Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Iron supplementation to treat anemia in patients with chronic kidney disease

A Correction to this article was published on 27 January 2012

This article has been updated

Abstract

Iron deficiency is prevalent in patients with chronic kidney disease (CKD), and use of oral and intravenous iron in patients with CKD who do not require dialysis might obviate or delay the need for treatment with eythropoiesis-stimulating agents (ESAs). Patients on hemodialysis have lower intestinal iron absorption, greater iron losses, and require greater iron turnover to maintain the ESA-driven red cell mass than do healthy individuals. In these patients, intravenous iron reduces ESA dose requirements and increases the likelihood of maintaining levels of hemoglobin within the desired range. Oral iron is inferior to intravenous iron in patients on hemodialysis, in part because elevated serum levels of hepcidin prevent intestinal absorption of iron. Increased levels of hepcidin also impair the normal recycling of iron through the reticuloendothelial system. Levels of serum ferritin and transferrin saturation below 450 pmol/l and 20%, respectively are indicative of iron deficiency, but values above the normal range lack diagnostic value in patients with CKD on dialysis. The availability of various iron preparations and new developments in delivering iron should enable adequate provision of iron to patients with CKD. This Review examines the efficacy, safety and use of iron supplementation therapy for the treatment of anemia in patients with CKD.

Key Points

  • Iron deficiency is prevalent in patients with chronic kidney disease (CKD) and should be treated

  • Inconsistent and inadequate absorption of oral iron frequently leads to the need for administration of intravenous iron

  • Hepcidin (levels of which are frequently increased in patients with CKD) impairs iron absorption and the normal recycling of iron through the reticuloendothelial system

  • Low levels of serum ferritin and transferrin saturation indicate iron deficiency, but values in or above the normal range lack diagnostic value

  • Frequent, small repeat doses of intravenous iron are more effective than infrequent, large doses for maintaining levels of hemoglobin and reducing the requirement for erythropoiesis-stimulating agents (ESAs)

  • Relative thrombocytosis (owing to iron deficiency) might contribute to the increased cardiovascular risk seen with high ESA doses

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron distribution in the average adult.
Figure 2: Erythropoiesis.
Figure 3: Photomicrographs of erythroblastic islands, where erythroid precursors proliferate, differentiate and enucleate.
Figure 4: Microphotograph of bone marrow staining for iron.
Figure 5: Serum ferritin level and reticuloendothelial iron accumulation in patients on hemodialysis treated for anemia with blood transfusions in the pre-ESA era.
Figure 6: A treatment algorithm for the management of anemia in patients with CKD.

Similar content being viewed by others

Change history

  • 12 December 2011

    In the version of this article initially published online, incorrect volume and page numbers were given for reference 90. The correct reference is Sargent, J. A. & Acchiardo, S. R. Iron requirements in hemodialysis. Blood Purif. 22, 112–123 (2004). The error has been corrected for the HTML and PDF versions of the article.

References

  1. Bothwell, T. et al. Iron Metabolism in Man 2nd edn (Blackwell Scientific Publishing, 1979).

    Google Scholar 

  2. Sakiewicz, P. & Paganini, E. The use of iron in patients on chronic dialysis: mistake and misconceptions. J. Nephrol. 11, 5–15 (1998).

    CAS  PubMed  Google Scholar 

  3. Rabiner, S. F. Uremic bleeding. Prog. Hemost. Thromb. 1, 233–250 (1972).

    CAS  PubMed  Google Scholar 

  4. Powell, N. & McNair, A. Gastrointestinal evaluation of anaemic patients without evidence of iron deficiency. Eur. J. Gastroenterol. Hepatol. 20, 1094–1100 (2008).

    PubMed  Google Scholar 

  5. Gregory, C. G. & Eaves, A. C. Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biological properties. Blood 51, 527–537 (1978).

    CAS  PubMed  Google Scholar 

  6. Jelkmann, W. & Hellwig-Burgel, T. Biology of erythropoietin. Adv. Exp. Med. Biol. 502, 169–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Besarab, A. & Yee, J. in Principles and Practice of Dialysis (ed. Henrich, W. L.) 499–523 (Lippincott, Williams and Wilkens, Baltimore, 2009).

    Google Scholar 

  8. Besarab, A. et al. The effects of normal versus anemic hematocrit on hemodialysis patients with cardiac disease. N. Engl. J. Med. 339, 584–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Fishbane, S. & Besarab, A. Mechanisms of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin. J. Am. Soc. Nephrol. 2, 1274–1282 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Besarab, A., Kaiser, J. W. & Frinak, S. A study of parenteral iron regimens in hemodialysis patients. Am. J. Kidney Dis. 34, 21–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Besarab, A. et al. Optimization of epoetin therapy with intravenous iron therapy in hemodialysis patients. J. Am. Soc. Nephrol. 11, 530–538 (2000).

    CAS  PubMed  Google Scholar 

  12. Wish, J. B. Past, present, and future of chronic kidney disease anemia management in the United States. Adv. Chronic Kidney Dis. 16, 101–108 (2009).

    Article  PubMed  Google Scholar 

  13. Eschbach, J. W., Cook, J. D. & Finch, C. A. Iron absorption in chronic renal disease. Clin. Sci. 38, 191–201 (1970).

    Article  CAS  PubMed  Google Scholar 

  14. Eschbach, J. W., Cook, J. D., Scribner, B. H. & Finch, C. A. Iron balance in hemodialysis patients. Ann. Int. Med. 87, 710–713 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Magana, L., Dhar, S. K., Smith, E. C. & Martinez, C. Iron absorption and utilization in maintenance hemodialysis patients: oral and intravenous routes. Mt Sinai J. Med. 51, 180–183 (1984).

    CAS  PubMed  Google Scholar 

  16. Hershko, C. & Skikne, B. Pathogenesis and management of iron deficiency anemia: emerging role of celiac disease, Helicobacter pylori, and autoimmune gastritis. Semin. Hematol. 46, 339–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Sugimoto, M., Sakai, K., Kita, M., Imanishi, J. & Yamaoka, Y. Prevalence of Helicobacter pylori infection in long-term hemodialysis patients. Kidney Int. 75, 96–103 (2009).

    Article  PubMed  Google Scholar 

  18. Al-Mueilo, S. H. Gastroduodenal lesions and Helicobacter pylori infection in hemodialysis patients. Saudi Med. J. 25, 1010–1014 (2004).

    PubMed  Google Scholar 

  19. Waterlot, Y. et al. Impaired phagocytic activity of neutrophils in patients receiving haemodialysis: the critical role of iron overload. Br. Med. J. (Clin. Res. Ed.) 291, 501–504 (1985).

    Article  CAS  Google Scholar 

  20. Seifert, A., von Herrath, D. & Schaefer, K. Iron overload, but not treatment with desferrioxamine favours the development of septicemia in patients on maintenance hemodialysis. Q. J. Med. 65, 1015–1024 (1987).

    CAS  PubMed  Google Scholar 

  21. Kalantar-Zadeh, K., Don, B. R., Rodriguez, R. A. & Humphreys, M. H. Serum ferritin is a marker of morbidity and mortality in hemodialysis patients. Am. J. Kidney Dis. 37, 564–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kalantar-Zadeh, K., Rodriguez, R. A. & Humphreys, M. H. Association between serum ferritin and measures of inflammation, nutrition and iron in haemodialysis patients. Nephrol. Dial. Transplant. 19, 141–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Weiss, G. et al. Effect of iron treatment on circulating cytokine levels in ESRD patients receiving recombinant human erythropoietin. Kidney Int. 64, 572–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Feldman, H. I. et al. Iron administration and clinical outcomes in hemodialysis patients. J. Am. Soc. Nephrol. 13, 734–744 (2002).

    CAS  PubMed  Google Scholar 

  25. Feldman, H. I. et al. Administration of parenteral iron and mortality among hemodialysis patients. J. Am. Soc. Nephrol. 15, 1623–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Tanno, T., Noel, P. & Miller, J. L. Growth differentiation factor 15 in erythroid health and disease. Curr. Opin. Hematol. 17, 184–190 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chasis, J. A. & Mohandas, N. Erythroblastic islands: niches for erythropoiesis. Blood 112, 470–478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Babitt, J. L. & Lin, H. Y. Molecular mechanisms of hepcidin regulation: implications for the anemia of CKD. Am. J. Kidney Dis. 55, 726–741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ganz, T., Olbina, G., Girelli, D., Nemeth, E. & Westerman, M. Immunoassay for human serum hepcidin. Blood 112, 4292–4297 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Nemeth, E. Targeting the hepcidin–ferroportin axis in the diagnosis and treatment of anemias. Adv. Hematol. 2010, 750643 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Fernández-Rodríguez, A. M. et al. Diagnosis of iron deficiency in chronic renal failure. Am. J. Kidney Dis. 34, 508–513 (1999).

    Article  PubMed  Google Scholar 

  33. Kalantar-Zadeh, K. et al. Diagnosis of iron deficiency anemia in renal failure patients during the post-erythropoietin era. Am. J. Kidney Dis. 26, 292–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Singh, A. K., Coyne, D. W., Shapiro, W., Rizkala, A. R. ; DRIVE Study Group. Predictors of the response to treatment in anemic hemodialysis patients with high serum ferritin and low transferrin saturation. Kidney Int. 71, 1163–1171 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Stancu, S. et al. Bone marrow iron, iron indices, and the response to intravenous iron in patients with non-dialysis-dependent CKD. Clin. J. Am. Soc. Nephrol. 55, 639–647 (2010).

    CAS  Google Scholar 

  36. Stancu, S., Bârsan, L., Stanciu, A. & Mircescu, G. Can the response to iron therapy be predicted in anemic nondialysis patients with chronic kidney disease Clin. J. Am. Soc. Nephrol. 5, 409–416 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bross, R. et al. Association of serum total iron-binding capacity and its changes over time with nutritional and clinical outcomes in hemodialysis patients. Am. J. Nephrol. 29, 571–581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalantar-Zadeh, K., McAllister, C. J., Lehn, R. S., Liu, E. & Kopple, J. D. A low serum iron level is a predictor of poor outcome in hemodialysis patients. Am. J. Kidney Dis. 43, 671–684 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Vaghefi, N. et al. Effect of stabilising amino acids on the digestive absorption of heme and non-heme iron. Reprod. Nutr. Dev. 38, 559–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Tonini, M., D'Angelo, L., Carminati, G. M. & De Bernardi, M. Intestinal absorption of iron. I. Interference of amino acids and polypeptides [Italian]. Boll. Chim. Farm. 118, 49–52 (1979).

    CAS  PubMed  Google Scholar 

  41. Wingard, R. L., Parker, R. A., Ismail, N. & Hakim, R. M. Efficacy of oral iron therapy in patients receiving recombinant human erythropoietin. Am. J. Kidney Dis. 25, 433–439 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Markowitz, G. S., Kahn, G. A., Feingold, R. E., Coco, M. & Lynn, R. I. An evaluation of the effectiveness of oral iron therapy in hemodialysis patients receiving recombinant human erythropoietin. Clin. Nephrol. 48, 34–40 (1997).

    CAS  PubMed  Google Scholar 

  43. Nissenson, A. R. et al. Clinical evaluation of heme iron polypeptide: sustaining a response to rHuEPO in hemodialysis patients. Am. J. Kidney Dis. 42, 325–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Ofalabi, O., Velarde, C. & Besarab, A. Efficacy and tolerance of heme iron peptide (HIP) compared to iron fumurate (IF) in CKD patients [abstract]. J. Am. Nephrol. 14, 793A (2003).

    Google Scholar 

  45. Sepandj, F., Jindal, K., West, M. & Hirsch, D. Economic appraisal of maintenance parenteral iron administration in treatment of the anaemia in chronic haemodialysis patients. Nephrol. Dial. Transplant. 11, 319–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Yee, J. & Besarab, A. Iron sucrose: the oldest therapy becomes new. Am. J. Kidney Dis. 40, 1111–1121 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Bolaños, L. et al. Continuous intravenous sodium ferric gluconate improves efficacy in the maintenance phase of EPOrHu administration in hemodialysis patients. Am. J. Nephrol. 22, 67–72 (1992).

    Article  Google Scholar 

  48. Bregman, H. & Gelfand, M. C. Iron overload in patients on maintenance hemodialysis. Int. J. Artif. Organs 4, 56–57 (1981).

    Article  CAS  PubMed  Google Scholar 

  49. Ali, M. et al. Failure of serum ferritin levels to predict bone-marrow iron content after intravenous iron-dextran therapy. Lancet 1, 652–655 (1982).

    Article  CAS  PubMed  Google Scholar 

  50. Gokal, R. et al. Iron metabolism in haemodialysis patients. A study of the management of iron therapy and overload. Q. J. Med. 48, 369–391 (1979).

    CAS  PubMed  Google Scholar 

  51. Winchester, J. F. Management of iron overload in dialysis patients. Semin. Nephrol. 6, 22–26 (1986).

    CAS  PubMed  Google Scholar 

  52. Bárány, P., Eriksson, L. C., Hultcrantz, R., Pettersson, E. & Bergström, J. Serum ferritin and tissue iron in anemic dialysis patients. Miner. Electrolyte Metab. 23, 273–276 (1997).

    PubMed  Google Scholar 

  53. Rodgers, G. M. et al. High-molecular weight iron dextran: a wolf in sheep's clothing? J. Am. Soc. Nephrol. 19, 833–840 (2008).

    Article  PubMed  Google Scholar 

  54. Raimundo, M., Abreu, F. & Da Costa, G. Parenteral iron safety in haemodialysis patients. Port. J. Nephrol. Hyperten. 23, 153–159 (2009).

    Google Scholar 

  55. Nissenson, A. R., Lindsay, R. M., Swan, S., Seligman, P. & Strobos, J. Sodium ferric gluconate complex in surcrose is safe and effective in hemodialysis patients: North American Clinical Trial. Am. J. Kidney Dis. 33, 471–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Bailie, G. R., Johnson, C. A. & Mason, N. A. Parenteral iron use in the management of anemia in end-stage renal disease patients. Am. J. Kidney Dis. 35, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Chandler, G., Harchawal, K. & Macdougall, I. C. Intravenous iron sucrose: establishing a safe dose. Am. J. Kidney Dis. 38, 988–991 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Spinowitz, B. S. et al. Ferumoxytol for treating iron deficiency anemia in CKD. J. Am. Soc. Nephrol. 19, 1599–1605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Singh, A. et al. Safety of ferumoxytol in patients with anemia and, CKD. Am. J. Kidney Dis. 52, 907–915 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Macdougall, I. C. Evolution of IV iron compounds over the last century. J. Ren. Care 35 (Suppl. 2), 8–13 (2009).

    Article  PubMed  Google Scholar 

  61. Himmelfarb, J., Stenvinkel, P., Ikizler, T. A. & Hakim, R. M. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 62, 1524–1538 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Zager, R. A., Johnson, A. C., Hanson, S. Y. & Wasse, H. Parenteral iron formulations: a comparative toxicologic analysis and mechanisms of cell injury. Am. J. Kidney Dis. 40, 90–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Drüeke, T. et al. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease. Circulation 106, 2212–2217 (2002).

    Article  PubMed  Google Scholar 

  64. Himmelfarb, J. Uremic toxicity, oxidative stress, and hemodialysis as renal replacement therapy. Semin. Dial. 22, 636–643 (2009).

    Article  PubMed  Google Scholar 

  65. Bishu, K. & Agarwal, R. Acute injury with intravenous iron and concerns regarding long-term safety. J. Am. Soc. Nephrol. 1 (Suppl. 1), S19–S23 (2006).

    Article  CAS  Google Scholar 

  66. Caussé, E. et al. Aminothiols and allantoin in chronic dialysis patients: effects of hemodialysis sessions. Clin. Nephrol. 73, 51–57 (2010).

    Article  PubMed  Google Scholar 

  67. Shah, S. V. & Rajapurkar, M. M. The role of labile iron in kidney disease and treatment with chelation. Hemoglobin 33, 378–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Kalantar-Zadeh, K., Regidor, D. L., McAllister, C. J., Michael, B. & Warnock, D. G. Time-dependent associations between iron and mortality in hemodialysis patients. J. Am. Soc. Nephrol. 16, 3070–3080 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Kovesdy, C. S., Estrada, W., Abmahdzadeh, S. & Kalantar-Zadeh, K. association of iron markers of iron stores with outcomes in patients with non-dialysis-dependent chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 435–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pollack, V. E., Lorxh, J. A., Schukla, R. & Satwah, S. The importance of iron in long-term survival of maintenance hemodialysis patients treated with epoetin-alpha and intravenous iron: analysis of 9.5 years of prospectively collected data. BMC Nephrol. 10, 6 (2009).

    Article  CAS  Google Scholar 

  71. Agarwal, R., Rizkala, A. R., Kaskas, M. O., Minasian, R. & Trout, J. R. Iron sucrose causes greater proteinuria than ferric gluconate in non-dialysis chronic kidney disease. Kidney Int. 72, 638–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Coyne, D. W. et al. Ferric gluconate is highly efficacious in anemic hemodialysis patients with high serum ferritin and low transferrin saturation: results of the Dialysis Patients' Response to IV Iron with Elevated Ferritin (DRIVE) Study. J. Am. Soc. Nephrol. 18, 975–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Agarwal, R. A clinical trial of oral versus IV iron in patients with chronic kidney disease. ClinicalTrial.gov[online], (2010).

  75. Mircescu, G. Intravenous iron in patients with severe chronic heart failure and chronic kidney disease. ClinicalTrial.gov[online], (2010).

  76. Dahl, N. V., Henry, D. H. & Coyne, D. W. Thrombosis with erythropoietic stimulating agents—does iron-deficient erythropoiesis play a role? Semin. Dial. 21, 210–211 (2008).

    Article  PubMed  Google Scholar 

  77. Streja, E. et al. Erythropoietin, iron depletion, and relative thrombocytosis: a possible explanation for hemoglobin–survival paradox in hemodialysis. Am. J. Kidney Dis. 52, 727–736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Besarab, A., Rayamajhi, S., Al-Sharif, H., Frinak, S. & Yee, J. Iron repletion decreases platelet counts (PLT) in non-dialysis CKD patients [abstract 50]. Am. J. Kidney Dis. 55 (Suppl.), B54 (2010).

    Google Scholar 

  79. Vaziri, N. D. Thrombocytosis in EPO–treated dialysis patients may be mediated by EPO rather than iron deficiency. Am. J. Kidney Dis. 53, 733–736 (2009).

    Article  PubMed  Google Scholar 

  80. Gotloib, L., Silverberg, D., Fudin, R. & Shostak, A. Iron deficiency is a common cause of anemia in chronic kidney disease and can often be corrected with intravenous iron. J. Nephrol. 19, 161–167 (2006).

    CAS  PubMed  Google Scholar 

  81. Macdougall, I. C. Iron supplementation in the non-dialysis chronic kidney disease (ND-CKD) patient: oral or intravenous? Curr. Med. Res. Opin. 26, 473–482 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    Article  PubMed  Google Scholar 

  83. Soman, S., Zasuwa, G. & Yee, J. Automation, decision support, and expert systems in nephrology. Adv. Chronic Kidney Dis. 15, 42–55 (2008).

    Article  PubMed  Google Scholar 

  84. Covic, A. & Mircescu, G. The safety and efficacy of intravenous ferric carboxymaltose in anaemic patients undergoing haemodialysis: a multi-centre, open-label, clinical study. Nephrol. Dial. Transplant. 25, 2722–2730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Provenzano, R. et al. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 4, 386–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gupta, A. et al. Dialysate iron therapy: infusion of soluble ferric pyprophosphate via the dialysate during hemodialysis. Kidney Int. 55, 1891–1898 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Gastaldello, K. et al. Resistance to erythropoietin in iron-overloaded haemodialysis patients can be overcome by ascorbic acid administration. Nephrol. Dial. Transplant. 10 (Suppl. 6), 44–47 (1995).

    Article  PubMed  Google Scholar 

  88. Attallah, N., Osman-Malik, Y., Frinak, S. & Besarab, A. Effect of intravenous ascorbic acid in hemodialysis patients with erythropoietin-hyporesponsive anemia and hyperferritinemia. Am. J. Kidney Dis. 47, 644–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Goch, J., Birgegård, G., Danielson, B. G. & Wikström, B. Treatment of erythropoietin-resistant anaemia with desferrioxamine in patients on haemofiltration. Eur. J. Haematol. 55, 73–77 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Sargent, J. A. & Acchiardo, S. R. Iron requirements in hemodialysis. Blood Purif. 22, 112–123 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Besarab and D. W. Coyne contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Anatole Besarab.

Ethics declarations

Competing interests

A. Besarab has acted as a consultant for Affymax, AMAG Pharmaceuticals, Amgen, Hoffman–La Roche and Watson Pharmaceuticals, is a member of the speakers' bureau or has received honoraria from AMAG Pharmaceuticals, Hoffman–La Roche and Watson Pharmaceuticals and has received grant or research support from Affymax, AMAG Pharmaceuticals and Hoffman–La Roche. D. W. Coyne has acted as a consultant for Pharmacosmos, Sanofi–Aventis and Watson Pharmaceuticals and is a member of the speakers' bureau or has received honoraria from AMAG Pharmaceuticals and Watson Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besarab, A., Coyne, D. Iron supplementation to treat anemia in patients with chronic kidney disease. Nat Rev Nephrol 6, 699–710 (2010). https://doi.org/10.1038/nrneph.2010.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing