Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelial dysfunction as a potential contributor in diabetic nephropathy

This article has been updated

Abstract

The mechanisms that drive the development of diabetic nephropathy remain undetermined. Only 30–40% of patients with diabetes mellitus develop overt nephropathy, which suggests that other contributing factors besides the diabetic state are required for the progression of diabetic nephropathy. Endothelial dysfunction is associated with human diabetic nephropathy and retinopathy, and advanced diabetic glomerulopathy often exhibits thrombotic microangiopathy, including glomerular capillary microaneurysms and mesangiolysis, which are typical manifestations of endothelial dysfunction in the glomerulus. Likewise, diabetic mice with severe endothelial dysfunction owing to deficiency of endothelial nitric oxide synthase develop progressive nephropathy and retinopathy similar to the advanced lesions observed in humans with diabetes mellitus. Additionally, inhibitors of the renin–angiotensin system fail to be renoprotective in some individuals with diabetic nephropathy (due in part to aldosterone breakthrough) and in some mouse models of the disease. In this Review, we discuss the clinical and experimental evidence that supports a role for endothelial nitric oxide deficiency and subsequent endothelial dysfunction in the progression of diabetic nephropathy and retinopathy. If endothelial dysfunction is the key factor required for diabetic nephropathy, then agents that improve endothelial function or raise intraglomerular nitric oxide level could be beneficial in the treatment of diabetic nephropathy.

Key Points

  • Not all patients with diabetes mellitus develop advanced diabetic nephropathy

  • Similar to some patients with diabetes, animal models of the disease usually develop only early manifestations of diabetic nephropathy (such as mesangial expansion) and nephropathy (such as pericyte ghost formation)

  • Severe endothelial dysfunction might be required for the development of advanced diabetic nephropathy in humans as well as animals

  • Not all patients with diabetic nephropathy benefit from treatment with inhibitors of the renin–angiotensin system (RAS)

  • The effects of RAS inhibitors on diabetic nephropathy and retinopathy might differ

  • Failure of RAS inhibitors to prevent the progression of diabetic nephropathy might be accounted for by endothelial dysfunction

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that contribute to the development of endothelial dysfunction in patients with diabetes.
Figure 2: Development of acellular capillaries in the retina of diabetic eNOS-knockout mice.
Figure 3: Potential mechanisms by which endothelial nitric oxide deficiency causes advanced renal injury in diabetes.
Figure 4: Proposed mechanism by which aldosterone causes renal injury and hypertension in diabetes independent of angiotensin II.

Similar content being viewed by others

Change history

  • 09 November 2010

    In the version of this article initially published online, there was a mistake in Figure 2. The errors have been corrected in all electronic versions of the text.

References

  1. Bojestig, M., Arnqvist, H. J., Hermansson, G., Karlberg, B. E. & Ludvigsson, J. Declining incidence of nephropathy in insulin-dependent diabetes mellitus. N. Engl. J. Med. 330, 15–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Hovind, P. et al. Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care 26, 1258–1264 (2003).

    Article  PubMed  Google Scholar 

  3. Saito, Y. et al. Mesangiolysis in diabetic glomeruli: its role in the formation of nodular lesions. Kidney Int. 34, 389–396 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Stout, L. C., Kumar, S. & Whorton, E. B. Insudative lesions—their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Hum. Pathol. 25, 1213–1227 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Jensen, T. Increased plasma concentration of von Willebrand factor in insulin dependent diabetics with incipient nephropathy. BMJ 298, 27–28 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jensen, T., Bjerre-Knudsen, J., Feldt-Rasmussen, B. & Deckert, T. Features of endothelial dysfunction in early diabetic nephropathy. Lancet 1, 461–463 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Stehouwer, C. D. et al. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet 340, 319–323 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Stehouwer, C. D., Stroes, E. S., Hackeng, W. H., Mulder, P. G. & Den Ottolander, G. J. von Willebrand factor and development of diabetic nephropathy in IDDM. Diabetes 40, 971–976 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Parving, H. H. et al. Macro-microangiopathy and endothelial dysfunction in NIDDM patients with and without diabetic nephropathy. Diabetologia 39, 1590–1597 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Fioretto, P. et al. Heterogeneous nature of microalbuminuria in NIDDM: studies of endothelial function and renal structure. Diabetologia 41, 233–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Nieuwdorp, M. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55, 1127–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Nieuwdorp, M. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55, 480–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Dávila-Esqueda, M. E., Vertiz-Hernández, A. A. & Martínez-Morales, F. Comparative analysis of the renoprotective effects of pentoxifylline and vitamin E on streptozotocin-induced diabetes mellitus. Ren. Fail. 27, 115–122 (2005).

    Article  PubMed  Google Scholar 

  14. Toyoda, M., Najafian, B., Kim, Y., Caramori, M. L. & Mauer, M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 56, 2155–2160 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Fioretto, P. et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 39, 1569–1576 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Gambara, V., Mecca, G., Remuzzi, G. & Bertani, T. Heterogeneous nature of renal lesions in type II diabetes. J. Am. Soc. Nephrol. 3, 1458–1466 (1993).

    CAS  PubMed  Google Scholar 

  17. White, K. E. & Bilous, R. W. Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease. J. Am. Soc. Nephrol. 11, 1667–1673 (2000).

    CAS  PubMed  Google Scholar 

  18. Lane, P. H., Steffes, M. W., Fioretto, P. & Mauer, S. M. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney Int. 43, 661–667 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Shibata, R. et al. Involvement of asymmetric dimethylarginine (ADMA) in tubulointerstitial ischaemia in the early phase of diabetic nephropathy. Nephrol. Dial. Transplant. 24, 1162–1169 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Bangstad, H. J., Seljeflot, I., Berg, T. J. & Hanssen, K. F. Renal tubulointerstitial expansion is associated with endothelial dysfunction and inflammation in type 1 diabetes. Scand. J. Clin. Lab. Invest. 69, 138–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Kosugi, T. et al. Lowering blood pressure blocks mesangiolysis and mesangial nodules, but not tubulointerstitial injury, in diabetic eNOS knockout mice. Am. J. Pathol. 174, 1221–1229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Temm, C. & Dominguez, J. H. Microcirculation: nexus of comorbidities in diabetes. Am. J. Physiol. Renal Physiol. 293, F486–F493 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Brodsky, S. V., Morrishow, A. M., Dharia, N., Gross, S. S. & Goligorsky, M. S. Glucose scavenging of nitric oxide. Am. J. Physiol. Renal Physiol. 280, F480–F486 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Bucala, R., Tracey, K. J. & Cerami, A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Invest. 87, 432–438 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khosla, U. M. et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 67, 1739–1742 (2005).

    Article  PubMed  Google Scholar 

  26. Xiong, Y., Lei, M., Fu, S. & Fu, Y. Effect of diabetic duration on serum concentrations of endogenous inhibitor of nitric oxide synthase in patients and rats with diabetes. Life Sci. 77, 149–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ceriello, A. et al. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia 44, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Noiri, E. et al. Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension 40, 535–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Y. et al. T-786C polymorphism of the endothelial nitric oxide synthase gene is associated with albuminuria in the diabetes heart study. J. Am. Soc. Nephrol. 16, 1085–1090 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Neugebauer, S., Baba, T. & Watanabe, T. Association of the nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes. Diabetes 49, 500–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Shin Shin, Y. et al. Relations between eNOS Glu298Asp polymorphism and progression of diabetic nephropathy. Diabetes Res. Clin. Pract. 65, 257–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Zanchi, A. et al. Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney Int. 57, 405–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Degen, B., Schmidt, S. & Ritz, E. A polymorphism in the gene for the endothelial nitric oxide synthase and diabetic nephropathy. Nephrol. Dial. Transplant. 16, 185 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, S., Qu, H. & Qiu, M. Allele A in intron 4 of ecNOS gene will not increase the risk of diabetic nephropathy in type 2 diabetes of Chinese population. Nephron 91, 768 (2002).

    Article  PubMed  Google Scholar 

  35. Rippin, J. D. et al. Nitric oxide synthase gene polymorphisms and diabetic nephropathy. Diabetologia 46, 426–428 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Shimizu, T., Onuma, T., Kawamori, R., Makita, Y. & Tomino, Y. Endothelial nitric oxide synthase gene and the development of diabetic nephropathy. Diabetes Res. Clin. Pract. 58, 179–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hohenstein, B. et al. Analysis of NO-synthase expression and clinical risk factors in human diabetic nephropathy. Nephrol. Dial. Transplant. 23, 1346–1354 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Sugimoto, H. et al. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy. Diabetologia 41, 1426–1434 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Brodsky, S. V., Gao, S., Li, H. & Goligorsky, M. S. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 283, H2130–H2139 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Komers, R. et al. Altered endothelial nitric oxide synthase targeting and conformation and caveolin-1 expression in the diabetic kidney. Diabetes 55, 1651–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Mogyorosi, A. & Ziyadeh, F. N. Increased decorin mRNA in diabetic mouse kidney and in mesangial and tubular cells cultured in high glucose. Am. J. Physiol. 275, F827–F832 (1998).

    CAS  PubMed  Google Scholar 

  42. Flyvbjerg, A., Bennett, W. F., Rasch, R., Kopchick, J. J. & Scarlett, J. A. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Diabetes 48, 377–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Inada, A. et al. A model for diabetic nephropathy: advantages of the inducible cAMP early repressor transgenic mouse over the streptozotocin-induced diabetic mouse. J. Cell Physiol. 215, 383–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Breyer, M. D. et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 16, 27–45 (2005).

    Article  PubMed  Google Scholar 

  45. Fujimoto, M. et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem. Biophys. Res. Commun. 305, 1002–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, A. et al. Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am. J. Physiol. Renal Physiol. 293, F1657–F1665 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Tay, Y. C. et al. Can murine diabetic nephropathy be separated from superimposed acute renal failure? Kidney Int. 68, 391–398 (2005).

    Article  PubMed  Google Scholar 

  48. Kanetsuna, Y. et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am. J. Pathol. 170, 1473–1484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakagawa, T. et al. Diabetic eNOS knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol 18, 539–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Brosius, F. C. 3rd et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2503–2512 (2009).

    Article  PubMed  Google Scholar 

  51. Borch-Johnsen, K., Kreiner, S. & Deckert, T. Mortality of type 1 (insulin-dependent) diabetes mellitus in Denmark: a study of relative mortality in 2,930 Danish type 1 diabetic patients diagnosed from 1933 to 1972. Diabetologia 29, 767–772 (1986).

    Article  CAS  PubMed  Google Scholar 

  52. Groop, P. H. et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58, 1651–1658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakagawa, T., Kosugi, T., Haneda, M., Rivard, C. J. & Long, D. A. Abnormal angiogenesis in diabetic nephropathy. Diabetes 58, 1471–1478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ichinose, K. et al. 2-(8-Hydroxy-6-methoxy-1-oxo-1h-2-benzopyran-3-yl) propionic acid, an inhibitor of angiogenesis, ameliorates renal alterations in obese type 2 diabetic mice. Diabetes 55, 1232–1242 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Ichinose, K. et al. Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model. Diabetes 54, 2891–2903 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto, Y. et al. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53, 1831–1840 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Guo, M. et al. A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy. J. Anat. 207, 813–821 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nakagawa, T. Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease. Am. J. Physiol. Renal Physiol. 292, F1665–F1672 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Nakagawa, T. et al. Uncoupling of vascular endothelial growth factor with nitric oxide as a mechanism for diabetic vasculopathy. J. Am. Soc. Nephrol. 17, 736–745 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, P. L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Barber, A. J. et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest. Ophthalmol. Vis. Sci. 46, 2210–2218 (2005).

    Article  PubMed  Google Scholar 

  62. Feit-Leichman, R. A. et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest. Ophthalmol. Vis. Sci. 46, 4281–4287 (2005).

    Article  PubMed  Google Scholar 

  63. Barber, A. J., Antonetti, D. A. & Gardner, T. W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest. Ophthalmol. Vis. Sci. 41, 3561–3568 (2000).

    CAS  PubMed  Google Scholar 

  64. Rungger-Brändle, E., Dosso, A. A. & Leuenberger, P. M. Glial reactivity, an early feature of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 41, 1971–1980 (2000).

    PubMed  Google Scholar 

  65. Mizutani, M., Gerhardinger, C. & Lorenzi, M. Müller cell changes in human diabetic retinopathy. Diabetes 47, 445–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Li, Q. et al. Diabetic eNOS knockout mice develop accelerated retinopathy. Invest. Ophthalmol. Vis. Sci. 51, 5240–5246 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Feng, D. et al. von Willebrand factor and retinal circulation in early-stage retinopathy of type 1 diabetes. Diabetes Care 23, 1694–1698 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Quiroz, Y. et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. Am. J. Physiol. Renal Physiol. 281, F38–F47 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Edwards, R. M. & Trizna, W. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors. J. Am. Soc. Nephrol. 4, 1127–1132 (1993).

    CAS  PubMed  Google Scholar 

  70. Patzak, A. et al. Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in mice. Acta Physiol. Scand. 181, 439–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Sánchez-Lozada, L. G. et al. Mild hyperuricemia induces glomerular hypertension in normal rats. Am. J. Physiol. Renal Physiol. 283, F1105–F1110 (2002).

    Article  PubMed  Google Scholar 

  72. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Flyvbjerg, A., Schrijvers, B. F., De Vriese, A. S., Tilton, R. G. & Rasch, R. Compensatory glomerular growth after unilateral nephrectomy is VEGF dependent. Am. J. Physiol. Endocrinol. Metab. 283, E362–E366 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. de Vriese, A. S. et al. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J. Am. Soc. Nephrol. 12, 993–1000 (2001).

    CAS  Google Scholar 

  75. Flyvbjerg, A. et al. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 51, 3090–3094 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Sato, W. et al. The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic nephropathy. Lab. Invest. 88, 949–961 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Bussolati, B. et al. Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am. J. Pathol. 159, 993–1008 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kang, D. H., Hughes, J., Mazzali, M., Schreiner, G. F. & Johnson, R. J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol. 12, 1448–1457 (2001).

    CAS  PubMed  Google Scholar 

  79. Shimizu, A. et al. Vascular endothelial growth factor165 resolves glomerular inflammation and accelerates glomerular capillary repair in rat anti-glomerular basement membrane glomerulonephritis. J. Am. Soc. Nephrol. 15, 2655–2665 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakayama, T. et al. Endothelial von Willebrand factor release due to eNOS deficiency predisposes to thrombotic microangiopathy in mouse aging kidney. Am. J. Pathol. 176, 2198–2208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Farquhar, A., MacDonald, M. K. & Ireland, J. T. The role of fibrin deposition in diabetic glomerulosclerosis: a light, electron and immunofluorescence microscopy study. J. Clin. Pathol. 25, 657–667 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Morgan, C. L. et al. The prevalence of multiple diabetes-related complications. Diabet. Med. 17, 146–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. El-Asrar, A. M., Al-Rubeaan, K. A., Al-Amro, S. A., Moharram, O. A. & Kangave, D. Retinopathy as a predictor of other diabetic complications. Int. Ophthalmol. 24, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Rossing, P., Hougaard, P. & Parving, H. H. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care 25, 859–864 (2002).

    Article  PubMed  Google Scholar 

  86. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl. J. Med. 342, 381–389 (2000).

  87. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317, 703–713 (1998).

  88. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355, 253–259 (2000).

  92. Patel, A. et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370, 829–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Mauer, M. et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N. Engl. J. Med. 361, 40–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chaturvedi, N. et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect. 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet 372, 1394–1402 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Sjølie, A. K. et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect. 2): a randomised placebo-controlled trial. Lancet 372, 1385–1393 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Bilous, R. et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann. Intern. Med. 151, 11–20 (2009).

    Article  PubMed  Google Scholar 

  97. Mathiesen, E. R., Hommel, E., Giese, J. & Parving, H. H. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ 303, 81–87 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Berlowitz, D. R. et al. Hypertension management in patients with diabetes: the need for more aggressive therapy. Diabetes Care 26, 355–359 (2003).

    Article  PubMed  Google Scholar 

  99. Tomlinson, J. W., Owen, K. R. & Close, C. F. Treating hypertension in diabetic nephropathy. Diabetes Care 26, 1802–1805 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Sato, A., Hayashi, K., Naruse, M. & Saruta, T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 41, 64–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Schjoedt, K. J., Andersen, S., Rossing, P., Tarnow, L. & Parving, H. H. Aldosterone escape during blockade of the renin-angiotensin-aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia 47, 1936–1939 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Mehdi, U. F., Adams-Huet, B., Raskin, P., Vega, G. L. & Toto, R. D. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2641–2650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Papaioannou, G. I. et al. Brachial artery reactivity in asymptomatic patients with type 2 diabetes mellitus and microalbuminuria (from the Detection of Ischemia in Asymptomatic Diabetics-brachial artery reactivity study). Am. J. Cardiol. 94, 294–299 (2004).

    Article  PubMed  Google Scholar 

  104. Stehouwer, C. D. et al. Microalbuminuria is associated with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes: further evidence for a link between microalbuminuria and endothelial dysfunction—the Hoorn Study. Kidney Int. Suppl. S42–S44 (2004).

  105. Schalkwijk, C. G., Smulders, R. A., Lambert, J., Donker, A. J. & Stehouwer, C. D. ACE-inhibition modulates some endothelial functions in healthy subjects and in normotensive type 1 diabetic patients. Eur. J. Clin. Invest. 30, 853–860 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Perregaux, D. et al. Brachial vascular reactivity in blacks. Hypertension 36, 866–871 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Dries, D. L. et al. Racial differences in the outcome of left ventricular dysfunction. N. Engl. J. Med. 340, 609–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Dries, D. L., Strong, M. H., Cooper, R. S. & Drazner, M. H. Efficacy of angiotensin-converting enzyme inhibition in reducing progression from asymptomatic left ventricular dysfunction to symptomatic heart failure in black and white patients. J. Am. Coll. Cardiol. 40, 311–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Julius, S. et al. Cardiovascular risk reduction in hypertensive black patients with left ventricular hypertrophy: the LIFE study. J. Am. Coll. Cardiol. 43, 1047–1055 (2004).

    Article  PubMed  Google Scholar 

  110. Jawa, A., Nachimuthu, S., Pendergrass, M., Asnani, S. & Fonseca, V. Impaired vascular reactivity in African-American patients with type 2 diabetes mellitus and microalbuminuria or proteinuria despite angiotensin-converting enzyme inhibitor therapy. J. Clin. Endocrinol. Metab. 91, 31–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Muldowney, J. A. 3rd, Davis, S. N., Vaughan, D. E. & Brown, N. J. NO synthase inhibition increases aldosterone in humans. Hypertension 44, 739–745 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Hanke, C. J. & Campbell, W. B. Endothelial cell nitric oxide inhibits aldosterone synthesis in zona glomerulosa cells: modulation by oxygen. Am. J. Physiol. Endocrinol. Metab. 279, E846–E854 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Arima, S. et al. Endothelium-derived nitric oxide modulates vascular action of aldosterone in renal arteriole. Hypertension 43, 352–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Ikeda, H. et al. Spironolactone suppresses inflammation and prevents L-NAME-induced renal injury in rats. Kidney Int. 75, 147–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Sainz, J. M. et al. Effects of nitric oxide on aldosterone synthesis and nitric oxide synthase activity in glomerulosa cells from bovine adrenal gland. Endocrine 24, 61–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Lee, S. H. et al. Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions. Am. J. Physiol. Renal Physiol. 297, F1381–F1390 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Wilkinson-Berka, J. L., Tan, G., Jaworski, K. & Miller, A. G. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circ. Res. 104, 124–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Kosugi, T., Heinig, M., Nakayama, T., Matsuo, S. & Nakagawa, T. eNOS knockout mice with advanced diabetic nephropathy have less benefit from renin–angiotensin blockade than from aldosterone receptor antagonists. Am. J. Pathol. 49, 51–54 (2010).

    Google Scholar 

  119. Wilkinson-Berka, J. L., Tan, G., Jaworski, K. & Miller, A. G. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circ. Res. 104, 124–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Tousoulis, D. et al. Novel therapies targeting vascular endothelium. Endothelium 13, 411–421 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T. Nakagawa, K. Tanabe, B. P. Croker, T. Kosugi and Q. Li contributed equally to researching data for this article. T. Nakagawa and M. B. Grant contributed equally to discussions of the content. T. Nakagawa wrote the article, and T. Nakagawa and R. J. Johnson contributed equally to reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Takahiko Nakagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, T., Tanabe, K., Croker, B. et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol 7, 36–44 (2011). https://doi.org/10.1038/nrneph.2010.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing