal failure accelerates atherogenesis in apolipoprotein E-deficient mice. J. Am. Soc. Nephrol. 14, 2466–2474 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Bro, S., Moeller, F., Andersen, C. B., Olgaard, K. & Nielsen, L. B. Increased expression of adhesion molecules in uremic atherosclerosis in apolipoprotein-E-deficient mice. J. Am. Soc. Nephrol. 15, 1495–1503 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Suganuma, E. et al. Antiatherogenic effects of angiotensin receptor antagonism in mild renal dysfunction. J. Am. Soc. Nephrol. 17, 433–441 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Bro, S., Binder, C. J., Witztum, J. L., Olgaard, K. & Nielsen, L. B. Inhibition of the renin–angiotensin system abolishes the proatherogenic effect of uremia in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 1080–1086 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Buzello, M. et al. The apolipoprotein E knockout mouse: a model documenting accelerated atherogenesis in uremia. J. Am. Soc. Nephrol. 14, 311–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Massy, Z. A. et al. Uremia accelerates both atherosclerosis and arterial calcification in apolipoprotein E knockout mice. J. Am. Soc. Nephrol. 16, 109–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Carrero, J. J., Yilmaz, M. I., Lindholm, B. & Stenvinkel, P. Cytokine dysregulation in chronic kidney disease: how can we treat it? Blood Purif. 26, 291–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Honda, H. et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am. J. Kidney Dis. 47, 139–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Pachaly, M. A. et al. Interleukin-6 is a better predictor of mortality as compared to C-reactive protein, homocysteine, pentosidine and advanced oxidation protein products in hemodialysis patients. Blood Purif. 26, 204–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Stinghen, A. E. et al. Increased plasma and endothelial cell expression of chemokines and adhesion molecules in chronic kidney disease. Nephron Clin. Pract. 111, c117–c126 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Suliman, M. E., Qureshi, A. R., Heimbürger, O., Lindholm, B. & Stenvinkel, P. Soluble adhesion molecules in end-stage renal disease: a predictor of outcome. Nephrol. Dial. Transplant. 21, 1603–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Serradell, M. et al. Uremic medium causes expression, redistribution and shedding of adhesion molecules in cultured endothelial cells. Haematologica 87, 1053–1061 (2002).

    CAS  PubMed  Google Scholar 

  45. Campean, V. et al. CD40–CD154 expression in calcified and non-calcified coronary lesions of patients with chronic renal failure. Atherosclerosis 190, 156–166 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Sela, S. et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2431–2438 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Yoon, J. W., Pahl, M. V. & Vaziri, N. D. Spontaneous leukocyte activation and oxygen-free radical generation in end-stage renal disease. Kidney Int. 71, 167–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Pahl, M. V., Vaziri, N. D., Yuan, J. & Adler, S. G. Upregulation of monocyte/macrophage HGFIN (Gpnmb/Osteoactivin) expression in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 5, 56–61 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Himmelfarb, J., Stenvinkel, P., Ikizler, T. A. & Hakim, R. M. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 62, 1524–1538 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Kaysen, G. A. & Eiserich, J. P. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J. Am. Soc. Nephrol. 15, 538–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Oberg, B. P. et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 65, 1009–1016 (2004).

    Article  PubMed  Google Scholar 

  52. Pupim, L. B., Himmelfarb, J., McMonagle, E., Shyr, Y. & Ikizler, T. A. Influence of initiation of maintenance hemodialysis on biomarkers of inflammation and oxidative stress. Kidney Int. 65, 2371–2379 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. D'Apolito, M. et al. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J. Clin. Invest. 120, 203–213 (2010).

    Article  PubMed  Google Scholar 

  54. Touyz, R. M., Yao, G., Quinn, M. T., Pagano, P. J. & Schiffrin, E. L. p47phox associates with the cytoskeleton through cortactin in human vascular smooth muscle cells: role in NAD(P)H oxidase regulation by angiotensin II. Arterioscler. Thromb. Vasc. Biol. 25, 512–518 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Z. et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 13, 1176–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Düzgünçinar, O. et al. Plasma myeloperoxidase is related to the severity of coronary artery disease. Acta Cardiol. 63, 147–152 (2008).

    Article  PubMed  Google Scholar 

  57. Meuwese, M. C. et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC–Norfolk Prospective Population Study. J. Am. Coll. Cardiol. 50, 159–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Grahl, D. A. et al. Associations between the CYBA 242C/T and the MPO −463G/A polymorphisms, oxidative stress and cardiovascular disease in chronic kidney disease patients. Blood Purif. 25, 210–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Pecoits-Filho, R. et al. A functional variant of the myeloperoxidase gene is associated with cardiovascular disease in end-stage renal disease patients. Kidney Int. Suppl. 84, S172–S176 (2003).

    Article  CAS  Google Scholar 

  60. Bro, S. Cardiovascular effects of uremia in apolipoprotein E-deficient mice. Dan. Med. Bull. 56, 177–192 (2009).

    CAS  PubMed  Google Scholar 

  61. Ivanovski, O. et al. The antioxidant N-acetylcysteine prevents accelerated atherosclerosis in uremic apolipoprotein E knockout mice. Kidney Int. 67, 2288–2294 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Boaz, M. et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356, 1213–1218 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Tepel, M., van der Giet, M., Statz, M., Jankowski, J. & Zidek, W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107, 992–995 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Himmelfarb, J. et al. Gamma-tocopherol and docosahexaenoic acid decrease inflammation in dialysis patients. J. Ren. Nutr. 17, 296–304 (2007).

    Article  PubMed  Google Scholar 

  65. Nanayakkara, P. W. et al. Randomized placebo-controlled trial assessing a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on plasma asymmetric dimethylarginine concentration in mild to moderate CKD. Am. J. Kidney Dis. 53, 41–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Mafra, D. et al. Alpha-tocopherol supplementation decreases electronegative low-density lipoprotein concentration [LDL(-)] in haemodialysis patients. Nephrol. Dial. Transplant. 24, 1587–1592 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, I. M. et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA 294, 56–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Sesso, H. D. et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. JAMA 300, 2123–2133 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Llodrá, J. et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA 101, 11779–11784 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Williams, K. J., Feig, J. E. & Fisher, E. A. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat. Clin. Pract. Cardiovasc. Med. 5, 91–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Trogan, E. et al. Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 24, 1714–1719 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Ponda, M. P., Barash, I., Feig, J. E., Fisher, E. A. & Skolnik, E. Y. Moderate kidney disease inhibits atherosclerosis regression. Atherosclerosis 210, 57–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Osada, S. et al. Alterations in proteoglycan components and histopathology of the peritoneum in uraemic and peritoneal dialysis (PD) patients. Nephrol. Dial. Transplant. 24, 3504–3512 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Yamamoto, Y. et al. Possible involvement of increased glycoxidation and lipid peroxidation of elastin in atherogenesis in haemodialysis patients. Nephrol. Dial. Transplant. 17, 630–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Nagao, T., Qin, C., Grosheva, I., Maxfield, F. R. & Pierini, L. M. Elevated cholesterol levels in the plasma membranes of macrophages inhibit migration by disrupting RhoA regulation. Arterioscler. Thromb. Vasc. Biol. 27, 1596–1602 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Zerbinatti, C. V. & Gore, R. W. Uptake of modified low-density lipoproteins alters actin distribution and locomotor forces in macrophages. Am. J. Physiol. Cell. Physiol. 284, C555–C561 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Chmielewski, M. et al. Expression of scavenger receptor CD36 in chronic renal failure patients. Artif. Organs 29, 608–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Wu, C. C. et al. Aberrant activation of the TNF-α system and production of Fas and scavenger receptors on monocytes in patients with end-stage renal disease. Artif. Organs 29, 701–707 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Park, Y. M., Febbraio, M. & Silverstein, R. L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest. 119, 136–145 (2009).

    CAS  PubMed  Google Scholar 

  80. Harb, D. et al. The role of the scavenger receptor CD36 in regulating mononuclear phagocyte trafficking to atherosclerotic lesions and vascular inflammation. Cardiovasc. Res. 83, 42–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Kuchibhotla, S. et al. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc. Res. 78, 185–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Marleau, S. et al. EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E-deficient mice from developing atherosclerotic lesions. FASEB J. 19, 1869–1871 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Ando, M., Lundkvist, I., Bergström, J. & Lindholm, B. Enhanced scavenger receptor expression in monocyte-macrophages in dialysis patients. Kidney Int. 49, 773–780 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, H. J., Moradi, H., Yuan, J., Norris, K. & Vaziri, N. D. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am. J. Physiol. Renal Physiol. 296, F1297–F1306 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Moradi, H., Yuan, J., Ni, Z., Norris, K. & Vaziri, N. D. Reverse cholesterol transport pathway in experimental chronic renal failure. Am. J. Nephrol. 30, 147–154 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Zager, R. A., Johnson, A. C., Hanson, S. Y. & Shah, V. O. Acute tubular injury causes dysregulation of cellular cholesterol transport proteins. Am. J. Pathol. 163, 313–320 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Ando, M., Gafvels, M., Bergström, J., Lindholm, B. & Lundkvist, I. Uremic serum enhances scavenger receptor expression and activity in the human monocytic cell line U937. Kidney Int. 51, 785–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Konishi, Y. et al. Enhanced gene expression of scavenger receptor in peripheral blood monocytes from patients on cuprophane haemodialysis. Nephrol. Dial. Transplant. 12, 1167–1172 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, X. & Rader, D. J. Molecular regulation of macrophage reverse cholesterol transport. Curr. Opin. Cardiol. 22, 368–372 (2007).

    Article  PubMed  Google Scholar 

  90. Yvan-Charvet, L., Wang, N. & Tall, A. R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 30, 139–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Zuo, Y. et al. Renal dysfunction potentiates foam cell formation by repressing ABCA1. Arterioscler. Thromb. Vasc. Biol. 29, 1277–1282 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Cardinal, H., Raymond, M. A., Hebert, M. J. & Madore, F. Uraemic plasma decreases the expression of ABCA1, ABCG1 and cell-cycle genes in human coronary arterial endothelial cells. Nephrol. Dial. Transplant. 22, 409–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Baranova, I. et al. Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells. Infect. Immun. 70, 2995–3003 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Chen, M., Li, W., Wang, N., Zhu, Y. & Wang, X. ROS and NF-κB but not LXR mediate IL-1β signaling for the downregulation of ATP-binding cassette transporter A1. Am. J. Physiol. Cell. Physiol. 292, C1493–C1501 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Ferreira, V. et al. Macrophage-specific inhibition of NF-κB activation reduces foam-cell formation. Atherosclerosis 192, 283–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Tang, C., Kanter, J. E., Bornfeldt, K. E., Leboeuf, R. C. & Oram, J. F. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J. Lipid Res. 51, 1719–1728 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Wang, Y., Kurdi-Haidar, B. & Oram, J. F. LXR-mediated activation of macrophage stearoyl-CoA desaturase generates unsaturated fatty acids that destabilize ABCA1. J. Lipid Res. 45, 972–980 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Bohlender, J. M., Franke, S., Stein, G. & Wolf, G. Advanced glycation end products and the kidney. Am. J. Physiol. Renal Physiol. 289, F645–F659 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Pedersen, T. X. et al. Effect of treatment with human apolipoprotein A-I on atherosclerosis in uremic apolipoprotein-E deficient mice. Atherosclerosis 202, 372–381 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Francone, O. L. et al. Increased cholesterol deposition, expression of scavenger receptors, and response to chemotactic factors in Abca1-deficient macrophages. Arterioscler. Thromb. Vasc. Biol. 25, 1198–1205 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, X. et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 283, 22930–22941 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Gollapudi, P., Yoon, J. W., Gollapudi, S., Pahl, M. V. & Vaziri, N. D. Leukocyte toll-like receptor expression in end-stage kidney disease. Am. J. Nephrol. 31, 247–254 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Kuroki, Y. et al. A study of innate immunity in patients with end-stage renal disease: special reference to toll-like receptor-2 and -4 expression in peripheral blood monocytes of hemodialysis patients. Int. J. Mol. Med. 19, 783–790 (2007).

    CAS  PubMed  Google Scholar 

  104. Tsimikas, S. et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N. Engl. J. Med. 353, 46–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, J. & Rosner, M. H. Lipid abnormalities associated with end-stage renal disease. Semin. Dial. 19, 32–40 (2006).

    Article  PubMed  Google Scholar 

  106. Podrez, E. A. et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J. Clin. Invest. 105, 1095–1108 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Hörkkö, S., Huttunen, K., Kervinen, K. & Kesäniemi, Y. A. Decreased clearance of uraemic and mildly carbamylated low-density lipoprotein. Eur. J. Clin. Invest. 24, 105–113 (1994).

    Article  PubMed  Google Scholar 

  108. Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Tsimihodimos, V., Dounousi, E. & Siamopoulos, K. C. Dyslipidemia in chronic kidney disease: an approach to pathogenesis and treatment. Am. J. Nephrol. 28, 958–973 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Mekki, K., Bouchenak, M., Remaoun, M. & Belleville, J. L. Effect of long-term hemodialysis on plasma lecithin: cholesterol acyltransferase activity and the amounts and compositions of HDL2 and HDL3 in hemodialysis-treated patients with chronic renal failure: a 9-year longitudinal study. Med. Sci. Monit. 10, CR439–CR446 (2004).

    CAS  PubMed  Google Scholar 

  112. Moradi, H., Pahl, M. V., Elahimehr, R. & Vaziri, N. D. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl. Res. 153, 77–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Gugliucci, A. et al. Acrolein inactivates paraoxonase 1: changes in free acrolein levels after hemodialysis correlate with increases in paraoxonase 1 activity in chronic renal failure patients. Clin. Chim. Acta 384, 105–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Gugliucci, A. et al. Paraoxonase-1 concentrations in end-stage renal disease patients increase after hemodialysis: correlation with low molecular AGE adduct clearance. Clin. Chim. Acta 377, 213–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Jurek, A., Turyna, B., Kubit, P. & Klein, A. LDL susceptibility to oxidation and HDL antioxidant capacity in patients with renal failure. Clin. Biochem. 39, 19–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Kalantar-Zadeh, K., Kopple, J. D., Kamranpour, N., Fogelman, A. M. & Navab, M. HDL-inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int. 72, 1149–1156 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Kronenberg, F., Ikewaki, K., Schaefer, J. R., Konig, P. & Dieplinger, H. Kinetic studies of atherogenic lipoproteins in hemodialysis patients: do they tell us more about their pathology? Semin. Dial. 20, 554–560 (2007).

    Article  PubMed  Google Scholar 

  118. Vaziri, N. D., Moradi, H., Pahl, M. V., Fogelman, A. M. & Navab, M. In vitro stimulation of HDL anti-inflammatory activity and inhibition of LDL pro-inflammatory activity in the plasma of patients with end-stage renal disease by an apoA-1 mimetic peptide. Kidney Int. 76, 437–444 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Wong, J., Quinn, C. M., Gelissen, I. C., Jessup, W. & Brown, A. J. The effect of statins on ABCA1 and ABCG1 expression in human macrophages is influenced by cellular cholesterol levels and extent of differentiation. Atherosclerosis 196, 180–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Shoji, T. et al. Advanced atherosclerosis in predialysis patients with chronic renal failure. Kidney Int. 61, 2187–2192 (2002).

    Article  PubMed  Google Scholar 

  121. Sone, H. et al. Statins downregulate ATP-binding-cassette transporter A1 gene expression in macrophages. Biochem. Biophys. Res. Commun. 316, 790–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Tamehiro, N. et al. Sterol regulatory element-binding protein-2- and liver X receptor-driven dual promoter regulation of hepatic ABC transporter A1 gene expression: mechanism underlying the unique response to cellular cholesterol status. J. Biol. Chem. 282, 21090–21099 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Argmann, C. A. et al. Regulation of macrophage cholesterol efflux through hydroxymethylglutaryl-CoA reductase inhibition: a role for RhoA in ABCA1-mediated cholesterol efflux. J. Biol. Chem. 280, 22212–22221 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Becker, L. et al. A macrophage sterol-responsive network linked to atherogenesis. Cell. Metab. 11, 125–135 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Qiu, G. & Hill, J. S. Atorvastatin inhibits ABCA1 expression and cholesterol efflux in THP-1 macrophages by an LXR-dependent pathway. J. Cardiovasc. Pharmacol. 51, 388–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  127. Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N. Engl. J. Med. 334, 939–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Baker, W. L. et al. Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors or angiotensin II-receptor blockers for ischemic heart disease. Ann. Intern. Med. 151, 861–871 (2009).

    Article  PubMed  Google Scholar 

  129. Yusuf, S. et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N. Engl. J. Med. 342, 145–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Ayabe, N. et al. Transiently heightened angiotensin II has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis 184, 312–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. da Cunha, V. et al. Angiotensin II induces histomorphologic features of unstable plaque in a murine model of accelerated atherosclerosis. J. Vasc. Surg. 44, 364–371 (2006).

    Article  PubMed  Google Scholar 

  132. da Cunha, V. et al. Enalapril attenuates angiotensin II-induced atherosclerosis and vascular inflammation. Atherosclerosis 178, 9–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Daugherty, A., Manning, M. W. & Cassis, L. A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 105, 1605–1612 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Sasaki, T. et al. AT1 blockade attenuates atherosclerotic plaque destabilization accompanied by the suppression of cathepsin S activity in apoE-deficient mice. Atherosclerosis 210, 430–437 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Xu, H. X. et al. Decreased infiltration of macrophages and inhibited activation of nuclear factor-kappa B in blood vessels: a possible mechanism for the anti-atherogenic effects of losartan. Acta Cardiol. 62, 607–613 (2007).

    Article  PubMed  Google Scholar 

  136. Nobuhiko, A. et al. Angiotensin II amplifies macrophage-driven atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 2143–2148 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Blessing, E. et al. Anti-atherosclerotic properties of telmisartan in advanced atherosclerotic lesions in apolipoprotein E deficient mice. Atherosclerosis 199, 295–303 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Takahashi, M. et al. Angiotensin II and tumor necrosis factor-α synergistically promote monocyte chemoattractant protein-1 expression: roles of NF-κB, p38, and reactive oxygen species. Am. J. Physiol. Heart Circ. Physiol. 294, H2879–H2888 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Daugherty, A., Rateri, D. L., Lu, H., Inagami, T. & Cassis, L. A. Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation 110, 3849–3857 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Okamura, A. et al. Upregulation of renin–angiotensin system during differentiation of monocytes to macrophages. J. Hypertens. 17, 537–545 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Sales, V. L. et al. Angiotensin type 2 receptor is expressed in murine atherosclerotic lesions and modulates lesion evolution. Circulation 112, 3328–3336 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Montecucco, F., Pende, A. & Mach, F. The renin–angiotensin system modulates inflammatory processes in atherosclerosis: evidence from basic research and clinical studies. Mediators Inflamm. doi:10.1155/2009/752406.

    Article  CAS  Google Scholar 

  143. AbdAlla, S., Lother, H., Langer, A., el Faramawy, Y. & Quitterer, U. Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. Cell 119, 343–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Dörffel, Y. et al. Preactivated monocytes from hypertensive patients as a factor for atherosclerosis? Atherosclerosis 157, 151–160 (2001).

    Article  PubMed  Google Scholar 

  145. Cassis, L. A., Rateri, D. L., Lu, H. & Daugherty, A. Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms. Arterioscler. Thromb. Vasc. Biol. 27, 380–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Fukuda, D., Sata, M., Ishizaka, N. & Nagai, R. Critical role of bone marrow angiotensin II type 1 receptor in the pathogenesis of atherosclerosis in apolipoprotein E deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 90–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Lu, H. et al. Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J. Clin. Invest. 118, 984–993 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Tsubakimoto, Y. et al. Bone marrow angiotensin AT1 receptor regulates differentiation of monocyte lineage progenitors from hematopoietic stem cells. Arterioscler. Thromb. Vasc. Biol. 29, 1529–1536 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Ulrich, C., Heine, G. H., Seibert, E., Fliser, D. & Girndt, M. Circulating monocyte subpopulations with high expression of angiotensin-converting enzyme predict mortality in patients with end-stage renal disease. Nephrol. Dial. Transplant. 25, 2265–2272 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Nakaya, K. et al. Telmisartan enhances cholesterol efflux from THP-1 macrophages by activating PPARγ. J. Atheroscler. Thromb. 14, 133–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Takata, Y. et al. Transcriptional repression of ATP-binding cassette transporter A1 gene in macrophages: a novel atherosclerotic effect of angiotensin II. Circ. Res. 97, e88–e96 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Wang, Y. et al. Angiotensin II increases the cholesterol content of foam cells via down-regulating the expression of ATP-binding cassette transporter A1. Biochem. Biophys. Res. Commun. 353, 650–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Takaya, T. et al. Angiotensin II type 1 receptor blocker telmisartan suppresses superoxide production and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. Atherosclerosis 186, 402–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Yoshiyama, M. et al. Angiotensin blockade inhibits increased JNKs, AP-1 and NF-κB DNA-binding activities in myocardial infarcted rats. J. Mol. Cell. Cardiol. 33, 799–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Calkin, A. C. et al. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia 51, 1731–1740 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Koh, K. K., Han, S. H., Oh, P. C., Shin, E. K. & Quon, M. J. Combination therapy for treatment or prevention of atherosclerosis: focus on the lipid–RAAS interaction. Atherosclerosis 209, 307–313 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Van Antwerpen, P. et al. Captopril inhibits the oxidative modification of apolipoprotein B-100 caused by myeloperoxydase in a comparative in vitro assay of angiotensin converting enzyme inhibitors. Eur. J. Pharmacol. 537, 31–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Kojima, C., Ino, J., Ishii, H., Nitta, K. & Yoshida, M. MMP-9 inhibition by ACE inhibitor reduces oxidized LDL-mediated foam-cell formation. J. Atheroscler. Thromb. 17, 97–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. de Nigris, F. et al. Chronic treatment with sulfhydryl angiotensin-converting enzyme inhibitors reduce susceptibility of plasma LDL to in vitro oxidation, formation of oxidation-specific epitopes in the arterial wall, and atherogenesis in apolipoprotein E knockout mice. Int. J. Cardiol. 81, 107–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Tokmakova, M. P. et al. Chronic kidney disease, cardiovascular risk, and response to angiotensin-converting enzyme inhibition after myocardial infarction: the Survival And Ventricular Enlargement (SAVE) study. Circulation 110, 3667–3673 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Li, P. K., Chow, K. M., Wong, T. Y., Leung, C. B. & Szeto, C. C. Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. A randomized, controlled study. Ann. Intern. Med. 139, 105–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Zannad, F. et al. Prevention of cardiovascular events in end-stage renal disease: results of a randomized trial of fosinopril and implications for future studies. Kidney Int. 70, 1318–1324 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Akbari, A. et al. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in peritoneal dialysis: systematic review and meta-analysis of randomized controlled trials. Perit. Dial. Int. 29, 554–561 (2009).

    CAS  PubMed  Google Scholar 

  164. Balamuthusamy, S. et al. Renin angiotensin system blockade and cardiovascular outcomes in patients with chronic kidney disease and proteinuria: a meta-analysis. Am. Heart J. 155, 791–805 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Berger, A. K., Duval, S. & Krumholz, H. M. Aspirin, beta-blocker, and angiotensin-converting enzyme inhibitor therapy in patients with end-stage renal disease and an acute myocardial infarction. J. Am. Coll. Cardiol. 42, 201–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Efrati, S. et al. ACE inhibitors and survival of hemodialysis patients. Am. J. Kidney Dis. 40, 1023–1029 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Fang, W., Oreopoulos, D. G. & Bargman, J. M. Use of ACE inhibitors or angiotensin receptor blockers and survival in patients on peritoneal dialysis. Nephrol. Dial. Transplant. 23, 3704–3710 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Hou, F. F. et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med. 354, 131–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. McCullough, P. A., Sandberg, K. R., Yee, J. & Hudson, M. P. Mortality benefit of angiotensin-converting enzyme inhibitors after cardiac events in patients with end-stage renal disease. J. Renin Angiotensin Aldosterone Syst. 3, 188–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Suzuki, H. et al. Effect of angiotensin receptor blockers on cardiovascular events in patients undergoing hemodialysis: an open-label randomized controlled trial. Am. J. Kidney Dis. 52, 501–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Takahashi, A. et al. Candesartan, an angiotensin II type-1 receptor blocker, reduces cardiovascular events in patients on chronic haemodialysis—a randomized study. Nephrol. Dial. Transplant. 21, 2507–2512 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work described in this Review was supported in part by grants from NIH HL087061 (V. Kon) and DK044757 (V. Kon and S. Fazio), HL086988 and HL065405 (M. F. Linton), HL65709 and HL57986 (S. Fazio), and the Lipid, Lipoprotein and Atherosclerosis Core of the Vanderbilt Mouse Metabolic Phenotyping Center (NIH DK59637-01).

Author information

Authors and Affiliations

Authors

Contributions

V. Kon, M. F. Linton and S. Fazio contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Sergio Fazio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon, V., Linton, M. & Fazio, S. Atherosclerosis in chronic kidney disease: the role of macrophages. Nat Rev Nephrol 7, 45–54 (2011). https://doi.org/10.1038/nrneph.2010.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing